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Correlation-dimension calculations for broadband intensity fiuctuations
in emission from a heavily saturated source of amplified spontaneous emission
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Broadband intensity fluctuations from a heavily saturated source of amplified spontaneous emis-

sion (ASE) operating on the 3.51-pm transition of xenon show no evidence of a dynamical origin
represented by a low-dimensional underlying chaotic attractor. The broadband coupled-mode fluc-

tuations in ASE thus seem to be stochastic when contrasted with the recently reported deterministic
nature of similar broadband fluctuations of single-mode lasers operating on the same transition.

I. INTRODUCTION

Spontaneous emission from a collection of independent
incoherently excited atoms is a random stochastic pro-
cess. As a sum of many randomly phased contributions
from different atoms, spontaneous emission has a Gauss-
ian field amplitude probability distribution function and
an exponential intensity probability distribution function
(IPDF) in its fluctuations, just as for thermal radiation.
Amplified spontaneous emission (ASE), whose only
source is the spontaneously emitted radiation within the
optical amplifier, also has Gaussian amplitude statistics
when the amplifier gain is linear. However, since the
gain becomes nonlinear when the intensity reaches a level
at which stimulated emission reduces the number of ex-
cited atoms, statistical properties of the emitted radiation
are significantly changed when an appreciable portion of
the intensity fluctuations approach this characteristic sat-
uration intensity.

In contrast, the spectral properties of ASE change
in both the linear and nonlinear regimes. The spectral
width decreases significantly with increasing amp1ifica-
tion while the process remains linear. The spectral width
decreases more slowly as saturation sets in for a homo-
geneously broadened medium while it increases as the
gain saturates for an inhomogeneously broadened medi-
um. Experimental measurements and theoretical analy-
ses confirm these characteristics.

When only a single mode of the radiation field interacts
with the medium, gain saturation tends to reduce the
variance of the fluctuations, as is also true in a single-
mode laser when it is brought above threshold. In ASE,
however, competition between different radiation modes
for the finite energy supplied at a constant rate to the ex-
cited medium causes fluctuations in each mode to persist
even under the condition of heavy gain saturation.

Nevertheless, even in the presence of mode competi-
tion, as the gain saturates one expects that the amplitude
statistics should be different from the Gaussian statistics
of thermal sources. Theoretical analyses and experimen-
tal measurements have shown unambiguously that there
is a significant reduction of the fluctuations of each mode
of an ASE source. However, it is also found that the sat-

uration efl'ects reach a limit in which the IPDF of each
mode reaches a shape which depends on the number of
modes present. ' The limiting IPDF's found for simple
rate equation models' obey negative polynomial distribu-
tions whose power depends only on the number of modes.
The IPDF's converge to that of a thermal distribution
when the number of modes approaches infinity. Because
of the coupling of the modes, the intensity fluctuations of
two orthogonally polarized components of the output
from one end of an ASE tube were found to be
significantly anticorrelated in a heavily saturated medium
but were uncorrelated in an unsaturated medium. ' '

Under heavily saturated conditions the ASE output
shows some evidence of nonstochastic behavior in the
form of ringing in the intensity following large ASE
pulses. ' This is usually assumed to be correlated with
coherent evolution of the collective material polarizations
as described by a Bloch vector. If this is the explanation
in our case, the ringing represents a kind of
superfluorescent emission which clearly is not found in
the emission from an unsaturated medium at the same ex-
citation density. It is then pertinent to ask whether there
is long-term dynamical behavior in the coherent ringing
which can be used to distinguish it from the stochastic
random intensity fluctuations of spontaneous emission of
an unsaturated optical amplifier.

In addition, our preliminary reports of this work' led
Hopf to an analysis' of situations under which chaotic
behavior might be induced in a saturating laser amplifier.
His analysis concluded that there might be spatial chaos
under circumstances of a quasiperiodic input. However,
for our experimental conditions, even with high satura-
tion, he suggested that the time-dependent output would
remain stochastic.

Because of the puzzling mixture of partially dynamical
behavior that we have observed and which Hopf predict-
ed, we undertook a more systematic study than that de-
scribed in Ref. 18 in order to more completely character-
ize the experimental situation. We report the results of
that search for evidence of deterministic chaos in the
dynamical behavior underlying the ASE fluctuations
from a heavily saturated source. During the past decade
chaotic behavior has been identified in a wide variety of
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seemingly unpredictable and seemingly random phenom-
ena in hydrodynamic, chemical, biological, optical, and
electronic systems. The identification has sometimes
been qualitative, as in the observation of one of a small
number of universal routes to chaotic behavior. More
quantitative measures have also been used to characterize
the complicated signals which have broadband power
spectra in order to verify that they are truly chaotic.
These methods can identify when the signal arises from
chaotic behavior corresponding to motion on a low-
dimensional "strange attractor, " so-called because the
system is found to have settled into a particular ordered
subset of the possible values in its phase space. Deter-
ministic processes are those for which there are definite
prescriptions for all their future behavior based on
present or past information. However, it is possible for a
deterministic system to evolve over long times in an irreg-
ular fashion, such that the specific future is unpredictable
in practice because of uncertainties in precisely specifying
the system and its very sensitive dependence on the initial
conditions. The evolution of these systems, in principle,
is completely determined by the initial conditions and the
prescribed equations of motions. It is this type of deter-
ministic behavior that is used to define deterministic
chaos. This is different from stochastic irregular behav-
ior resulting from the combination of an extremely large
number of independent variables. A stochastic random
process can be described only in terms of average proper-
ties determined by its probability distribution. Hence
spectral studies are not suitable for detailed classification
or comparison of different kinds of complex behavior or
even for the discrimination between deterministic chaos
and purely stochastic noise.

Quantitative methods can be used to analyze digitized
time series of one of the variables to differentiate stochas-
tic noise from deterministic chaos. ' These methods
also have been refined, thereby reducing the original re-
quirement of large data sets, and making them applicable
for data sets blurred by noise. The distinction of noise
from chaos has been made possible by reliable estimates
of quantities such as dimensions, ' metric entro-
pies, ' ' and Lyapunov exponents. These quantities
provide a quantitative means of following the system as it
evolves from one kind of behavior to another. Moreover,
the dimensions defined for an attractor provide estimates
of the number of independent variables that may be ulti-
mately needed to model the dynamics.

II. CORRELATED-DIMENSION CALCULATION—
THEORETICAL BACKGROUND

The correlation dimension is the most widely used
measure of chaotic behavior because of the relative ease
with which it can be calculated from a time series.
The calculation of correlation dimension (or order
two information dimension) can be performed using
the algorithms developed by Grassberger and Procac-
cia. ' ' From each of the sets of N numbers U;

(i=1,2, . . . , N), one forms m-dimensional time delay

vectors x—:(U, , U +,, . . . , v, +,) and evaluates the
correlation integral

N

C (e):—lim g e(e ~x;
—x.~} .

N N —1

Here e is the Heaviside function. The correlation di-
mension is then given by

lnC (e)
D2=lim lim

&~0 m ~ 00 lnE'

Thus the technique of measuring Dz is essentially the fol-
lowing: The measurements are made by recording one
variable of the system with successive values equally
spaced in time. Then one plots the trajectory in a space
whose coordinates are sequential values of the measured
variable which are delayed from each other by equal
amounts (not necessarily the time delay between succes-
sive points in the original data set). This procedure is
called "embedding the time series" in a higher-
dimensional space. In this embedding space one mea-
sures the relative separation of points to find out the
correlation integral. The embedding theorem establishes
conditions under which a sufficiently high-dimensional
reconstruction properly recovers the topology of the at-
tractor. Hence, if the extracted dimension converges for
a range of embedding dimensions one can infer that it is
the correlation dimension of the attractor. In calcula-
tions, one cannot take the limits. Instead, one takes the
smallest e not obscured by noise and the largest m one
can compute in a reasonable amount of time.

It is assumed in the Grassberger-Procaccia method of
analysis that the algorithm parameters have been chosen
wisely to provide an appropriate reconstruction of the at-
tractor in the new embedding space. If the "sampling
time" r, (time interval between successive data points) is
too small, information contained in successive com-
ponents of the embedding vectors would be redundant. If
r, is too large the components of the vectors would be
too uncorrelated. If v. represents the appropriate time be-
tween the components of the vectors and ~, & ~, then
clearly smaller ~, should be used. If r, &r, then one
should use values of the time series which are separated
by appropriate time intervals by "skipping" over values
of the time series in forming the successive components
of each embedding vector. Determining an appropriate
time scale is thus an important factor in this method of
analysis. This method also presupposes that proper
values of the embedding dimension are to be used to
reconstruct the system's trajectory. Theorems due to
Takens and Mane state that, in order to have a proper
embedding, the embedding dimension m and the dimen-
sion d should satisfy the inequality m 2d+1. Since d is
normally not known a priori, the most effective choice of
m is determined by trial and error —that is, by scanning
m from small to large values and noticing the m value
where slopes no longer increase with increasing m. How-
ever, the presence of noise in the data and the need to use
high embedding dimensions may lead to overlap between
the two "noisy regions" (small in@ and large inc}. In this
case no "plateau" may be observed.
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Other dimension algorithms have been proposed by,
e.g. , Badii and Politi. Studies by various authors indi-
cate that this method is rather more accurate than that of
Grassberger and Procaccia for large-dimensional attrac-
tors. However, the Grassberger-Procaccia (GP) method
has been used by some to find dimensions within
10—20% accuracy for values up to 8. Because the GP
method has been shown to be sufhcient to identify noise
in large-dimensional systems and because the methods of
Badii and Politi typically require more data values than
were available to us, we settled on the GP method as
modified (see below) as sufficient for our purposes.

The procedure has been improved by Albano et al.
who adapted the GP method to a technique for finding
the smallest Euclidean space in which a trajectory is em-

I

bedded as well as the orthonormal basis vectors spanning
this space. The basis vectors c; are the eigenvalues of the
"covariance matrix"

p; =—g X;(k )X,.(k ),1

k

where

pe;=a;e; .

The symmetries of p are such that 0.; are greater than or
equal to zero and e; e =5; 0, is the mean-square projec-2

tion of the embedding vectors on the axis i in this basis.
Here N is the total number of embedding vectors and

X,(k) is the ith component of the kth embedding vector

X(k)=(Xi(k),X2(k), . . . , X~(k))

=(v(1+(k —1)J),u(1+(k —1)J+p), . . . , u(1+(k —1)J+(m —1)p)),

where v(t) represents the time series measured at sam-

pling time intervals r„p is the "lag" (number of sampling
intervals between successive components of each embed-
ding vector), and J is the number of sampling intervals
between the first components of successive vectors. The
time (rn —1)p, spanned by each embedding vector, is
called the "window length" of the embedding. Broom-
head and King suggested that an optimum window
length is given by 1 lni', where ro', the band limiting fre-
quency, is the highest frequency that significantly con-
tributes to the power spectrum of the time series. Since
the autocorrelation function and its power spectrum are
Fourier transforms (Wiener-Khintchine theorem) of each
other, the autocorrelation time and I/c0' are of the same
order of magnitude.

Thus in the Albano et al. method of analysis, starting
from the time series, one forms the covariance matrix p
and calculates its eigenvalues and eigenvectors. Eigenval-
ues and eigenvectors are obtained by diagonalizing the
covariance matrix by using the singular value decomposi-
tion technique. Since the matrix of the eigenvectors of p
is an orthogonal transformation of the embedding space,
Euclidean distances between embedding vectors are
preserved. The correlation integral and, hence, the corre-
lation dimension are then invariant in the transformation.
In the absence of noise the number of nonzero eigenval-
ues (that is the rank of the covariance matrix) is the di-
mension of the smallest subspace of the embedding space
that contains the reconstructed trajectory. Since noise
prevents any eigenvalues from becoming zero, dimension
is actually estimated by computing the GP correlation in-
tegral in this new transformed space corresponding to a
chosen embedding dimension m.

III. EXPERIMENTS AND RESULTS

The ASE signal was provided by a single multianode
laser amplifier tube made of Pyrex of length 300 cm and
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FIG. 1. Variation of average intensity with discharge length
for the inhomogeneously broadened and the relatively homo-
geneously broadened ASE.

of inner diameter 4 mm. The rube was dc excited by a
1 —10 kV, 15 mA regulated power supply with a 300—750
ballast resistance in series to damp out any plasma oscil-
lations. The experimental setup and measurement ap-
paratus were as described elsewhere. ' In order to get an
inhomogeneously broadened medium the discharge tube
was filled with 182 mTorr of 90% single isotope Xe-136.
This resulted in a homogeneous linewidth of about 7
MHz compared with an inhomogeneous Doppler
linewidth estimated to be about 110 MHz. For a more
relatively homogeneously broadened medium the
discharge tube was filled with 182 mTorr of Xe and 2.4
Torr of 99.9 wt. % He which provided a total homogene-
ously broadened linewidth of about 54 MHz. The
discharge current used in the experiments was 3.7 mA—
a low value was used in order to avoid cataphoresis. One
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linearly polarized component of the 3.51-pm ASE signal
was detected, amplified, and digitized using a fast tran-
sient recorder. A Tektronix fast digitizer was used in ini-
tial experiments providing ten-bit resolution and a max-
imum digitizing rate of 1 GHz but digitized sequences
were limited to only 512 data points. For longer time
series a Lecroy fast transient recorder (model TR8828C)
was used providing eight-bit resolution, maximum digi-
tizing rate of 200 MHz/sec (5-ns sampling time), and
data sets of up to 128 000 points. We found special value
in comparing the analysis of data from these two digitiz-
ers because they provide typical experimental compensat-
ing trade-offs among digitizing resolution, digitizing rate,
and the length of the data stream. The average intensity
of the ASE signal was recorded by chopping the ASE sig-
nal and using a lock-in amplifier. As a reference noise
signal, the output from a Hewlard-Packard 461A
amplifier was also digitized and used in the dimension
analysis for comparison with the ASE results.

Variation of the average intensity with source length is
shown in Fig. 1 for the inhomogeneously broadened and
for the relatively homogeneously broadened cases, respec-
tively. The less than exponential growth at longer
discharge lengths indicates that the ASE signal is heavily
saturated. This is also confirmed by the spectral re-
broadening in the inhomogeneously broadened case and
the significant decrease of the rebroadening rate' (not
shown here) for the more homogeneously broadened case.

A FORTRAN program implementing the GP algorithm
was used to compute the correlation integral of the
embedding trajectories. In order to check the results,
longer data sets were analyzed with different embedding
dimensions and for data sets from different experimental
conditions. As a cross check, we calculated the dimen-
sion using the method of Albano et al. of projecting the
embedded attractor onto subspaces spanned by its princi-
pal axes. The power spectrum (homodyne) of the ASE
signal was obtained by fast Fourier transforming (and
then squaring) the digitized intensity time series.

Figures 2(a) and 2(b) show the intensity time series and
power spectrum, respectively, of a digitized homogene-
ously broadened (Xe= 182 m Torr, He = 1 Torr,
current=4 mA) ASE signal of 512 points taken at a sam-
pling time of 10 ns with ten-bit resolution. Figures 2(c)
and 2(d) show corresponding plots of slopes versus lnC„
for the GP correlation integral for embedding dimensions
between 10, 12, 14, 16, 18, and 20 for different "lag"
(time delays between components of a vector) values.
The slopes increase steadily with increasing embedding
dimension. However, though this data set had better
resolution than the data sets analyzed in Figs. 3 and 4, it
was limited to 512 data points which prohibited recon-
struction of attractors with large embedding dimension
and which inhibited variation of the parameters of the
embedding. These limitations prevented us from drawing
strong conclusions about the existence of an attractor
from these analyses.

In Figs. 3 and 4 we show analyses of longer time series
(5000 points) of lower (eight-bit) resolution taken with a
Lecroy digitizer with a sample interval of 5 ns. The
correlation time of these signals is about 20 ns. ' A sam-
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pling time interval of 5 ns clearly satisfies the criterion for
proper embeddings. Figure 3(a) shows the intensity time
series of the inhomogeneously broadened ASE signal ob-
tained at 300-cm discharge length (29.1 unsaturated gain
lengths). The power spectrum shown in Fig. 3(b) is clear-
ly broadband. Figures 3(c}—3(e) show the plots of inc„
versus inc, slope versus lnC„, and slope versus in@. In the
analysis all embedding vectors are used for each embed-
ding dimension in the computation of the GP correlation

integral. The length scale e is normalized to the largest
interpoint distance in each embedding. Again in this case
the slope increases steadily with increasing embedding di-
mension. To see the nature of this variation, the values
of the slopes obtained at a particular value of inc are plot-
ted versus the embedding dimension in Fig. 3(Q.

Figure 4(a) shows the corresponding analysis of 4000
points of an intensity time series for the relatively homo-
geneously broadened ASE obtained at discharge length of
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300 cm (51 unsaturated gain lengths). Its broadband
spectrum is shown in Fig. 4(b). Figures 4(c)—4(e) show
the plots of lnC„versus in@, slope versus lnC„, and slope
versus inc. Here again the slope increases with increasing
embedding dimension at a rate shown by the plot in Fig.
4(f).

The analyses were repeated with different data sets ob-
tained under different experimental conditions with
different sampling intervals ranging from 5 —20 ns and for
different lag values. In all such analyses the slopes always
increased with increasing embedding dimension.

For comparison with the ASE results, digitized noise
from the HP-461 video amplifier (cutoff frequency -200
MHz) was also analyzed using the GP algorithm. The
data set consisted of 5000 points of eight-bit resolution
taken with a 5-ns sampling interval. Figure 5(a) shows
the slope versus lnC„ for embedding dimensions 2 to 16
in steps of 2. In computations of the correlation integral
all embedding vectors are used. The slope at any particu-
lar value of e increases with the embedding dimension, as
expected for random noise. The increase is seen as the
positive slope in Fig. 5(b). Interestingly, the increase with
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embedding dimension in Fig. 5(b) for the amplifier noise
is difFerent from the increases for the ASE data sets
shown in Figs. 3(fl and 4(fl. The rates of increase for the
two ASE data sets also di5er among themselves. The rate
of increase with embedding dimension correlates with the
spectral bandwidth, being lowest for the relatively homo-
geneously broadened ASE (40 MHz) while it is greatest
for the amplifier noise (200 MHz). This clarifies one of
the subtleties of the dimension calculations. One should
expect an increase of the apparent attractor dimension
with increasing embedding dimension for colored noise to
be related to the ratio of the time delay between com-

ponents of a vector (the lag) to the correlation time of the
signal.

Even longer data sets were analyzed using the im-
proved method of Albano et a/. Figure 6 provides the
results of analysis of a data set of 100000 points sampled
at 5-ns intervals with eight-bit resolution for the relative-
ly homogeneously broadened ASE obtained at discharge
length 300 cm. The 100000 points were used to con-
struct 10000 vectors. Choosing 10 to be the embedding
dimension, a singular value decomposition was per-
formed to 6nd the principal axes of embedding. Embed-
ding vectors were selected uniformly from the entire data
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set. The normalized eigenvalues of the singular value
analysis were 0.396, 0.267, 0.173, 9.15 X 10
4.25 X 10, 1.70X 10, 7.57X10, 3.14X 10
1.50 X 10, and 8.94 X 10 . The trajectory matrix was
then rotated to get the matrix of the principal com-
ponents which was then used to calculate the GP correla-
tion integral. Figure 6(a) shows the slope of the correla-
tion integral versus inc for subspaces 7, 8, 9, and 10. Fig-

ure 6(b) shows the same plot for a subset of the same data
set where 10000 points were used to construct 1000 vec-
tors. The embedding dimension was chosen to be 5 and
the calculation was done for subspaces 3, 4, and 5. Fig-
ure 6(c) shows the same plot for a different data set of the
relatively homogeneously broadened ASE at the same
discharge length 300 cm. This data set also has eight-bit
resolution and sampled at 5-ns intervals. In the analysis
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100000 points are used to construct 9000 vectors. The
embedding dimension was chosen to be 11 and the calcu-
lation was done for subspaces 8, 9, 10, and 11. Normal-
ized eigenvalues are 0.373, 0.282, 0.169, 9.25X10
4.57X10, 2.08X10, 8.84X10, 3.95 X 10
2. 19X10,1.33X10,and 9.95X10

Figure 7(a) shows a plot of slope versus lne for a data
set from the inhomogeneously broadened ASE where in
the analysis 100000 points were used to construct 10000
vectors. The data set was taken at the discharge length
300 cm (gain length 29.1) with the same sampling time in-
terval of 5 ns. The embedding dimension was 10 and re-
sults for subspaces 7, 8, 9, and 10 are shown. The nor-

malized eigenvalues were 0.413, 0.260, 0.171,
8.73X10, 4. 14X10, 1.64X10, 6.52X10
2. 52 X 10, 1. 11 X 10, and 6.83 X 10 . Figure 7(b)
shows a similar plot of slope versus lne for a different
data set of the inhomogeneously broadened ASE obtained
at the discharge length 180 cm (gain length 17.5). This
data set also had eight-bit resolution and sampling time 5
ns. 100000 points were used to construct 9000 vectors.
The embedding dimension was 11 and the calculation was
done for the subspaces 8, 9, 10, and 11. Normalized ei-
genvalues are 0.487, 0.239, 0.139, 6.95 X 10
3.24X10, 1.34X10, 6.64X10, 4.22X10
3.57X10,2.87X10, and 2.55X10
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In all three cases there is no "plateau" in the slope
which would be indicative of a dimension and thereby in-
dicating the existence of an attractor. Instead, the slope
increases with embedding dimension which is charac-
teristic of noise. The convergence of the slope curves for
larger values of e may indicate that there is some charac-
teristic density distribution of the embedded data sets on
larger length scales, but it is not that of a fractal set.

IV. DISCUSSION

We conclude that there is no evidence of a low-
dimensional strange attractor as a cause for the ASE in-

tensity fluctuations with broadband power spectra and ir-
regular time series from the heavily saturated 3.51-pm
source. The slopes of the correlation integrals do not
converge to show any common plateau for any of the
conditions. Instead, the slopes always increase with in-
creasing embedding dimension —a behavior observed and
expected for stochastic random noise. Thus there is no
evidence of a fractal dimension which would be expected
for a deterministic chaotic system.

One might have expected some deterministic features
in the case of ASE caused by the coherent evolution and
ringing after the intense pulses. Instead, the absence of
any common plateau in the plots of the correlation in-
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FIG. 5. {a) Slope vs 1nC„ for embedding dimensions 2 to 16, step 2 and {b) slope vs embedding dimension {for 1ne= —2.2) for elec-
tronic noise from a HP-461A amplifier {flat from 1 kHz to 150 MHz).

tegrals, obtained from a wide range of operating condi-
tions, makes it clear that the broadband fluctuations in
the heavily saturated ASE are associated with a stochas-
tic state for which the concept of correlation dimension
does not have any meaning or, even if it does, it is not
discernible with the present techniques of analysis even
when the analysis is carried out in reconstructed sub-
spaces of dimension up to 20 (the maximum embedding
dimension used in the computations).

It is noteworthy, in this connection, that this type of

noisy origin of the broadband fluctuations of heavily sa-
turated ASE sharply contrasts with that of the low-
dimensional chaotic output of unstable 3.51-pm xenon
lasers. * ' In the lasers there is a clear evidence of
fractal dimensions between 2 and 3 for data sets with
broadband optical power spectra similar to those of the
ASE signals. However, though they both have broad-
band spectra they differ in other ways. One difference is
in their autocorrelation functions. The intensity auto-
correlation functions for the chaotic laser signals show
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clear ringing and a slow decay of the envelope instead of
single-peaked, rapidly decaying results for the ASE."
The chaotic lasers also differ from the ASE in their inten-
sity probability distribution functions. However, there
are forms of fully developed chaos which would not be
distinguishable from the ASE based on spectra, correla-
tion functions, or probability distributions. Thus the
computation of quantities such as correlation dimension
and autocorrelation functions enables us to unambiguous-
ly discriminate low-dimensional chaos from these ran-
domly Auctuating intensities. We conclude that in this

case stochastic processes underlie the long-term evolution
of ASE signals.
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