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Radiation trapping under conditions of low to moderate line-center optical depth
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We have studied trapping of resonance radiation under conditions of moderate to low line-center

optical depths in sodium-argon mixtures. We report measured effective radiative decay rates, which

are compared with predictions of the Post [Phys. Rev. A 33, 2003 (1986)) and the Milne [J. Lond.
Math. Soc. 1, 40 (1926)] theories of radiation trapping. These theories are expected to be valid for
spectral lines with low to moderate line-center optical depths, where the commonly used Holstein
[Phys. Rev. 72, 1212 (1947); 83, 1159 (1951)]theory of radiation trapping is expected to break down.
The experiment was performed under conditions in which the trapping was dominated by either the
Doppler-broadened Gaussian or by the impact-broadened Lorentzian line-shape function. The
measured effective radiative decay rates agree well with those predicted by the Milne and Post
theories over the range of low to moderate optical depth.

I. INTRODUCTION

Radiation trapping refers to a decrease in the effective
radiative decay rate of a resonance line due to repeated
absorption and reemission of photons. In an atomic va-

por, such as sodium, resonance radiation may undergo
many such reabsorptions before escaping from the region
containing the vapor. The average number of reabsorp-
tions taking place determines the effective radiative decay
rate. This effective radiative rate is given by

eff g ggt

where the escape factor g is the inverse of the mean num-
ber of absorption events, and I „„is the natural radiative
rate. ' The escape factor depends on the spectral line
shape, the absorbing atom density, and the geometry of
the region from which light is escaping. An understand-
ing of the trapping process is important in order to
correctly model energy transport in optically thick plas-
mas and neutral atom vapors. Such considerations are
particularly important in the accurate modeling of stellar
atmospheres and discharge lamps.

In previous experiments, we have confirmed the validi-
ty of the Holstein theory of radiation trapping for a wide
range of experimental conditions. ' Under conditions of
high optical depth, ideal geometry, complete frequency
redistribution, and a single line-broadening mechanism,
the Holstein theory predictions for the effective radiative
decay rates agree well with measured decay rates. Radia-
tive decay rates were measured for conditions where ei-
ther Doppler broadening or impact broadening dominat-
ed the radiation trapping process (i.e., the unity optical
depth points k(to)l —1 occurred in the Doppler core or
in the pressure-broadened wings, respectively }. The cell
geometry was made to approximate an infinite slab.

In the present work, radiative decay rates are measured
for conditions of low to moderate optical depths, where
the Holstein theory is expected to break down. Effective
decay rates (I',tt) or escape factors (g) are compared with

values predicted from the Holstein, ' Milne, and Post,
theories of radiation trapping. Decay rates are measured
for conditions where the trapping is dominated by either
Doppler or impact broadening. Comparison of measured
decay rates with the theoretical values yields the range of
optical depths for which each of these theories is valid.

II. RKVIK% OF THEORY

In order to predict escape factors, knowledge is re-
quired of the spatial distribution of absorbing atoms, the
excitation geometry, the frequency-dependent absorption
coefficient k (co}, the frequency and angular redistribution
functions, and the relevant collisional excitation transfer
rates. Given such information, one can accurately deter-
mine escape factors using Monte Carlo computer simula-
tions. However, these calculations are expensive, and it
is not obvious how the numerical results scale when one,
for example, changes the species of absorbing atoms or
the cell dimension.

Many theories have been developed which predict es-
cape factors using various simplifying approxima-
tions. ' ' ' ' ' Holstein' derived simple closed-form ex-
pressions for the escape factor for conditions of high
line-center optical depth [k(too}1»1, where k(coo) is the
line-center absorption coeScient and I is a geometric fac-
tor], a single line-broadening mechanism, complete fre-
quency redistribution (i.e., no correlation between emit-
ted and absorbed photon frequencies), and an ideal
geometry. It has been shown that the Holstein theory
yields accurate values for the escape factor when experi-
mental conditions satisfy the above assumptions. ' In
the present work, we study radiation trapping under con-
ditions of low to moderate line-center optical depth. For
such conditions, the simple Holstein theory expressions
can give a nonphysical radiative rate which is faster than
the natural radiative rate. However, our present results
test the strictness of the high-optical-depth assumption.

The Holstein theory results for the escape factors are
given here for the cases of Doppler broadening and

41 6145 1990 The American Physical Society



6146 T. COLBERT AND J. HUENNEKENS 41

impact-regime pressure broadening, respectively (for an
infinite slab of thickness L ):

1.875(k(coo)L [ m ln[k (coo)L /2] j
' } ' (Doppler)

(2a)

for the escape factor is

g = [1+( kL /e) ]

where e is the first root of

1.150[@k(coo)L] ' (impact) . (2b) etan(e)=kL .

The absorption coefficient is, in general, given by

A, g2
I „„n F(co)=~F(co),

4 nat

where a. is simply defined by Eq. (3), A, is the transition
wavelength, g2 and g& are upper- and lower-state statisti-
cal weights, respectively, n is the absorbing atom density,
and F(e) is the appropriate normalized line-shape func-
tion [f dcoF(co) =1].

In the Holstein theory (and each of the other theories
discussed below}, a more general solution to the radiation
diffusion equation is an eigenmode expansion of the fol-
lowing form:

n, (r, t)=QC, n, (r)exp( P, t) . — (4)

Here n, (r, t) is the excited atom density at position r and
time t, and the n;(r) form a complete set of spatial eigen-
modes, each of which is a mathematical solution to the
radiation diffusion equation corresponding to a pure ex-—

p,. tponential decay e '. C, is the amplitude and p, is the
decay rate of the ith mode. The fundamental mode i =1
is the slowest decaying mode (p, &p;, i%1), and is the
only one which must be considered in the present experi-
ments. This point will be discussed further in Sec. IV A.
In this paper all expressions for g obtained from the vari-
ous theories yield escape factors for the fundamental spa-
tial mode (i.e., p] I ff gl „„).

In addition to the Holstein theory, we also consider
two theories which are expected to be valid for conditions
where k(coo)l &5; i.e., those due to Milnes and Post. 6'0

Both of these theories yield expressions for the escape
factor which, in general, require numerical evaluation.
In order to simplify these calculations, we perform the

experiment under conditions where the trapping is well
described by a single line-broadening rnechanisrn; i.e., the
line shape is well described by either the Doppler (Gauss-
ian) or the impact-broadened Lorentzian function.

The starting point for the Milne theory is a radiatioa
diffusion equation in which the spectral line is described
by an equivalent opacity. This is equivalent to assuming
a mean free path for the absorption of photons in the va-
por. ' While it has been shown that a mean free path can-
not ia general be defined for this problem, ' it should be a
valid approximation at 1ow optical depths. The
equivalent opacity kl can be defined by"

exp( —kl )=fF(co)exp[ —k(co)l]dc' . (5)

While these results are not as easy to use as the Holstein
results, all the necessary computations can be performed
fairly rapidly on a personal computer (assuming a simple
line shape). Isotope shifts and hyperfine structure can
also be accommodated in this model, in contrast to the
high-optical-depth Holstein theory which can only in-
corporate such structure in an ad hoc manner.

The Post theory offers a more general solution to the
radiation diffusion problem. ' This theory can accom-
modate a realistic Voigt line shape, isotopic and hyperfine
structure, and incomplete frequency redistribution. Ad-
ditionally, it is expected to be valid over the entire range
of line-center optical depths. The disadvantage of the
Post theory is that it is much more difficult to use than
the simple Holstein and Milne theory expressions.

The Post theory starts off with a diffusion equation
similar to that used by Holstein, but which takes into ac-
count the possibility of incomplete frequency redistribu-
tion in a manner first introduced by Payne et al. '~ The
issue of when incomplete frequency redistribution effects
are important has been discussed repeatedly in the litera-
ture. ' ' ' However, in one case where this effect was
important, ' the Post theory was shown to work well.
The Post theory has also been used successfully to ana-
lyze experimental results in two cases where hyperfine
structure was important. ' ' In analyzing the present set
of experiental results, we will make some approximations
to the Post theory which are valid for our low to
moderate optical-depth conditions.

Assuming complete frequency redistribution (which is
valid for Doppler and pressure broadening' ) and a single
line-broadening mechanism (which is valid for our condi-
tion as we shall demonstrate in Secs. IV B and IV C), we
obtain the following Post-theory expression for the es-
cape factor:

g= coF co 'g '7
0

2

AcoD

ln(2)
1/2 T 2

Eco
exp —41n(2}

EcoD

Here F(co) is the line-shape function, either Doppler or
Lorentzian, r=k(co)L /2 is the Post-theory definition for
the optical depth at frequency co for a slab of thickness L,
and the escape function rl(r) contains all of the spatial in-
formation of the problem. F(co) and g(r) are defined as
follows:

The geometric factor is not well defined in the literature,
but we will use l =L for the slab of thickness L since we
have found that this definition yields the best agreement
with experimental results. In this case, Milne s solution

F(co)= '

I, /(2n )

b,co +(1,/2)

(Doppler ), (9a)

(Lorentzian), (9b}
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for Doppler and Lorentizan line shapes, and

rl(r)=1 —I dpi'(co) z f(p) .exp r—(co) ~p~

V 4m /p/'
(10)

1
rI(~) =

(r /a))+1
2~+, , (11)r +a& (r +a3)

Here Aco=co —coo is the frequency referenced to the line-
center frequency coo, I, is the impact-broadened
linewidth [full width at half maximum (FWHM) in angu-
lar frequency units], b,roD is the Doppler linewidth, and p
is a dimensionless position coordinate (p=2r/L) which
varies over the slab volume V. The origin is taken to be
the slab center. f(p) is the fundamental mode excited
atom distribution normalized to one at the slab center
[f(p) —=n, (p)/n, (0)]. The Post-theory escape function
rl(~) cannot, in general, be expressed in closed form.
However, to simplify calculations, we approximate rl(r}
by

TABLE I. Numerical values for the coei5cients appearing in
Eq. (11).

a,
CKp

CX3

0.505
0.185
9.95
0.331
5.85

in which the five geometry dependent parameters (a, 2 3
and P& 2) are chosen to give a good match to the exact nu-
merical g(r) function. The parameters we used in expres-
sion (11}are given in Table I for an infinite slab geometry.
With these parameters, expression (11) agrees with the
exact numerical r)(r) function to better than 5% at all
optical depths r(co) Not.e that this is a slightly different
(and more accurate) fit than we used in Ref. 15. Under
our conditions, escape factors can now be calculated rap-
idly for either of the line shapes mentioned. For an
impact-broadened Lorentzian line shape without struc-
ture, the integral in Eq. (8} can be evaluated in closed
form using Eq. (11):

g =
I [Q.967 cos( 8, /2 ) +0.735 sin( 8, /2 )]/QR, I

—
I [ 1.2 14 sin( 82/2 ) ]/QR z I

+ [([Q.Q331 cos(83/2)] —
t 0.002 49[v(coo)/R 3 ]sin( 383/2) j )/'1/ R 3 ] . (12)

Each of the parameters in the above equation depends
simply on the line-center optical depth r(coo). These are
given by

(13a)

and

tan(8, ) = r(coo) /Qa, . (13b)

1.21

[2'~(coo) ]'~ (14)

This equation should agree with the Holstein theory re-

The numerical coefficients in Eq. (12) are simple frac-
tions involving the a; and P; of Eq. (11). The full closed-
form expression for the Post-theory Lorentzian line-
shape escape factor is given in the Appendix. This ex-
pression may be of use to those who wish to extend these
results to different geometries. [i.e., Eq. (10) could be fit
with a function of the form of (11) but with different nu-
merical values for the parameters. The escape factor can
then be obtained from Eq. (Al).] While Eq. (12}for g is
complicated, it is more convenient in most cases than
carrying out the numerical integration. Note that these
Post-theory results for the impact-broadened Lorentzian,
depend only on the line-center optical depth r(coo), and
should be valid for all values of r(coo).

If we examine Eq. (12) in the high-optical-depth limit,
we obtain

suit Eq. (Zb). In fact the two expressions differ only in
the numerical constant (1.21 for Post versus 1.15 for Hol-
stein). The difference in these constants is due to the
different approximations used to derive these expressions.

For the Doppler-broadened Gaussian line shape, we
were unable to obtain a closed-form expression from Eq.
(8) for the escape factor, which would be valid over the
entire range of optical depths. It may be possible to ob-
tain a closed-form expression for the integral in Eq. (8) in
the high-optical-depth limit. However we did not at-
tempt to do this in the present work since our main con-
cern was the low-optical-depth range.

III. THE EXPERIMENT

The experimental setup is shown in Fig. 1(a}. Sodium
vapor is contained in an oven formed from a stainless
steel block drilled out to make a cross. Sapphire win-
dows are sealed to the cell using silver 0 rings. Two
arms of the cell are filled by sapphire rods whose end
faces create a slab geometry for the vapor in the observa-
tion region [see Fig. 1(b)]. [The rod and window on each
side are actually made from a single piece of sapphire. ]
The spacing between the two rod end faces, 0.55 cm, is
small compared to their diameters of 1.27 cm. The cell
body is uniformly heated (including the windows) to a
fixed temperature of 675+5 K in order to avoid density
gradients. The sodium vapor pressure is controlled by
the temperature of a side arm, which is kept at a lower
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temperature than the cell in order to prevent sodium
from condensing on the windows. Inert gas can be added
or removed from the cell through the attached vacuum
and gas handling system. This allows us to alter the line
shape in a controlled fashion.

The vapor is excited by a dye laser which produces
pulses of -0.4-A bandwidth near 5890 A. The dye laser,
which is pumped by a nitrogen laser, has a pulse duration
of -0.5 ns and produces an output of —130 pJ/pulse.
Stainless steel aperatures inside the cell create an excita-
tion geometry in which the laser beam nearly fills the en-
tire observation region, but eliminates scatter of laser
light from the sapphire rod end faces [see Fig. 1(b)].

Fluorescence is collected through a lens system and is
dispersed with a 0.5 m monochromator [Fig. 1(c)]. The
light is detected using a photomultiplier tube with an S-
20 spectral response. The photomultiplier tube (PMT)
output is recorded on a transient digitizer which is trig-
gered by a photodiode [Fig. 1(a)]. The transient digitizer
records and stores an entire fluorescence time decay with
512-point resolution. These data are then sent to a com-
puter, where 256 traces are averaged. The time resolu-
tion of the complete system has been measured to be
about 1.5 ns. A white light on the far side of the cell is
used to measure absorption equivalent widths from which
sodium densities are determined.

SQ'PHIRE RODS SAPPHIRE WINDOWS

BS

N2 LASER ——DYE LASER

I

APERTUIK )XAAM

AUUlLI OVEN

TRANSIENT DIGITIZER MONOCHROME)R
x

(b) (c)

LASER

EKCIThTION
REGION

ETIAM

REGION IMAGED OFIO
gpg~QQXKIOR @.ITS

FIG. 1. (a) Experimental setup. gS, pD, and pMT indicate beam splitter, photodiode, and photomultiplier, respe
f th ll I terIor as viewed along the laser axIs. The cross-hatched regIon represents the region e&«e

Cross section of cell as viewed from the detector. The cross-hatched region indicates the region ™gedonto the monochromator
slits.
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A data run in the foreign-gas Lorentzian line-shape ex-
periment consists of at least two equivalent width mea-
surements separated in time by one or more fluorescence
decay rate measurements. These are done sequentially,
with a fixed amount of argon gas sealed in the cell. A sin-
gle run takes approximately thirty minutes. The before
and after equivalent width measurements, with gas in the
cell, are needed to insure that the sodium density has
remained constant. Densities obtained from these
equivalent width measurements (see Sec. IV A) typically
agree to better than 10'%//. Their average is used in the
analysis. Occasionally, equivalent widths are also record-
ed, as a check, before letting gas into the cell; i.e., in a
pure sodium environment. Densities obtained from this
method are consistent with the sodium-argon results, but
tend to be less accurate.

In the Doppler line-shape experiment, the sodium den-
sity is also determined using equivalent widths. Howev-
er, since the equivalent width may not be very sensitive to
the density when the line is Doppler broadened, we use a
slightly different procedure in this case. An equivalent
width without foreign gas is taken, followed by the
fluorescence time decay. This is followed by another
equivalent width measurement taken with —100 Torr of
foreign gas present. The addition of this moderate
amount of foreign gas does not perturb the sodium densi-
ty significantly. In either experiment, these methods
yield absolute sodium densities which are accurate to
—10%.

Neutral density filters are occasionally inserted into the
fluorescence channel to test for detector linearity, and
into the laser beam to verify that nonlinear processes (for
example, quenching by electrons created in associative
ionization or photoionization) do not modify the decay
rates. Laser and monochromator bandwidths are such
that the D, (3 P&/i~3 S&i2) and Di (3 P3n~3 Slii)
lines can easily be resolved.

IV. RESULTS

A. General considerations

A typical fluorescence decay is shown in Fig. 2. In
general, even when the radiative decay of each state can
be described by single rate, the measured fluorescence de-
cay rate co will be a mixture of effective decay rates
(r„ff and I i,ff) from the two sodium fine-structure levels
which are collisionally mixed:

(15)

The parameter g is determined by the statistical weights,
collisional excitation transfer rates, and to a lesser degree
by the collisional broadening rates. If we denote 3 P3/2
as state 2 and 3 P, &2 as state 1, then the populations of
the two states can be described by the following rate
equations which are valid once the laser pulse has ter-
minated [for weak fields and for broadband excitation;
i.e., we assume the ground-state density remains approxi-
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FIG. 2. Sodium D2 line fluorescence intensity as a function
of time (average of 256 laser pulses) along with a fitted exponen-
tial decay. The laser fired at t -20 ns, and the fitted decay starts
at to-40 ns. The laser was tuned to the D2 line, the sodium
density was -1.86X10' cm ', and the argon pressures was
259 Torr.

mately constant, and that the laser pumps all velocity
groups]:

ni =R i2n, —(I z,ff+Rz& )ni,
ri

~ =Ri&ni —(I „ff+R~i)n& .

(16a)

(16b)

co =
—,'(r),ff+I 2eff+R )q+R2) )

+(Ri, +R, ) ]' (18)

In the limit of low collisional transfer, ~ reduces to I 2 ff
(i.e., )=0). On the other hand, in the complete mixing
limit (R ))I,ff), we find

/=[1+(g2/g, )exp( —bE/kT)]

where hE =17 cm ' is the 3 P]y2 —3 P3y2 fine-structure
splitting, and the principle of detailed balance has been
used to fix the ratio of the two collisional transfer rates.
For our cell temperature of 675 K, Eqs. (15) and (18)
yield co =0.341I „ff+0.659I 2,ff in the complete mixing
limit.

Since the theoretical radiative rates I „ff and I z,ff are
fundamental mode decay rates, we must consider wheth-

Here the I,ff's are the effective radiative rates given by
Eq. (1), and the R's are the collisional excitation transfer
rates which have a contribution from ground-state sodi-
um atoms' and one from inert-gas perturbers

R~, =k~(n+k(, n~ .

Equations (16) yield a double-exponential time depen-
dence for the two upper states. ' However, in the late
time, both states decay as a single exponential with the
slower of the two rates m
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er this is what we measure. In general, the laser excites
sotne linear combination of spatial modes, which then de-

cays as a sum of exponentials. Since the fundamental
mode has the slowest decay rate, a pure fundamental
mode can be achieved by simply waiting until the late
time. The time required to reach this condition is deter-
mined by the excitation geometry. In particular, the time
is reduced by making a reasonable match between the
laser transverse spatial profile and the fundamental mode
spatial distribution. This increases the amplitude of the
fundamental mode [C& in Eq. (4)] relative to that of the
higher modes. Such a match is obtained in the present
experiment by filling the slab region with laser light [see
Fig. 1(b)]. For a typical scan, we fit a single exponential
to the data beginning at some initial time to (Fig. 2}. We
then repeat the fit using larger values of to and continue
until we find the decay rate converge to a constant value,
which is the decay rate co [Eq. (15) or (18)] for the fun-

damental mode.
We tested the effects of a poor match to the fundamen-

tal mode by focusing the laser to a tight excitation beam.
The position of the focus was varied across the slab re-
gion. Even with this very poor match to the fundamental
mode, the fitted late-time decay rates differ by less than
20% for different focus positions and compared to the
filled-slab excitation. The latter was used to produce all
results reported here.

Sodium atom densities must be known in order to com-

pare theoretical and experimental decay rates. As stated
in Sec. III, these are determined using absorption
equivalent width measurements. " Measured values are
compared to equivalent widths calculated using a Voigt
line shape and including hyperfine structure. Calculated
values for the sodium D2 line (3 St&2 —+3 P3/t)
equivalent width versus sodium density are shown for a
path length L =0.55 cm and T=675 K in Fig. 3. The
lower solid curve corresponds to the case of pure sodium.
The upper solid curve corresponds to the case where the
line always remains optically thin; that is, the line is ex-
tremely broadened (infinite foreign-gas pressure limit). In
this case, the equivalent width is determined simply by
the normalization condition fk(co)dao=a [see Eq. (3)].
The intermediate dashed curves represent different values
of the foreign-gas broadening rate. Thus each dashed
curve corresponds to a different foreign-gas pressure,
which can be identified if the particular pressure-
broadening coefficient is known. The self-broadening rate
for the sodium D2 line is also necessary for the calcula-
tions, and is taken from Ref. 21. For a given inert gas
pressure (for which the sodium D2 line-broadening rates
are known ) we are able to read accurate sodium densi-
ties off Fig. 3 directly. Note that the foreign-gas broaden-
ing rates must be scaled to our cell temperature of 675 K,
which is done using the theoretical T temperature
dependence. The self-broadening rates are expected to
be independent of temperature.

103
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1011 '012 I 1 1 I 1
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SODIUM DENSITY (0m )

FIG. 3. Sodium D2 line equivalent widths vs sodium density.
Calculations were carried out for a Voigt line shape, with an ab-
sorption length of 0.55 cm and a cell temperature of 675 K. The
upper solid curve represents the optically thin limit (infinite
foreign-gas pressure limit), while the lower solid curve corre-
sponds to the pure sodium case. The intermediate dashed
curves correspond to different foreign-gas broadening rates.
From the top down these are 1 X 10", 1 X 10', 5 X 10",2 X 10",
1 X 10", 5 X 10', 2 X 10' 1 X 10', 5 X 10, 2 X 10, 1 X 10, and
1 X 10' s '. [Note these values represent the foreign-gas
broadening contributions to the Lorentzian full width at half
maximum only. ]

B. Lorentzian line shape [k(r00)L /2 5 10]

At high foreign-gas densities, the 3 P]&2 and 3 P3/2
populations are completely mixed by collisions, and the
entire line shape for each fine-structure component can
be described as a pressure-broadened Lorentizan. In or-
der for this approximation to be valid, the argon pressure
must be low enough that satellites and other non-
Lorentzian features remain far outside the unity optical
depth points. In addition, the pressure-broadened
linewidth must be much larger than either the Doppler
linewidth or hyperfine structure splittings; i.e.,
r, »a~, , acohf (The ground-state hyperfine splitting
of 1.772 0hz is much larger than those of the excited
states and is roughly equal to the Doppler width. ) For
sodium densities between 5X10" and 5X10' cm and
argon pressures of 500 to 7000 Torr, as used in this ex-
periment, the line shape is well approximated by an
impact-broadened Lorentzian function, which is valid
over the entire part of the line relevant to the radiation
trapping process [i.e., 0.1 &k(ro}1./2& 5]. For these ex-
perimental conditions, the simple foreign-gas-broadened
Lorentzian line shape (neglecting self, natural, and
Doppler broadening, as well as hyperfine structure) and
the full Voigt line shape (including all these effects) agree
to within 8% in the relevant part of line, for the worst
case (i.e., the lowest argon densities}. Even then,
disagreement only occurs for a small region near line
center. As the argon pressure increases, the approxima-
tion becomes even better. Such extreme pressure
broadening has the effect of dramatically reducing the
line-center optical depth. For example, when the sodium
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density is 5X10' cm, the line-center optical depth
k(coo)L/2 is reduced from —115 to -2 by the addition
of 7000 Torr of argon.

Due to the rapid mixing between the two fine structure
levels (the excitation transfer rates are at least 4X 10 s
for 500 Torr of argon, while the fastest radiative decay is
limited by the natural radiative rate 6.3X10 s '), co

should be independent of which transition is pumped and
which is observed. Most of the data presented here were
taken for excitation of the sodium 3 S)/2 —3 P3/2 transi-
tion and observation of the same transition in fluores-
cence. However, data were taken periodically in which
the 3 S,&z-3 P, &2 transition was either pumped or
detected in order to verify the above statements. Due to
this high rate of collisional mixing, the observed decay
rates should be accurately described by Eq. (15) with
(=0.341.

The experimental results are shown in Fig. 4. The
measured decay rates co are plotted against the line-
center optical depth k (coo)L/2 which is calculated from
Eqs. (3) and (9b) for a Lorentzian line shape [i.e.,
k(coo)L/2=xL/(mI', )]. Also plotted are decay rates
calculated using Eq. (15) and the Post, Milne, and Hol-
stein theories. We note that the Milne theory agrees well
with the more accurate Post theory for low optical depths
when Milne's geometric factor I is chosen to be equal to
the slab thickness L as in Eq. (6). The Milne theory
agrees well with our experimental results for optical
depths up to about 5. On the other hand, the Post theory
shows good agreement with the experiment over the en-
tire range of optical depths tested here. %e note that the
Holstein theory expression breaks down and gives non-
physical results when the optical depth is reduced below
-0.3. For k(coo)L/2~ 1, the Holstein and Post theories

108

710 I I I I I I I I I I

0.1 1.0
k L/2

0

MILNE
(Ref. 5)

n
POST
(Ref. 6)
HOLSTEIN

&0.0 (Refs. 1,2)

FIG. 4. Measured sodium D2 line late-time Auorescence de-

cay rates co plotted against the Lorentzian line-center optical
depth k (co0)I. /2. The sodium density and argon pressures were
varied over the ranges of 5 X 10"& n & 5 X 10" cm and
500& PA, & 7000 Torr, respectively. The cell temperature was
fixed at 675+5 K. Also shown are predictions of co obtained
from the Holstein (long-dashed line), Milne (short-dashed line),
and Post (solid line) theories. Error bars are shown for a couple
of points.

agree reasonably well with each other. As stated earlier,
these are expected to agree for higher optical depths [see
Eqs. (2b) and (14)]. The Holstein theory has been tested
previously in the much higher range of optical depths
2& k(coo)L/2 & 1000, where it also agreed well with ex-
periment. '

C. Doppler line shape [k (c00)L/2-10]

For a pure sodium environment at low densities, the
line shape is well described by the Doppler Gaussian. As
above, most measurements of the fluorescence decay rates
are made when pumping and observing the
3 S)/2-3 P3/2 transition. The Doppler linewidth is
determined by the temperature of the cell, and changes in
the Doppler width due to temperature fluctuations are
negligible. Under our conditions of no foreign gas and
sodium densities less than 5 X 10' cm, we find that the
pure Doppler line shape (including only the hyperfine
structure) agrees with the full Voigt function (including
natural and self-broadening as well as the hyperfine struc-
ture) to within 5%%uo in the worst case for the part of the
line most critical to the trapping process
(0.1 & k (co )L /2 & 5 ). The natural and self-broadened
Lorentzian contributions to the linewidth are very small
compared to the Doppler contribution under these condi-
tions, except in the far wings where negligible trapping
occurs. The effects of hyperfine structure must, however,
be included under these conditions, since the splitting of
the hyperfine components is nearly equal to the Doppler
width.

Fluorescence decay rates were measured for sodium
densities in the range of 5 X 10' to 5 X 10' cm without
foreign gas present. Here the collisional excitation
transfer rates for these sodium densities and in the ab-
sence of any foreign gas ( —1 X 10 s ' for the highest
sodium density' ) are small compared to the effective ra-
diative rates (I',s ~4X10 s '). In fact, under these con-
ditions, the D, fluorescence intensity is less than 1% of
that observed for the D2 line. Thus the observed experi-
mental decay rate cu is actually just I z,~ rather than the
weighted average of I „s and I z,tr obtained in the com-
plete mixing limit [i.e., /=0 in Eq. (15)].

Figure 5 shows a comparison between decay rates mea-
sured in the no foreign-gas, low sodium density limit, and
those calculated from theory. Here the decay rates are
again plotted against sodium D2 line-center optical depth
k(coo)L/2 which is calculated from Eq. (3) and the
Doppler line-shape function, Eq. (9a), but neglecting
hyperfine structure; [i.e., k(coo)L/2=xL [In(2)/n]' /
bcoD]. The hyperfine structure is, however, taken into
account in the theoretical treatments of the decay rates.
(This occurs naturally in the Milne and Post theories by
simply including the hyperfine structure into the line-
shape function F(co) in Eqs. (5) and (8). In the Holstein
theory, we have included hyperfine structure in an ad hoc
manner by simply replacing k(coo) (calculated without
considering hyperfine structure as above) in Eq. (2a) by
k,„(co), which is the true maximum absorption
coefficient when hyperfine structure is included [note:
k,„(co)-—,'k (coo) under these conditions. ' ]) As in the
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FIG. 5. Measured sodium D2 line late-time fiuorescence de-
cay rates co plotted agsint the Doppler line-center optical
depth k(mo)L/2. In this case, no foreign gas was present, and
changes in the optical depth were made by varying the sodium
density over the range 5X10"(n (5X10' cm . The cell
temperature was fixed at 675+5 K. [The line-center optical
depth k(coo)L/2 plotted on the horizontal axis is for a Doppler
line without hyperfine structure. ] Also shown are the predic-
tions of co using the Holstein (long-dashed line), Milne (short-
dashed line), and Post (solid line) theories. Details of the line

shape, including hyperfine structure, are taken into account in
the theories as described in the text. Error bars are shown for a
couple of points.

case of the pure Lorentzian line shape, the Post theory
agrees well with experiment over the whole range of opti-
cal depths studied, while the Milne theory agrees only at
low optical depths [k(ohio)L/2~ 8]. The Holstein theory
is seen to be unreliable for optical depths below -3. The
disagreement between the Post and Holstein theories at
higher optical depths is due to the ad hoc manner in
which we have accounted for the hyperfine structure in
the Holstein theory. "

D. Uncertainties

In Figs. 4 and 5 error bars are placed on a couple of
the data points. We must consider several possible
sources of error in order to determine the accuracy of our
measurements.

The sodium densities obtained using the techniques de-
scribed above should be accurate to —10%. The uncer-
tainty in the argon pressure is less than 1%. Our results
are not sensitive to the excitation transfer rates since the
two regimes we studied involve either complete mixing or
no mixing of the fine-structure level populations.

The time response of the detection system was mea-
sured to be —1.5 ns, which introduces a 10% uncertainty
in measured co values for the fastest decays. The pres-
ence of higher spatial modes in the sense of Eq. (4) may
also have some effect on the measured decay rates, al-
though the magnitude of this effect is reduced by the
pump beam geometry. We estimate the effect to be less
than 5% for our conditions. Window reflectivity may

also affect the decay rates, since photons reflected back
into the vapor make the cell effectively larger. From
known reflectivity of sapphire and the theoretical depen-
dence of the decay rates on L, we estimate the uncertain-
ty in the decay rates at —5 —10% from this effect.

Finally, the statistical uncertainty of the data and of
the fitting routine are estimated at less than 5%. Assum-

ing that these sources of uncertainty are uncorrelated,
and considering the dependence of the decay rates on
these parameters, we estimate that the experimentally
measured decay rates are accurate to —15%%u%.

In addition to the above considerations, we should note
that quenching collisions provide an alternate decay
mechanism for excited atoms, which competes with spon-
taneous emission. However, these quenching mecha-
nisms are not included in the overall decay rate uncer-
tainties listed above. The following arguments show that
quenching mechanisms have a negligible effect on the
trapped decay rates for our experimental conditions.

Quenching may occur when energy from an excited
sodium atom is collisionally transferred to either a sodi-
um dimer, an argon atom, or an impurity atom or mole-
cule which is present in the cell. For these experiments,
the Na2 density is less than 3X10" cm . Thus, the
Na2+Na'~Na2'+Na quenching rate is less than 10
s ' (assuming a rate coefficient of 3.4X10 cm3s
from Ref. 27) which will affect our observed decay rates
negligibly.

The cross section for quenching of sodium by noble
gases has been shown to be less than 10 ' cm by Cop-
ley, Kibble, and Krause. Using this as an upper limit,
we find that quenching by argon could affect our mea-
sured decay rates in the worst case by 20%. We note
that such quenching by argon would, however, cause a
linear dependence of the decay rates on argon pressure,
and could actually give decay rates which are faster than
the natural radiative rate at high pressures. Since neither
of these effects was observed, our results suggest that the
cross section for quenching of sodium by argon is actual-
ly smaller than the value used above.

Impurities in the argon, especially diatomic molecules,
can be very efficient quenchers. For example, experimen-
tal values in the range I X10 ' to 5X 10 ' cm (Refs.
29—33) have been reported for the cross section for
quenching of Na(3P) by Nz. The purity of the argon used
in the present experiments is 99.999%. If we assume that
all impurities quench with the cross section of 5X10
cm, then the worst case effect on decay rates is only 3%.
Again, if this type of quenching dominates the decay
rates, we expect a linear dependence of decay rates on ar-
gon pressure, and possibly decay rates which exceed the
natural radiative rate. As discussed above, neither of
these effects was observed.

Impurities present in the vacuum system and cell may
also lead to quenching of Na(3P). Here, these impurities
would be expected to build up with time after the cell is
sealed off from the vacuum pumps. Thus we might ex-
pect to observe an increase in measured decay rates with
time following the sealing of the cell. However, no no-
ticeable change in the decay rates was seen after the cell
had been sealed for over 90 minutes, which is longer than
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the typical time the cell remained sealed during data
runs. Thus we conclude that these quenching mecha-
nisms also do not affect our results.

V. CONCLUSIONS

We have measured effective decay rates of resonance
radiation under conditions of low to moderate line-center
optical depth. The conditions were such that the line
shape could be described by a single line-broadening
mechanism: either Doppler, or impact-regime pressure
broadening. In both cases, the approximation of com-
plete frequency redistribution is valid. For these simple
line shapes, calculations of efFective radiative rates using
any of the theories discussed, are greatly simplified. The
measured decay rates demonstrate the range of optical
depths over which each of the theories is valid.

For the impact-broadened Lorentzian line shape, the
Post theory gives good agreement with experiment over
the entire range of optical depths. An approximate ex-
pression for Post theory decay rates under these condi-
tions (and assuming complete frequency redistribution) is
given in this paper. The Milne theory is shown to work
well only at low optical depths, and agrees with the Post
theory in that range. At high optical depths, we have
previously verified that the Holstein theory works well,
agreeing with the Post theory in that range.

For the Doppler-broadened Gaussian line shape, the
Post theory results also agree with measured decay rates

over the range of low to moderate optical depth. In the
low optical depth region, the Milne and Post theories
again give similar results. In our use of both of these
theories, hyperfine structure is explicitly taken into ac-
count, and complete frequency redistribution is assumed.
At higher optical depths, data from our previous work
agrees best with Holstein theory expressions in which
hyperfine structure was taken into account in an ad hac
manner.

Finally, by looking at Figs. 4 and 5, one can see that
the escape factor is quite different for equal line-center
absorption coefficients, but different line shapes. Thus,
knowledge of the line-center absorption coefficient by it-
self is not sufficient to predict the effective radiative rate.
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APPENDIX

The full closed-form Post theory escape factor for a
pure Lorentzian lineshape [Eq. (12)] is given here in
terms of the a, ,P; parameters of Eq. (11)and Table I, and
the R; and 8; parameters of Eqs. (13):

~
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sin(82/2) R 2
'/i
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(A 1)R 3
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