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The uniform asymptotic description of the propagation of an input rectangle-modulated harmon-

ic signal of fixed angular frequency e, and initial pulse width T into the half-space z )0 that is oc-

cupied by a single-resonance Lorentz medium is presented. The asymptotic description is developed

by representing the input rectangular pulse as the difference between two Heaviside-unit-step-

function-modulated signals that are separated in time by the initial pulse width T. This representa-

tion clearly shows that the resultant pulse distortion in the dispersive medium is primarily due to
the Sommerfeld and Brillouin precursor fields that are associated with the leading and trailing edges

of the input pulse. The dynamical pulse evolution with increasing propagation distance z )0 is

completely described for both long and very short initial pulse widths T. In both cases it is shown

that the pulse distortion becomes severe when the propagation distance z is such that the precursor

fields associated with the trailing edge of the pulse interfere with the precursor fields associated with

the leading edge. Finally, the asymptotic theory clearly shows that the main body of the pulse prop-

agates with the signal velocity in the dispersive medium.

I. INTRODUCTION

The classical theory of optical pulse propagation in a
locally linear, homogeneous, isotropic, causally dispersive
medium, as described by the Lorentz model, beginning
with the seminal analysis of Sommerfeld' and Brillouin '

and continuing up to the modern asymptotic analysis of
Oughstun and Sherman, has provided a complete,
rigorous description of the dynamical field evolution for
the two canonical problems of the input-unit-step-
function-modulated signal of fixed carrier frequency co,
and the input 5-function pulse. This analysis has focused
on the complete precursor field evolution and the precise
definition of the signal arrival and has led to a new physi-
cal description of dispersive pulse propagation in terms
of the energy velocity and attenuation of time-harmonic
waves that supplants the previous group-velocity descrip-
tion ' in the mature dispersion regime and reduces to it
in the absence of absorption. The accuracy of this uni-
form asymptotic description in the mature dispersion re-
gime has been completely verified through precise numer-
ical simulations of both the Sommerfeld and Brillouin
precursor field evolution" and the signal arrival' in a
single-resonance Lorentz medium. The mature disper-
sion regime has been found' to include all propagation
distances z that are greater than one absorption depth in
the medium at the signal frequency. When this condition
prevails, each quasimonochromatic component of the
field propagates with its own characteristic velocity,
which remains constant as the propagation continues. At
each space-time point O=ct jz the propagated field is
then dominated by a single real frequency ~E that is the

frequency of the time-harmonic field with the least at-
tenuation that has an energy velocity' ' equal to z/t, as
described in Ref. 7.

The analysis of the present paper applies this modern
asymptotic description to obtain a rigorous, uniformly
valid description of rectangular pulse propagation in a
single-resonance Lorentz medium in the mature disper-
sion regime. This approach does not rely upon any quasi-
monochromatic or slowly varying envelope approxima-
tion, as may be found in other descriptions, ' ' and so
yields a canonical description of pulse dispersion phe-
nomena that is completely valid for rapid rise-time pulses
of arbitrary time duration. In addition, this approach
does not depend upon any nth-order dispersion approxi-
mation that is central to other approaches, so that it
rigorously maintains the complete causality relations
that are critical to the proper analysis of linear dispersive
pulse dynamics. It is only fair to point out that these oth-
er approaches are, in a broad sense, more general in that
they are typically applicable to inhomogeneous media.
However, what they gain in more general applicability
they lose in complete rigor when considering the efFects
of dispersion on ultrashort pulse dynamics. For conveni-
ence, the notation employed in Refs. 5 and 6 is used
throughout this paper.

The integral representation of the propagated plane-
wave pulse in the half-space z) 0 is given by

A (z t) — J(~) (z/ec)lb(rd)do,1

277 C

where

f(co)= f f(t)e' 'dt
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k(co) = n(—co),
e

(1.4)

where the constant c denotes the speed of light in vacu-
um, and where n(co)=[e(~)]' is the complex index of
refraction of the dispersive medium occupying the half-
space z) 0 with complex-valued dielectric permittivity
e(co). For a dielectric Lorentz medium with a single-
resonance frequency the complex index of refraction is
given by

is the temporal Fourier spectrum of the initial pulse

f (t)= A (O, t) on the plane z=O. Here A (z, t) represents
either the scalar potential or any scalar component of the
electric field, magnetic field, Hertz vector, or vector po-
tential field whose spectral amplitude A (z, co) satisfies the
dispersive Helmholtz equation

[V +k (co)]A (z, co)=0 .

The complex wave number k (co) is given by

ranges from negative to positive infinity. The complex
phase function P(co, 8) appearing in Eq. (1.1) is given by

P(co, 8)=i —[k(co)z co—t]
Z

=i co[n (co) —8],
where

ct8=-
Z

(1.7)

is a dimensionless parameter that characterizes a space-
time point in the field. A complete description of the an-
alytic structure of n(co) and P(co, 8) in the complex co

plane may be found in Ref. 5.
The uniform asymptotic description of the dynamical

field evolution in the mature dispersion regime is
developed here for an initial rectangular-modulated sine
wave of applied signal frequency N, where

n (co)= 1—
N N0+ 2l 5N

' 1/2 f (t) =u (t)sin(co, t),
and where

(1.8)

Here b =4m Ne /m is the square of the plasma frequency
of the medium, N is the number density of electrons of
charge e and mass m that are harmonically bound with
the undamped resonance frequency N0, and 5 is the asso-
ciated phenomenological damping constant. The Lorentz
model is used here because it is a causal model, the
complex index of refraction (1.5) satisfying the Kramers-
Kronig relations.

Iff (t)=0 for t & 0, then the integral expression (1.1) is
taken to be a Laplace representation in which the con-
tour of integration C in the complex N plane is the
straight line N=N +ia with a being a fixed positive con-
stant that is greater than the abscissa of absolute conver-
gence for the function f (t) and where co'—=Re(co)

I

(1.9)

elNT 1u(co)= J e'"'dt =
0 lN

(1.10)

and the integral representation (1.1) of the propagated
signal becomes

the initial pulse duration being T. This rectangular en-
velope can also be represented by the difference between
two unit-step-function-modulated signals that are dis-
placed in time by T. The initial envelope spectrum is
then

A (z t)= Re i u(co —co, )e
ia+ ~

277

a + ] (z/c)~(~ g) tcgc T ] (z/c)p(~, g)+Is)T
2m ia —~ N Nc ia —oo N N

for z ~ 0. By writing the complex phase function in the more general form

P(co, 8r ) =i co[n (co) —8r ], (1.12)

with

C8 = (t —T), —
T

Z

the integral representation (1.11) of the field may then be written as

ia+ oo $ (z/c)4, (~ ~)
—tee T ia + oo 1 (z/c)P(co, O&)

277 ia —oo N N C ia —oo N N C

(1.13}

(1.14}
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for z 0. Both integrals appearing in this expression are
exactly the same as that obtained in the integral represen-
tation for the unit-step-function-modulated signal, ' ex-
cept that in the second integral the phase function is re-
tarded in time by the initial pulse width T. One then has
that

with

b 2g2
' 1/2

g(8 )= co —5 +T 0
T

5 /27+b /(8 —1)
71(8T ) =

(1.19a)

(1.19b)
A (z, r)= U(z, I, O) U—(z, I, T),

where

1 l co T
U(z, t, T)= — Re e2'

f ia+ ~
X

ia —oo N COc

(1.15)

(z/c)ttI(~, (9T )

e dco

and the value of the integrand of (1.16) at those saddle
points. At OT = 1 the distant saddle points are at
+ ~ 2—i 5 and as 8&~ ~ they approach the outer branch
points

(1.16)

is the propagated plane wave field for z ~ 0 due to an in-

put unit-step-function-modulated signal of fixed carrier
frequ;ncy co, that begins to oscillate at time t = T in the
z=0 plane.

The propagated field U(z, t, T) identically vanishes for
all OT & 1, as proven in Refs. 1 —5. For all 6T 1 the uni-

form asymptotic expansion of (1.16) may be expressed in

the form

U(z, t, T) = Us(z, t, T)+ UII(z, t, T)+ U, (z, t, T)+R (z, 8&) .

(1.17)

An estimate of the remainder term R(z, 8T) as z~~
may be found in Ref. 6. This representation is uniformly
valid for all OT~1 provided that co, is bounded away
from infinity. An important feature of Eq. (1.17) is that
the asymptotic behavior of the propagated plane-wave
field U(z, t, T) is expressed as the sum of three terms
which are essentially uncoupled so that they can be treat-
ed independently of one another. These three terms arise
from the asymptotic contributions of the saddle points of
P(co, 8r ) and from the simple pole contribution at co=co, .
For a single-resonance Lorentz medium the complex
phase function (t possesses two sets of saddle points in the
complex co plane; one set resides in the region removed
from the origin, called the distant saddle points, and the
other set resides in the region about the origin, called the
near saddle points. The representation (1.17) is obtained
by expressing the integral representation (1.16) of
U(z, t, T) in terms of an integral I(z, 8T) with the same
integrand but with a new contour of integration P(8T ) to
which the original contour of integration may be de-
formed and which is divisible into a sum of subpaths,
each of which is an Olver-type path with respect to one
of the saddle points of P(co, 8T), as described in Ref. 5.
An example of such a path P(8) and its component sub-
paths is illustrated in Fig. 1.

The dynamic behavior of the field component
Uz(z, t, T) is determined by the dynamical evolution of
the distant saddle points SPD of the complex phase func-
tion P(co, 8T ), whose locations are given by '

Cusp ( 87 ) =+g( 8T ) 5i [ 1 + 7/( 87 ) ]
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FIG. 1. The deformed contour of integration P(OT) through
the relevant saddle points of $(co, 8T). The dashed contours in-

dicate the isotimic contours of X(co,8r ) =Re[/(co, 8T )] through
the saddle points, and the shaded areas indicate the regions of
the complex co plane wherein X(cu, OT) is less than that at the
relevant saddle point. The subpaths P& (0T) and P&(OT) are
Olver-type paths with respect to the saddle points SPD and

SP&, respectively, and the subpath P&(8) is an Olver-type path
with respect to the upper saddle point SP& for 1 0T 0&.
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+( 2 52)1/2
CO+ — CO ) (1.20) ( 2+b 2)1/2 (1.21)

of the comPlex Phase function P(co, gr )=I(PI, gr )

+ i Y(P1,0r ), as illustrated in Fig. 2, where

The OT dependences of the complex phase function and
its second derivative with respect to co at the distant
first-order saddle points are found to be given by

b [1 rt(—gr)]/2 b2/2
4(~sP Hr)= —5 [1+9(er)](er—1)+. . . +lg(0, ) 0,—1+

k'(er)+5'I:1 —ri(gr)l' g'(0 )+5'[1—7)(0, ))2

(2)(~ g )
b2

I +g(gr )+5i[1—ri(gr ) ] l

'

(1.22a)

(1.22b)

These approximations provide an accurate description to
the actual distant saddle-point behavior for all OT ~ 1 and
reduce to the expressions given by Brillouin ' as
OT~1+. The uniform asymptotic contribution to the
field (1.16) due to this pair of distant saddle points, which
gives the Sommerfeld precursor field Us(z, t, T), is
presented in Sec. II.

The dynamic behavior of the field component
Us(z, t, T) is determined by the dynamical evolution of
the near Saddle points SP1——SPN+ for 1&gr &01 and SPN
for Hr & 0, as well as the value of the integrand at these
saddle points. The near saddle-point locations are given
by5

P(gr)=
o2(e'r —eo')

0 0+—3ab /to

T 0
g2 g2+2b2/ 2

' 2 1/2
COp—5

g2 g2+ 3ab 2/~2

g2g2+2b2 /o12
g(gr )=—

2 0 —0 +3ab /cp

a = 1 —
( 4', +b ) .

3CO CO

Here

where the parameter a is given by

(1.24a)

(1.24b)

(1.25)

~sp„(er) =

i[sly(0 )l ——', g'(0 )], 1&0 &0,

25 .
3' i, OT=8)

1(I(0) 2i5((0) Hr & 01

(1.23)

'
1 j2

011=n (0)= 1+
COO

252b 2

8] eQ+
Hppip( 3apip 45 )

(1.26)

(1.27)

with
For 1 ~ OT & L9, the two near first-order saddle points are
along the imaginary axis symmetrically situated about
the point —(25/3a)i, as illustrated in Fig. 3; at Hr=g,
these two saddle points have coalesced into a single
second-order saddle point, as illustrated in Fig. 4; and for
Hr & 0, they are symmetrically situated about the imagi-
nary axis in the lower-half plane and approach the inner
branch points

to+ =+(P1p 5) '/ —5i, — (1.28)

as OT~ ~, as illustrated in Fig. 5. The OT dependences
of the complex phase function and its next nonvanishing
higher-order derivative with respect to co at the appropri-
ate near saddle points are then found to be given by

FIG. 2. The dynamical evolution of the distant saddle points
SPD in the complex co plane. The dotted curves indicate the tra-
jectories followed by the saddle points as 8T varies. The arrows
indicate the direction of ascent along the lines of steepest des-
cent and ascent through the saddle points. The shaded areas in-
dicate the regions in a neighborhood about the saddle points
where in the inequality X(co,OT) &X(cusp, OT) is satisfied and

D

in which the path of descent from each saddle point lies.

P(p1 0 )=—,'[2g'(Hr) 3lq(er)l](eo —Hr)+,[25((0 ) —3lq(0, )l]'
54eo~o4

X I25[3—ag(gr )]+3alg(0, )l I

(1.29a)
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SPI

P„(ei) = —
2 i26 .

sr SP&

FIG. 3. The dynamical evolution of the near saddle points
SP1 and SP2 in the complex co plane for l ~ 8T & 81. As 8T in-

creases over this range the two saddle points steadily approach
each other along the imaginary axis. The arrows indicate the
direction of ascent along the lines of steepest descent and ascent
through the saddle points.

FIG. 4. The two near saddle points have coalesced into a sin-

gle saddle point SPN of second-order at 8T=81~ The arrows in-
dicate the direction of ascent along the lines of steepest descent
and ascent through the saddle point.

b2
tt]'2](cusp, 8T ) = —

t 2—5[1—ag(8T )]+3a
~ f(8T ) ~ ),

Opcop

(1.29b)

25 45 b
y(sp 8] ) = 8p 8]+3a 9a8ptpp

2

(tosp 8] ) -=3](3) . ab
0 co0 0

(1.30a)

(1.30b)

for 1 OT &0,, where cusp =hosp is the upper near saddle
1 N

point (the lower near saddle point SP2 does not contribute
over this 8T range),

for OT=01 when the two near first-order saddle points
have coalesced into a single second-order saddle point,
and

b2
(t'(tbsp 8T ) —= —5 3P 8T )(8T 8p—)+,[[—I —&P 8r ) N"(8T )+-', 5'0'(8T )[-,'&@8r )

—1]I
0070

b2
hip(8T) 8p —8T+ [ 45 g(8r)[2 ag(8T)]+a/ —(8T))

28pcop
(1.31a)

b
p'2](tps+P, 8T ) =— I 25[a((8T )

—I ]+3ia/(8T )],
Opcop

(1.31b)

for OT & 0, . These expressions provide an accurate description to the actual behavior at the near saddle points for all

OT 1 and reduce to the approximations given by Brillouin ' as 0~00. The uniform asymptotic contribution to the
field (1.16) due to the near saddle points, which gives the Brillouin precursor field Us(z, t, T), is presented in Sec. III.

The near saddle point SP1 is dominated by the distant saddle points SPD for OT & OsB, is of equal dominance with the
distant saddle points at 0=0sB, remains dominant over the distant saddle points for OsB & OT 01, and for all OT & 0,
the pair of near saddle points SPN remains dominant over the two distant saddle points SP~, where '

45 b
OsB 00

300ct)0

2752b2(8 1 )2

40@co()

' 1/2 1/3

1+ 4
+l

278p(8p 1)too

1/2 1/3 '

1+ 5b —l
278p( 8p —1)cop
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FIG. 5. The dynamical evolution of the near saddle points
SPN in the complex co plane for 8& & 8&. The dotted curves indi-
cate the trajectories followed by the saddle points as 8& varies.
The arrows indicate the direction of ascent along the lines of
steepest descent and ascent through the saddle points. The
shaded areas indicate the regions in a neighborhood about the
saddle points wherein the inequality X(co,8&) &X(ct)sp 8y) is

satisfied and in which the path of descent from each saddle
point lies.

short space-time interval between the individual Sommer-
feld and Brillouin precursor field evolutions and is again
asymptotically dominant following the Brillouin precur-
sor field evolution. ' The signal evolution over the inter-
val 0„&Oz- & 0,2 is called the prepulse and the signal evo-
lution for Oz- & 0, is called the main signal for the input
unit-step-function modulated field.

For most values of Oz- only one of the field components
Us(z, t, T), Us(z, t, T), and U, (z, t, T) appearing in Eq.
(1.17) is important at a time. There are short intervals of
Oz, however, during which two or more of these terms
are significant for fixed values of the propagation distance
z. These intervals mark the transition periods when the
propagated field U (z, t, T) is changing its character from
one form to another and the presence of both terms in the
expression leads to a continuous transition in the behav-
ior of the field. As a consequence, Eq. (1.17) displays the
entire evolution of the propagated field U(z, t, T) through
its various components in a continuous manner.

From Eqs. (1.15) and (1.17) it is seen that the uniform
asymptotic expansion of the propagated Geld due to an
input rectangular-modulated signal of carrier frequency
co, is given by

to a good degree of accuracy.
The dynamic behavior of the field component

U, (z, t, T) is determined both by the poles of the spectral
function u (co—co, ) and by the dynamical evolution of the
saddle points that interact with these poles. The contri-
bution U, (z, t, T) is nonzero only if u(co —co, ) has poles.
If the envelope function u(t) of the field on the plane
z=O is bounded for all time t, then Q(co —co, ) can have
poles only if u (t) does not tend to zero too fast as t ~ ao.
Hence the implication of nonzero U, (z, t, T) is that the
field U(O, t, T) oscillates with angular frequency co, for
t & T on the plane z=0 and will tend to do the same at
values z) 0 for sufficiently large t. As a result, the contri-
bution U, (z, t, T) describes the dynamic evolution of the
propagated signal that is oscillating with fixed angular
frequency co, . This contribution is asymptotically negli-
gible during most of the precursor field evolution, provid-
ed that m, & co&z, where '

b 55sa=k~sa)=~o 2+, +
o 3~o

(1.33)

When co, & m~z the distant saddle point SPD passes in the
vicinity of the pole when it is the dominant saddle point
and the associated pole contribution will first become
dominant over the Sommerfeld precursor field at a value
0&=0,

&
between l and Ozz. The Brillouin precursor field

then becomes dominant over this pole contribution at a
value Oz-=0, 2 between 0~~ and Oo. This pole contribu-
tion then becomes dominant over the second precursor
field at a value Oz. =0, ) Oo and remains dominant for all
larger values of Oz-. In this situation the contribution
U, (z, r, T) describes the dynamical evolution of the signal
oscillating at co, that is asymptotically dominant over a

A (z, t) Us(z-, t, 0)+ Us(z, t, 0)+ U, (z, t, O)

—Us(z, t, T) Us(z, t, T—) U, (z, t, T)—. (1.34)

It is then seen that for a sufficiently long initial pulse
width T and/or a sufficiently short propagation distance z
such that (c lz) T & 8„ the first and second precursor
fields associated with the leading edge U(z, t, O) of the
pulse will completely evolve prior to the arrival of the
precursor fields associated with the trailing edge U(z, t, T)
of the pulse. Indeed, the trailing edge precursors will ar-
rive only after the main signal of the leading edge has ar-
rived and is evolving. Hence, when this condition pre-
vails the interference between the precursor fields of the
leading and trailing edges of the pulse is minimal and the
pulse distortion is also minimal. For shorter initial pulse
widths T or longer propagation distances z such that
8, & (c/z) T & Oss, the first precursor field Us(z, t, O) asso-
ciated with the leading edge of the pulse will still evolve
undisturbed, but during the evolution of the second pre-
cursor field Us(z, t, O) the arrival and evolution of the pre-
cursor fields associated with the trailing edge of the pulse
will occur. Hence, when this condition prevails there will
be interference between the Brillouin precursor of the
leading edge and the Sommerfeld precursor of the trailing
edge of the pulse and the resultant pulse distortion is
found to be moderate. Finally, for even shorter initial
pulse widths T or longer propagation distances z such
that 1 ((clz)T ~ Oss there will be a complete overlap of
these two sets of precursor fields and the resultant pulse
distortion is found to be severe.

This qualitative description of rectangular pulse distor-
tion in a causally dispersive medium, which is based upon
the uniform asymptotic description of the difference in
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the fields due to two time-displaced unit-step-function-
modulated signals, as embodied in Eq. (1.34}, is given
quantitative meaning in the remainder of this paper. In
Secs. II—IV the uniform asymptotic expressions for the
general field components Us(z, t, T), U~(z, t, T), and
U, (z, t, T) are presented based upon the detailed deriva-
tions of their T=O counterparts given in Ref. 6. The
resultant uniform asymptotic description of rectangular
pulse dispersion is then given in Sec. VI following a
description of the signal arrival and signal velocity in Sec.
V. The accuracy of this analytical description in the ma-
ture dispersion regime is demonstrated through a detailed
comparison with purely numerical calculations.

II. UNIFORM ASYIMPTOTIC DESCRIPTION
OF THE SOMMERFELD PRECURSOR FIELD

Us(z, t, T)
The uniform asymptotic behavior of the propagated

plane-wave field (1.16) as z ~ 00 that is due to the pair of
distant saddle points (1.18) yields the first or Sommerfeld
precursor of the field. Since the integral representation
(1.16) for U(z, t, T) is of exactly the saine form as that for
U(z, t, 0},with the exception that it is retarded in 8 by the
amount (c/—z)T and is multiplied by the additional
phase factor exp( ic—o, T), the first precursor field associ-
ated with this integral may easily be constructed from the
analysis of Sec. III of Ref. 6, with the result

b 2/2
Us z, t, T — k(Hr ) Hr —1+

g (Hr)+5 [1 rl(Hr—)]

[1 rl(Hr)]—b /2
Xexp —5— [I+rI(Hr)](Hr —1)+

2 i 2c g (Hr)+5 [1—rl(Hr)]

—
A i (Hr )cos(co, T)+A2 (Hr )sin(co, T) A i+(Hr )cos(co, T)+A2+(Hr )sin(co, T)

A, 3 (Hr ) A, +(8 )

A, i (Hr)sin(co, T)+A2 (Hr)cos(co, T) A i+(Hr)sin(co, T) A2+(Hr)—cos(co, T) z+ —(Hr)q(Hr)
A, 3 (Hr) A, +(8 )

(2.1)

as z ~ ~ uniformly for all 8~ ~ 1. Here J„denotes the Bessel function of the first kind of integer order v, and

A, *, (Hr )=—,'5l g(Hr )[5—rl(Hr )]+3co,[1—rI(Hr ) ]I,

A,2(Hr)=g(Hr)[g(Hr)+co, ]—-,'5 [1—rl(Hr)],

A3 (Hr)=[((Hr)+co, ]z+5 [I+i}(Hr)]

(2.2)

(2.3)

(2.4)

b /2
y(Hr ) =Or —1+

g (Hr )+5 [1—rl(Hr )]
(2.5)

It is seen from Eq. (2.1) that Uz(z, t, T) vanishes at Hz. = 1, but is nonzero for 8& =1+a, where e) 0 can be arbitrarily
small. Consequently, the front of the Sommerfeld precursor travels with the velocity of light c in vacuum. For values
of Hr ) 1 bounded away from unity the two Bessel functions appearing in Eq. (2.1) may be replaced by their large argu-
ment asymptotic approximations, with the result

Us(z, t, T)-—
' 1/2

cg(Hz. )

27TZ

[1 rl(Hz}]b /2— .—exp —5— [I+g(Hr )](Hr —1)+
b c g (Hr)+5 [1 i}(Hr)]—

z
cos —g(Hz, )p(Hz. )+—+co, T

A,, (Hr) c 4

~2'(Hr } z
cos —g(Hr )y(Hr )+——co, T

k3+(Hz. ) c 4

(2.6)
~i (Hr) . z ~ ~i+(Hr) . z+ sin —g(Hr)y(Hr)+ —+co, T — sin g(Hr)p(8&)+ — c—o,T—
k3 (Hz, ) c 4 k3+(Hr) c 4
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asz~ao with 8T~1+e with e&0. Notice that E . (2.1)
uniform asymptotic expression for the

z, t, ue to a unit-step-Sommerfeld precursor field U (z r 0) d
e . 6 whenunction-modulated signal given in R f. hen

, . . . , while Eq. (2.6) reduces to
the nonuniforh nuniform asymptotic expression for Us z, r, 0
given in Ref. 5 under the saine condition.

The dynamical evolution with 0 f hT o t e Sommerfeld
precursor field structure, as given b th fy e uni orm asym
totic expansion (2.1) is illust t d

' F' .ra e in ig. 6 at a fixed
propagation distance of z = 1 X 10 cm with applied sig-

nal frequency co, = 1 X 10' lsec. Th Lec. e orentz medium pa-
rameters used here and throughout thi
cg =4 X 10' 2=

ou is paper are

which corresponds to a highly dispersive and absorptive
medium. Notice the rapid rise in th S f
sor e amplitude to a maximum value soon after OT = 1,

in e amp itude
attenuation increases because of the de-

crease in the oscillation frequency of the field. Th
stantaneoutaneous angular frequency of oscillation of the Som-

e e . e in-

merfeld precursor field is found to be given by '

co, =——g(8r) 8T —1+z

g'(8T)+5'[1 rl(8 —)]'

b 0 2b 8r g (8T ) —55 [1 )(8T )
—]

2((8 )(8' —1)' [g'(8 )+5'[1— (8 )]'I' (2.7a)

-=g(8T) . (2.7b)

The approximation given in part (b) of this equation is
o tained from part (a) in the small 8 —1 1'

ound from numerical calculations of the recursor
a is approximation yields a very accurate

descri tion of the'p '
instantaneous angular frequenc of

cillation of thf the Sommerfeld precursor and that this
ncy o os-

tity is also iveny
'

given to a high degree of accuracy by the fre-
a is quan-

quency of oscillation that is determined from th gy
p velocity in the dispersive medium. Th

d namicaly ica evolution of the instantaneous angular fre-
e ium. e

quency of oscillation co =g(8 )=R [ + (8
trated in Fig. 7 for the above set of medium parameters.
Notice that co ra idlp' y decreases from its infinite value at
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FIG. 6. UniUniform asymptotic behavior of the Somm rf p
e z z, t, T&~for an input unit-step-function-m d 1 t d

signal at t = T h
o uae

—T with carrier frequency co = 1 X 10
hi hlg y absorptive and dispersive medium.

cm in a e instantaneous angular frequencFIG. 7. The evolution of the in
o oscillation co, =—Re(co+cusp ) of the Sommerfeld precursor field.
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OT=1 and monotonically approaches the limiting value

(co, —5 )
' as HT ~ ao .

III. UNIFORM ASYMPTOTIC DESCRIPTION
OF THE BRILLOUIN PRECURSOR FIELD

U~(z, t, T)

The uniform asymptotic behavior of the propagated
plane-wave field (1.16) as z —+ ao that is due to the upper

I

near saddle point SPN for 1 & OT ~ O, and the symmetric
pair of near saddle points SPz for OT ~

O&, whose loca-
tions are given in Eq. (1.23), yields the second or Bril-
louin precursor field. Since the integral representation
(1.16) for U(z, t, T) is given by exp( i—co, T)U(z, t, O) when

U(z, t, O) is retarded in 8 by the amount c I—zT, then the
second precursor field associated with this integral may
be readily constructed from the analysis of Sec. IV of Ref.
6. For 1 & OT O& the uniform asymptotic description is

2
' ' 1/3

COp

Utt(z, t, T)-
z

(z/c)ao(8&)
e to, cos(co, T)

+sin(to, T)

'2/3'

;(e,) , ,'(8, )

P, (8 ) P,+(8 )

+ Ia((HT)l' Ai Ia((HT)l
,+(8 ),(8 )

p3 (HT) p3 (HT) (c/z) . Z„,Ai(" Ia,(e,)l-
p( (HT) pl (HT) Ia}(HT)I'"

' 2/3'

xAi la, (HT)I

'2/3 '

, (HT) 2+(HT)

P, (HT) P(+(HT)

1/3
x A'" l, (8 )I

' 2/3

(3.1)

as z ~ 00 for all 1 & OT —O& Here Ai and Ai'" denote the Airy function and its first derivative, respectively, and where

and

p*, (HT ) =a),'+ [ I f(HT ) I+ ,'5((HT )]-

p,*(e )=lt/)(8 )I+—,'5((8 ),
2O

1/2
0

3aly(e, ) I+25[1—ag(HT )]

5ba,(e, ) = ,
' g(HT )(H—T—e,) —, j l~(—HT) I'[ag(HT ) —1]+-,'54(HT )[-,'aP HT ) —1]]

Opcop

2/3

la, (HT)l = p(HT) —,'(HT —80)+ 4 [ 4alp(HT)l —+a5 g (HT) —25 g(HT)]
Opcop

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Q)p Op
2

b 6ap(HT)
Utt (z, t, T)-—

2/3

for 1 (HT & 8,. The uniform asymptotic description of the Brillouin precursor field for HT ~ 8, is given by
1/2

(z/c)ao(8&)
e

X, cos(co, T) —,'5((HT)la, (HT)l'
P4+(8T) P4 (HT)

Ai —Ia,(e, )l
-'

2/3

4 T 4 T

p4 (gT) p4+(gT) a((HT) c

T

e(HT) ~ AHT)+~ (clz) .( )
z„,Ai'" —la, (eT)l

p4 (HT) p4+(HT) la((HT)l'"

g(HT ) co, P(HT )+re, —
+sin(co, T) la((HT)l' + + Ai —la((HT)l

P (8) P+(8)
2/3
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as z ~~ uniformly for all OT ~ 8, . Here

p~+(HT)=[/(Hr}+co, ] +—', 5 g (HT) (3.8}

and

b2
ap(Hr)= —5 —23$(HT)(HT —Hp)+ [[1—ag(Hr)]f (HT)+ ', 5 —g (HT)[ —,'ag(HT) —1]]

8
(3.9)

b2
la)(HT)l= -', q(Hr) (HT —

Hp)—,I-', 5'g(8 )[2—ag(8 )]+ay'(8 )I
28

2/3

(3.10)

for 8, 8, .
Taken together, Eqs. (3.1) and (3.7) provide an asymptotic description of the Brillouin precursor field Ua(z, t, T) that

is uniformly valid for all OT & 1. However, for a numerical evaluation these equations are unstable and are not useful
for small values of

I HT
—8, I, as described in Ref. 6. For that purpose they should be replaced by

COp 28pct)pc
UB(z, r, T)—

co, +45 l(9a ) 3ab z

' 1/3
2

co,cos(cu, T) sin—(co, T)
3a

xAi la&(HT)I —'
' 2/3

25z 45'b'
exp Op+ —

OT3ac 9aHpa)t
(3.11)

for Op 8T 8], and by

Ua(z, t, T)-
' 1/3

COp 28pcopc

co, +45 l(9a ) 3ab'z co, cos(co, T) sin(co—, T)
25
3Q

x Ai —la, (HT )
I

2/3 r

z 4g
exp —

OT —Op-
9aO co

(3.12)

for 8, OT 82, where

8,=28, —Hp . (3.13)

Since the argument of the Airy function and its first derivative is real and positive for HT E(1,8, ], the Brillouin pre-
cursor field is nonoscillatory over this Hr domain. For Hr )8, the argument of the Airy function and its first derivative
is real and negative so that the Brillouin precursor is oscillatory over this final Hr domain. The instantaneous frequency
of oscillation for OT & 8, is found to be

b
coa =— P(Hr } HT Hp

— 4@5—'g(H—r)[2—ag(HT)]+/'(HT))

=—P(Hr) . (3.14)

The approximation given in this equation is obtained in
the small OT

—8, limit. It is found from numerical calcu-
lations of the dynamical precursor field structure" that
this approximation yields a very accurate description of
the instantaneous angular frequency of oscillation of the
Brillouin precursor and that this quantity is also given to
a high degree of accuracy by the frequency of oscillation
that is determined from the energy transport velocity in
the dispersive medium.

The dynamical evolution with OT of the Brillouin pre-
cursor field structure, as given by the uniform expansion
expressed in Eqs. (3.1), (3.7), (3.11), and (3.12), is illustrat-

ed in Fig. 8 at a fixed propagation distance of
z = 1 X 10 cm with an applied signal frequency
u, = 1 X 10' /sec. The amplitude of this precursor field is
seen to grow rapidly as OT approaches Op from below,
reaches a peak amplitude near HT =Op (at this space-time
point there is no exponential attention of this field), and
then decays with increasing OT & Op- At this propagation
distance with an applied signal frequency cu, &cop, the
maximum amplitude of the Brillouin precursor is two or-
ders of magnitude larger than the rnaxirnum amplitude
attained by the Sommerfeld precursor. For OT &8, the
field oscillates with an instantaneous frequency
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FIG. 8. Uniform asymptotic behaviovior of the Brillouin pre-
T foraninpu uni-T '

p t it-step-function-modulatedg(, , ) p
i nal at t =T with carrier frequency co, =

=1X10 ' i hi hl b tipropagation distance of z =
and dispersive medium.

tos =—P(8r) =Re[cosy r ] a(8 )] that monotonically increases

from zero at OT=O, and asymptotically approaches the
v = —5 )' from below, as illustrated invalue it(&(~ )=(coo-
Fig. 9.
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IV. UNIFOFORM ASYMPTOTIC DESCRIPTION
POLEOF THE FIELD U, (z, t, T) DUE TO THE PO

CONTRIBUTION

instantaneous angular frequencyFIG. 9. The evolution of the dunstan a
r eld.—=R (co+ ) of the Brillouin precursor eof oscillation co& =-e Nsp

The contribution, z, ,U ( t T} to the asytnptotic behavior
olero a ated field that is due to the simple po e

singularity of the spectral amp itu e a co=~, '

e wid 'th the steady-state signal in the propagated fie
e

' ' - '
-modulatedstructure ue od t the input unit-step-function-mo

l. A ain, since the integral representation
U(z, t, T) is given by exp( i to, T, U, z, ,

—

form asymptotic description o t e po e c
this integra may e rea

'
1 b dily constructed from the ana ysis

of Sec. 5 of Ref. 6.
corn lex haseSince co, is real and non-negative, the comp ex p ase

behavior at the simple pole singularity is given y

ative real frequency axis. The saddle point SPD andnegative rea re
SPz that are located in the left half olf of the complex co

lane do not interact wi'th the pole at co=co, and, conse-
~ ~

ribute to the asymptotic behavior ofquently, do not contn u e o
of the nearU z, t, T). Since the real coordinate locatton o e n

P+ in the right half plane lies within the
2 2 1/2 '1 h Ifrequency domatn from

coor ina e od' t location of the distant sa le point
ngt a

'
h h lf plane is greater than or equa o

se arates intofor al 1 8 ~1 this problem then naturally p
three cases.

&I)(to 8r ) = to, n; (to, )+i to, [—n„(to, ) —8r],c~ (4.1) A. Si al frequencies co, below the absorption band:
0~el, +(NQ —5 )'

so that the real and imaginary parts ofof ~ are respectively
given by

X(co ) cocni(Q)c ) &

Y(to, &8T ) = to, [n„(to, ) —8T],

(4.2a)

(4.2b)

n (to } is the real part and n;(to, ) the imaginarywhere n, &~co, is e r
alon the non-part o t e compf th omplex index of refraction a ong

For an input signal frequency co,co in the domain
&co ~(co —5 )' which is below the medium absorp-

tion an, i isb d it is the near saddle point in the righ
le olethe comp ex co p an1 lane that interacts with the simp e p

ularit at co=co, . The uniform asymptotic approxi-
ation of the pole contribution U, z, t, is enma ion

6by the set of equations

1/2
z

U (z, t, T)- Re e ' tnerfc.leo T ib(8 )
277

1e' 'P(co„8z.)—
1/2

(z/c)P(~sp, HT )
e 7 T $ (4.3a)
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U, (z, t,', T)- Re F
C

' 1/2
1 KC

6(8, ) z

1/2
( z /c)P( cusp 8 )

e SP' s

—za(ro ) .—
—,'e ' sin[k co, )z c—o, t,'], 8 =8,= t„— co, PO

z ' (4.3b)

2 8
U, (z, t„T)-

2b m.5z

1/2
1

87 =8, =8O, co, =0
SPl s

(4.3c)

r

U (z, t, T)-)- Re e ' —im. erfc —'b, (8 )
C

—za(co, ) .—e ' sin[k (co, )z co, t]—, 87 & 8S

' 1/2
(z/C)4(co, OT )

e
b, (8r) z

' 1/2
(z/c)ttI(a)sp, 8T )

e

(4.3d)

as z~~, where t,'=t, +T. Here co

b, (8 )'
ere cosP denotes cosP and

is given by
l

&(87 ) =[/(cosp, , 87 ) y(co 8—)]' (4.4a)

for 1~8 (8 co7,, cosp denotes cosp and 6(8 )
' '

b
N T is given by

~(8T) =[{(I(~sp 8i} 0( 8 }]' (4.4b)

for 8 =8 and7 I all cosp denotes co and b,(8+
T& is given by

6 87 ) = [P( cosp, 8r) $(co„8r —) ]' (4.4c)

1&8r &8,

ctrg[b(8r}]= 0, 87 =8,
3' 8r&8, .

(4.5a)

(4.5b)

(4.5c)

Notice that 8, &8O for all values o

cGill

denotes Dawson's integral d f (c, e
omplementary error function. The am litu

an er c(c, ) denotes the

offii (a co, & is given by

for 87. & 8,. The value of 8 is
a w ic the ath oft h'h

, is defined as that value of 8

b

T

oring saddle oint cr
p steepest descent through th

' h-e neig-
p

'
crosses the pole, as described in R f

. The pro er hase
i e in e.

then given by
p p e of the multivalued function 5(8 )

'
n T is

U, (z, t, T)- —e ' sin[k(co )z —co tC C (4.8)

as z~ ~ with 8T bounded above 8, .

'
us ra e in Fig. 10 as a function of the8f fiT or a xe" carrier frequency co =1X10'

at the fixed rpropagation distance z = 1 X 10 cm
sec

this particular case the stead -statey- amplitude attained by

u ari y is an order of magnitude larger than that of

0.008-

0.006-

0.004-

0.002

proximation of the pole cont 'b t'n ri ution at co=co =0. F

~a(8 v'at 7 z/c »1, the dominant term in the
asymptotic expansion of th
tion may be substituted in E . 4.

e complementar error fu
in q. .3a) with the result that

e rs an second terms in that eq o y

t ere is no contribution to the as m t
S

e y po,. e a
e

'
p p singularity. For values ofe rom t e sim le ole7, and sufficiently lar e observy g bservation distances z such

totic expansion of erfc[ ih(8—T)(/z/c ma
di E (43d)q. . with the result

ct(co, )= ——X( )= '
(

1

c c

and where

CO

k(co, )= n (co )r c

(4.6)

(4.7)

Ac(Z, t)

—0.002-

—0.004-

—0.006-

is the propagation factor at the real frequenc m i
dispersive medium.

e rea requency m, in the

Taken to ethergether, the expressions (4.3a) (4.3
(4.3d) constitute the uniform as me uni orm asymptotic approximation

e pole contribution at
0&co (co —5 )' wh

with
whereas the expressions (4.3a)

(4.3c), and (4.3d} constitute the fe e uni orm asymptotic ap-
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FIG. 10.. 10. Uniform asymptotic behavior
tion U, (z t Q f
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'
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'

p- unction-modulated signal
carrier frequency co, =1X10' /sec at;..d;. .....f,=1 10- . ;..h;hl .g y op
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the peak in the Sommerfeld precursor field (see Fig. 6)
and an order of magnitude less than that of the peak in
the Brillouin precursor field (see Fig. 8). Notice that both
the amplitude and the oscillation frequency of U, (z, t, T)
settle down to their appropriate steady-state values, as
described by Eq. (4.8), for 8T & 8, & 8, . Furthermore, for
all OT & 8, the amplitude of the Brillouin precursor is less
than that of U, (z, t, T) and is negligible for values of 8r
only slightly above 8, . The value 8, is associated with
the signal arrival and is precisely defined in Sec. V.

B. Signal frequencies m, above the absorption band:
& (2 fi2)1/2

For an input signal frequency co, in the domain
co, & (coi —5 }',which is above the medium absorption
band, it is the distant saddle point in the right half of the
complex co plane that interacts with the simple pole
singularity at co=co, . The uniform asymptotic approxi-
mation of the pole contribution U, (z, t, T) is then given
by the set of equations,

1/2
1 1 Cd T z

U, (z, t, T)- Re e ' —im erfc id, (8—T)2' c
(z/c)tYI(a), 8T )

6(8T) z

' 1/2
( Z /C )p( Cusp 8T )

'1/2 '
(z/c)$(coSp, 8, )

U, (z, t, T)- Re e ' 2&me . F ~b,(8, )~2' c
—za(a) ) C—

—,'e '
sin[k (co, )z co, t,'), 8T—=8,= t, , —

1 mc

b(8, ) z

1/2
(z /c)P( cl)sp 8 )

e D

(4.9a)

(4.9b)
T

1 l QP T z
U, (z, t, T) — Re e '

im erfc ib, (8T}
2m C

1/2
(z/c)p(co, 8T ) 1 'ITc

5(8r} z

' 1/2 +(Z/C)p(esp 8T )

e D

' sin[k(t0, )z co, t), 8T &—8, (4.9c)

as z ~ ce, where t,'=t, + T and where F(g) again denotes
Dawson's integral. The quantity b (8T ) is given by

(4.10)

with phase given by the relations

—za(co )
U, (z, t, T) ——e ' sin[k(to, )z co,t)—

asz~oo with OT bounded above 8, .

C. Signal frequencies co, in the absorption band:
(~2 g2)1/2 (~ ((~2 g2)1/2

(4.12)

4
—&arg[b, (8T)]&0, 1 & 8T &8,

arg[b(8, )]=0, 8r=8,

0&arg[b, (8T)]&—,8T&8,T 4

(4.11a)

(4.11b)

(4.11c)

where arg[h(8T)] decreases monotonically with increas-
ing 8T.

Taken together, the expressions (4.9a) —(4.9c) constitute
the uniform asymptotic approximation of the pole contri-
bution at co=co, with finite co, &(coi —5 )'/. For fixed
values of OT & 8, and sufficiently large values of the prop-
agation distance z such that the quantity ~4(8T ) ~

&z/c is
large ( »1), the dominant term in the asymptotic expan-
sion of erfc[ i b,(8T)&z/c ] may —be substituted into Eq.
(4.9a) with the result that the first and second terms in
that equation identically cancel. Hence, for values of 8
sufficiently less than 8„ there is no contribution to the
asymptotic behavior of the total field from the simple
pole singularity. On the other hand, for fixed values of
8& 8, and sufficiently large values of the observation dis-
tance z such that

~
b, ( 8T )

~
&z /c && 1, the dominant term

in the asymptotic expansion of erfc[ib(8r}v'z/c ] may
be substituted into Eq. (4.9c) with the result

For values of the input signal frequency co, in the
domain (~20—$ )

/ &co, &(coi —5 )'/, which is within
the absorption band of the single-resonance Lorentz
medium, neither the near nor distant saddle point comes
within close proximity of the simple pole singularity at
co=co, . As a consequence, the quantity ~b, (8T)~&z/c is
large for all 8T & 1 and the dominant term in the corre-
sponding asymptotic expansion of the complementary er-
ror function can be employed in the uniform asymptotic
description of the pole contribution. For OT & 8, there is
no contribution to the asymptotic behavior of the pro-
pagated field from the pole at co =co, . At OT =8, =ct, /z,

—za(co )
U, (z, t,', T)- —

—,'e ' sin[k(co, }z co, t,']—(4.13}

as z ~~ with t,'= t, + T, and for OT & 8„
—za(co )

U, (z, t, T)- —e ' sin[k(to, )z co,t)—(4.14)

as z~ 00.
These equations are the same as the expressions that

Brillouin ' obtained for the pole contribution for all posi-
tive, finite values of the signal frequency co, . Even the
value of the space-time parameter OT at which the
discontinuous jump in the behavior of U, (z, t, T) occurs
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in Eqs. (4.3), (4.9}, and (4.13)—(4.14) is the same as that
obtained by Brillouin because 8, is taken in the uniform
asymptotic expansion presented here to be the value of
OT at which the path of steepest descent crosses the sim-

ple pole singularity at co =co, . The nonuniform asymptot-
ic analysis presented by Oughstun and Sherman yields
the same expressions for U, (z, t, T) as obtained by Bril-
louin, but the value of 8, can be di8'erent since 8, is then
the value of OT at which an arbitrary Olver-type path
crosses the pole. The difference in values obtained for 8,
is of no consequence, however, since U, (z, t, T) is asymp-
totically negligible in the final expression for the total
propagated field U(z, t, T) for values of HT in a range that
includes all possible values of 8, . Although Brillouin as-
sociated H, =ct, lz with the time of arrival of the main
signal, that interpretation has been shown to be in-
correct.

V. THE SIGNAL ARRIVAL
AND THE SIGNAL VELOCITY

U, (z, t, T) ——e ' sin[k(co, )z co—,t], (5.3}

as z —+ 00 with 8T )8 .
The pole contribution (5.3) is physically due to the fre-

quency component at the applied frequency co, of the in-

put unit-step-function-modulated signal. The main signal
arrival is defined to occur at the value of HT =8, specified

by the relation

the saddle point is the dominant contribution to the
asymptotic behavior of the field U(z, t, T) and the pole
contribution is asymptotically negligible by comparison.
For values of OT )8, such that the inequality

X(cosp, eT) &X(co, ) is satisfied, the pole contribution is
the dominant contribution to the asymptotic behavior of
U(z, t, T) and the saddle point contribution is asymptoti-
cally negligible by comparison. From Eqs. (4.8), (4.12},
and (4.14) this pole contribution, when it is the dominant
contribution to the asymptotic behavior of the field

U(z, t, T), is given by

X(cosp, 8 ) =X(co ) 8 —Hp (5.4)

Y(cosp, 8, ) = Y(co„e,}, (5.1)

where cosp(HT} denotes the saddle point which interacts
with the simple pole singularity. However, at HT =8, the
pole contribution is asymptotically negligible in compar-
ison to the saddle point contribution since P(er } is an
Olver-type path. Consequently, the particular value of 8,
at which the pole crossing occurs has no physical impor-
tance in the asymptotic behavior of the propagated field,
in spite of the fact that it is an important parameter in
the uniform asymptotic description of the pole contribu-
tion to the propagated field U (z, t, T).

The pole contribution at co=co, is the dominant contri-
bution to the asymptotic behavior of the propagated field
U(z, t, T) for HT & 8, & H„where 8, is specified by the re-
lation

The contribution of the simple pole singularity at
co=co, to the uniform asymptotic description of U(z, t, T)
occurs when the original contour of integration C, which
extends along the straight line from ia —~ to ia + ~ in
the upper half of the complex co plane, lies on the oppo-
site side of the pole singularity than does the Olver-type
path P(HT) through the relevant saddle points. For
HT &8, the pole is not crossed when C is deformed to
P(HT) and there is no residue contribution, while for
HT & 8, the pole is crossed when C is deformed to P(er)
and there is a residue contribution to the asymptotic be-
havior of the field. The value of 8, clearly depends upon
which Olver-type path is chosen for P(HT ). If that path
is taken to lie along the path of steepest descent through
the saddle point nearest the pole, then the value of 8, is
specified by the expression

at which the pole contribution becomes the dominant
contribution to the asymptotic behavior of the field
U(z, t, T). The velocity at which this point in the field

propagates through the dispersive medium is defined as
the main signal velocity

c
c gc

(5.5)

X(cosp, e, i)=X(co, }, 1 & 8, ) & Hs~, (5.6}

and the velocity at which this point propagates through
the dispersive medium, called the anterior presignal ve-
locity, is given by

C
Uc1=, COc )COSB

c1
(5.7)

The back of the prepulse arrives at the value of HT =8,2

specified by the relation

X (cosp 8/2) =X(co ) esp & egg & ep (5.g)

and the velocity at which this point propagates through
the dispersive medium, called the posterior presignal ve-
locity, is given by

e
Vc2

—
& &c )~SB

c2
(5.9)

where c is the vacuum speed of light. Furthermore, for
signal frequencies m, )cosB a prepulse exists in the evolu-
tion of the field due to the input unit-step-function-
modulated signal. ' The front of the prepulse arrives at
the value of HT =H„specified by the relation

X(cosp, 8, ) =X(co, ), (5.2) These three velocities are then seen to satisfy the inequal-
ity

where cusp denotes the dominant saddle point at the value
of HT, and where X(co,eT) =Re[/( eco)] Tis independent
of Oz. along the real frequency axis. For values of OT & 8,
such that the inequality X(cosp, er) &X(co, ) is satisfied,

C )Uc1 ) )Uc2 ) Uc
C C )
SB 0

(5.10}

as illustrated in Fig. 11(a). The dashed curve in the figure
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depicts the energy transport velocity of a strictly mono-
chromatic field in the dispersive medium, as described by
Loudon. '

The transition points 0„0„,and O, z in the dynamical
field evolution of the unit-step-function-modulated signal
in the mature dispersion regime are physically character-

ized by the instantaneous angular frequency of oscillation
of the total field evolution at any fixed propagation dis-
tance z, dependent upon whether 0 & ~, (co» or
co, )cos~. Consider first the behavior for co, E [O, toss ), in
which case only the transition point 0, occurs. For
OT&8, the field U(z, t, T) is either dominated by the

1.0-

0.8-

1
Hp

0.6

0.4-

0.2-

4Pp

~ (lO":;ec-')

10
I

14

1.0-

0.8-

0.6

v/c

0.4-

0.2-

(alp 8 ~sB 10

~, (10 sec )

12

FIG. 11. Frequency dependence of {a) the main signal, anterior presignal, and posterior presignal velocities for a unit-step-function
signal, and {b) the signal velocity for a rectangular pulse in a Lorentz medium pvith cop=4X10' /sec, b =20X10 /sec,
~=0.28X1o' /sec. The behavior of the energy-transport velocity for a strictly monochromatic field in the medium is indicated by
the dashed curve in both figures.
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ht, =—EO, =T . (5.11)

Consequently, any pulse broadening and envelope degra-
dation of the input rectangular modulated pulse with
co, E [0,cosz ) is due primarily to the precursor field struc-
ture of the propagated field that arises from the front and
back of the input field. This interference of the pole con-
tribution with the precursor field structure will shorten
the 8 domain over which the propagated field oscillates
predominantly at the input carrier frequency co, . Strictly
speaking, the temporal width of the signal is then found
to decrease with increasing propagation distance. The
commonly observed phenomenon' of pulse spreading
is obtained only when the propagated signal is redefined
so as to include a range of frequencies about co„and this
in turn implies the incorporation of some portion of the

Sommerfeld precursor whose instantaneous angular fre-
quency co, =g(Hs ) =Re[hosp (Hr)] rapidly decreases

from infinity at 0&= 1 and monotonically approaches the
limiting value (coi —5 )' from above as Hz. ~ ~ but only
reaches the value coss at Hr =Hss (because of the transi-
tion to the Brillouin precursor), or is dominated by the
Brillouin precursor whose instantaneous angular frequen-
cy cos =P(Hr)=Re[co+& (Hr)] is either approaching co,

from below if co, (coo —5 )', or is bounded below co,
for all Hr if (coi —5 )' & co, & toss. Only for Hr & 8, does
the field oscillate predominantly at the input carrier fre-
quency co, of the signal. When co, &coss the dynamical
field evolution is greatly enriched because of the addition-
al two transition points 8, &

and 8,2. For Oz & 8, &
the field

is dominated by the Sommerfeld precursor whose instan-
taneous oscillation frequency co, approaches co, from
above as 8& approaches 8, &

from below. For all Oz- in the
space-time interval 8„&Hr & H, z, the field oscillates
predominantly at the input carrier frequency co, of the
signal. This portion of the signal evolution is interrupted
by the Brillouin precursor which dominates the field evo-
lution over the space-time interval 8„&8z &8, and is
characterized by an instantaneous oscillation frequency
that is bounded below co, . Again, for Hr & 8, the field os-
cillates predominantly at co, . This description afforded
by the asymptotic theory has been completely verified
through numerical simulations. ' Finally, the branching
character of the signal velocity for co, &co&& is a direct
consequence of the asymptotic dominance of the second
precursor field for 8,2 & 8& & 0, .

For an input rectangular modulated signal
A (z, t)=U(z, t, O) U(z, t, T—) of initial time duration T
and carrier frequency co, K [0,toss ), the signal arrival
occurs at 8=0, and the propagated field ceases to oscil-
late at c0, when Hr =8 cT/z =8, . —Both of these transi-
tion points propagate with the signal velocity v, =c/8, .
The main body of the propagated pulse that is oscillating
at co=a, then evolves over the space-time interval from
8=8, to 8=8, +cT/z. The 8 width of the propagated
pulse between the front and back pole contributions is
then b, H, =cT/z so that the corresponding temporal
width of the pulse between these two points at any fixed
propagation distance z is

precursor fields in the definition of the main body of the
pulse.

For co, &~&z the signal arrival first occurs at 0=0,
&

when the simple pole at co=co, is crossed and the pro-
pagated field finally ceases to oscillate predominantly at
co, when Hz. =H cT—/z =H, i when the pole contribution
is subtracted out. The overall 8 width of the propagated
pulse between the front and back contributions is then
58, =cT/z so that the corresponding temporal width of
the pulse between these two points at any fixed propaga-
tion distance z is

zbt =—bH =T.
C C (5.12)

Between these two space-time points there are, at most,
two other distinct transition points at 8=8,2 and 8, at
which the propagated field either ceases to oscillate
predominantly at co, or begins again to oscillate predom-
inantly at co=co, due to the asymptotic dominance of the
leading edge Brillouin precursor between these two
points. Because of this, the propagated field due to the
input rectangular pulse separates into, at most, two sub-
pulses (provided that cT/z & 8, —8„),which reduce to a
single pulse at sufficiently large propagation distances.
Apart from this pulse breakup, the only other envelope
degradation and any pulse broadening of the input rec-
tangular modulated pulse with co, & co+~ is due to the pre-
cursor field structure of the propagated field that arises
from the front and back of the input field.

The resultant frequency dependence of the signal ve-
locity for a finite duration rectangular pulse with
cT/z &8, —8„ is illustrated in Fig. 11(b). As in Fig.
11(a), the dashed curve represents the energy transport
velocity of a strictly monochromatic field in the medium.
The discontinuous jump in the signal velocity at co, =co&z
is fundamentally due to the change in dominance of the
precursor fields at 8=8ss. Below ross the signal arrival
occurs following the evolution of the Sommerfeld and
Brillouin precursors, while above co+~ the signal arrival
occurs during the evolution of the Sommerfeld precursor
field. When the opposite inequality is satisfied (i.e., when
cT/z &8, —8, i) by choosing a sufficiently long initial
pulse width T or a sufficiently short propagation distance
z (but which is still large enough to be in the mature
dispersion regime), then the propagated field is found to
be separated into two pulses whose velocities are de-
scribed in Fig. 11(a). The first is a prepulse with front ve-
locity v, &

and back velocity v, 2, and the second subpulse
has front velocity v, and back velocity v„.

VI. DYNAMICAL EVOLUTION
OF THE PROPAGATED FIELD

From Eq. (1.34), the uniform asyinptotic description of
the propagated field due to an input rectangular-
modulated signal of initial time duration T is given by the
representation

A (z, t) Us(z, t, O)+U-s(z, t, O)+ U, (z, t, O)

—Us(z, t, T) Us(z, t, T) U, (z, t, T—), —
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which is simply the difference between the propagated
fields due to an input unit-step-function-modulated signal
U(z, t, O)- Us(z, t, O)+ U~(z, t, O)+ U, (z, t, O) that begins
to oscillate at time t=O in the z=O plane and the unit
step-function-modulated signal U(z, t, T)- Us(z, t, T)
+ Uz(z, t, T) + U, (z, t, T) that begins to oscillate at time
t =T in the z=O plane. It is now shown that this repre-
sentation of the propagated field in the mature dispersion
limit provides a complete, accurate representation of the
dynamical field evolution over the entire range of signal
frequencies co, E [0, oo ).

Consider first the below resonance range co, E[O,coo).
In this case the peak Sommerfeld precursor field ampli-
tude is typically several orders of magnitude less than the
peak amplitude of the Brillouin precursor so that the en-
tire propagated field structure in the mature dispersion
limit is dominated by the Brillouin precursor and the pole
contribution at co=co, . For a sufficiently long initial
pulse width T and/or a sufficiently short propagation dis-
tance z such that (c lz) T )8, —1, the precursor fields as-
sociated with the leading edge U(z, t, O) of the pulse will
completely evolve prior to the arrival of the precursor
fields associated with the trailing edge U(z, t, T) of the
pulse. Indeed, the trailing edge precursors will arrive
only after the main signal of the leading edge has arrived
(at 8=8, ) and is evolving. Hence, when this condition
prevails the interference between the precursor fields of

the leading and trailing edges of the pulse is minimal and
the pulse distortion is also minimal, as is evident in Fig.
12. For shorter initial pulse widths T or larger propaga-
tion distances z such that 8, —1)(clz) T ) 8+~ —1, the
first precursor field associated with the leading edge of
the pulse will still evolve undisturbed, but during the evo-
lution of the second precursor field U~(z, t, O) the arrival
and evolution of the precursor fields associated with the
trailing edge of the pulse will occur. Hence, when this
condition prevails there will be interference between the
Brillouin precursor of the leading edge and the Sommer-
feld precursor of the trailing edge of the pulse, as illus-
trated in Fig. 13, and the Brillouin precursor of the trail-
ing edge of the pulse will occur soon after the signal ar-
rival at 8=8, so that the resultant pulse distortion is
found to be moderate. Finally, for even shorter initial
pulse widths T or greater propagation distances z such
that 0 ((cIz)T & 8' —1, there will be a nearly complete
overlap of these two sets of precursors fields and the
resultant pulse distortion is severe, as illustrated in Fig.
14.

In each case the pole contribution to the total field evo-
lution occurs at 8=8, and is subtracted out at
8=8, +cT/z so that the overall temporal width of the
propagated signal is T, as given by Eq. (5.11). However,
because of the asymptotic dominance of the Brillouin
precursor U~(z, t, T) from the back edge of the input

U(z, t, O) U(z, t, O)

I

Hsa
I

Hso

U(z, t, , T) U(z, t, T)

I I

&+ T Hsa+ —',T

A(z, t) A(z, t)

H,

FIG. 12. Construction of the dynamical structure of the pro-
pagated field A(z, t)=U(z, t, D) —U(z, t, T) in the below reso-
nance signal frequency range 0&co, &coo when (c/z)T &8,—1.
When this situation prevails the interference between the pre-
cursor fields of the leading and trailing edges of the pulse is
minimal and the resultant pulse distortion is also minimal.

FIG. 13. Construction of the dynamical structure of the pro-
pagated field A(z, t)= U{z,t, O) —U(z, t, T) in the below reso-
nance signal frequency range 0 & ~, & coo when

8, —1&{c/z)T & 8» —1. When this situation prevails the in-
terference between the precursor fields of the leading and trail-
ing edges of the pulse is moderate and the resultant pulse distor-
tion is also moderate.
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and is then again the dominant contribution over a small
8 interval about the space-time point 8=8sz+cT/z pro-
vided that cT/z&8, —8+~. When the first inequality
(i.e., cT/z & 8, —1) is satisfied, the propagated signal is
seen to be separated into two pulses oscillating at co=co, .
These reduce to a single pulse oscillating at co=~, when
8, —1 & cT/z & 8, —8s~. Finally, when the inequality
CT/z & 8, —8+~ is satisfied, the pulse distortion is severe
and the total propagated field is dominated by the precur-
sor fields over the entire space-time domain.

Consider, finally, the high-frequency domain co, )~+~
in which the propagated unit-step-function-modulated
signal separates into a prepulse that evolves over the
space-time domain 8C[8„,8,2] and a main signal that
evolves over the space-time domain 8 & 8„these two sig-
nal components being separated by the Brillouin precur-
sor field which is the asymptotically dominant field con-
tribution over the domain 8C( 8, ,28, ), as described in

I

Refs. 4—6. In this high-frequency domain the Sommer-
feld precursor field is a dominant feature in the total field
evolution of the propagated unit-step-function-modulated
signal and is the asymptotically dominant field contribu-
tion over the space-time domain 8E[1,8„). For a
sufficiently long initial pulse width T and/or a sufficiently
small propagation distance z such that (c/z)T &8,—1,
the precursor fields and prepulse associated with the lead-
ing edge U (z, t, O) of the pulse will completely evolve pri-
or to the arrival and evolution of the precursors and
prepulse associated with the trailing edge U(z, t, T) of the
pulse so that their interference is minimal. When this
condition prevails the total propagated field evolves in
the following sequential manner [the leading term in each
asymptotic expression given here and in the following ex-
pressions of this section indicates that it is asymptotically
dominant over the remaining terms (if any)]:

1+8&8,]

8„&8&8,
8, 8(1+—T

Z

1+ T& 8 & ——T+8, i
c c
Z Z

+ T~ 8(8'+ TC c

c
8s~+ T&8—

Z

A (z, t)- Us(z, t, O)
A (z, t)- U, (z, r, O)

A (z, t)-Us (z, t, O)+ U, (z, t, 0)

A(z, r)- U, (z, t, 0)

A (z, t) —U-s(z, t, T)+ U, (z, t, O)

A(z, t)- —Us(z, r, T)

A (z, t) —U-s(z, r, T)

Sommerfeld precursor
Signal

Brillouin precursor plus signal

Signal

Sommerfeld precursor plus signal

Sommerfeld precursor

Brillouin precursor

U(ZI t, 0)
1
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FIG. 16. Construction of the dynamical structure of the propagated field A (z, t) —U(z, t, 0)—U(z, t, T) in the high signal frequency
range ~, & m» & coo when 0„—1 & (cIz)T (8„—1. When this situation prevails the interference between the precursor fields of the
leading and trailing edges of the pulse is moderate to severe and the resultant pulse distortion is becoming severe.



UNIFORM ASYMPTOTIC DESCRIPTION OF ULTRASHORT. . . 6109

Et' =—(8,2
—8„),

C
(6.4)

which increases linearly with the propagation distance,
and a main pulse that evolves over the space-time domain
HE- [8„1+(c/z)T) with temporal width

b, t, = T (8—, —1),-z
(6.5)

which decreases to zero linearly with the propagation dis-
tance z over the propagation domain (c/z)T )8, —l.
The front and back of the prepulse then propagate with
the presignal velocities U„=c/H„and U, 2=c/H, z, re-

spectively, while the front of the main pulse propagates
with the signal velocity U,

=cl H„just as for the unit-
step-function-modulated signal. A moments refiection on

I

The propagated signal is thus separated into a prepulse
that evolves over the space-time domain HF [8„,8,z]
with temporal width

the limiting behavior of this pulse structure as the propa-
gation distance z becomes small (ignoring momentarily
that the above results are derived from asymptotic
theory} shows that the prepulse width (6.4) approaches
zero while the main pulse width (6.5) approaches the ini-
tial pulse width T. The main pulse is then clearly associ-
ated with the initial rectangular pulse. As the propaga-
tion distance z increases so that the inequality
(c/z)T &8, —1 is satisfied, the main pulse vanishes from
the propagated field structure and all that remains is the
prepulse and the precursor fields. The prepulse remains
intact, evolving undisturbed over the space-time domain
[8„,8,2] until the inequality (c Iz)T & 8,2

—1 is satisfied.
When this latter condition prevails the prepulse becomes
distorted as the Sommerfeld precursor associated with
the back edge of the pulse evolves over this space-time
domain. This situation is illustrated in Fig. 16 when
8, i

—1 &(c/z)T &H, i —1. When this condition prevails
the total propagated field evolves in the following sequen-
tial manner:

1~8(8,)

8, )
& 8(1+—T

z
1+ T~8~8 zz

8„&8&8„+—T
z

8„+—T &8&8„+—TC C

8,2+ T&8—C

A (z, t) —Us(z, t, 0)
A (z, t) —U, (z, t, 0)

A (z, t) —U—s(z, t, T)+ U, (z, t, O)

A (z, t)- Aii(z, t, O) —Us(z, t, T)+ U, (z, t, O)

A(z, t)- A~(z, t, O)

A (z, t) ——As(z, t, T)+ Att(z, t, O)

Sommerfeld precursor

Signal

Sommerfeld precursor
plus signal

Brillouin and Sommerfeld
precursors plus signal

Bnllousn precursor

Brillouin precursors

The propagated field structure is then seen to be dominat-
ed by the precursor fields associated with the front and
back of the pulse over all but the domain
HE[8„,1+(c/z}T]. The temporal width of the prepulse
is now given by

bt =T ——(8„—1),z
(6.6)

which decreases from its maximum value of
(zlc)(8,2

—8„) when (c/z)T=8, 2
—1 and goes to zero

when (c/z)T=8„—1 as the propagation distance z in-
creases.

The validity of this uniform asymptotic description of
rectangular pulse propagation in a single-resonance
Lorentz medium is borne out by comparison with de-
tailed numerical calculations of the dynamical pulse evo-
lution. The calculations presented here are for a strongly
absorptive medium with parameters ~0=4.0X10' /sec,
b =20.0X10 /sec, 5=0.28X10' /sec, which are the
same as those chosen by Brillouin. The dynamical evo-
lution of the propagated field at several increasing values
of the propagation distance z is illustrated in Figs. 17—20
for the below resonance signal frequency
co, =1.0X10' /sec. The e ' penetration depth at this
signal frequency is d =1.82X 10 cm. In each sequence

of propagated waveforms the time origin has been shifted
by the amount H, zlc so that the signal arrival at H, zlc
and signal departure at t =H, z Ic + T are aligned at each
propagation distance; these time instances are indicated
by the dotted lines in each figure. The initial pulse width
in Fig. 17 is T =6.283X10 ' sec and corresponds to a
single period of oscillation of the signal. In this case the
pulse distortion becomes severe (cT/z &Hss —1) after
only —

—,
' of an absorption depth into the medium, after

which the propagated waveform is dominated by the in-
terfering Brillouin precursors from the leading and trail-
ing edges of the pulse. In Fig. 18 the initial pulse width is
doubled to T = 1.257 X 10 ' sec and corresponds to two
periods of oscillation of the input signal. In this case the
pulse distortion is minimal when zld=0 055moderate
when zld=0. 55, and severe when z/d=2. 75 and all
larger propagation distances. Each of these cases corre-
sponds qualitatively to the constructions depicted in Figs.
12—14, respectively. The initial pulse width is again dou-
bled to T=2.513X10 ' sec in Fig. 19. In this case the
pulse distortion is minimal when z/d 0.7d and becomes
severe when z/d =1.24d, after which the propagated
waveform is dominated by the interfering Brillouin pre-
cursors. Finally, the initial pulse width is doubled once
more to t =5.026X10 ' sec in Fig. 20, which corre-
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sponds to eight periods of oscillation of the input signal.
In this case the transition from minimal to moderate
pulse distortion occurs when z =1.41d and the transition
to severe pulse distortion occurs when z =2.48d. By
comparison, the transition to the severe pulse distortion
regime for a picosecond pulse occurs when z-500d.
Again, in the severe pulse distortion regime the propagat-
ed waveform is dominated by the interfering Brillouin
precursors. Similar results have been obtained numeri-
cally by Barakat for a Lorentz medium and by Al-
banese, Penn, and Medina for a Debye model medium.

Careful inspection of Figs. 17—20 shows that the pro-
pagated pulse-signal width given by Eq. (6.2) correctly
describes the time duration over which the propagated
waveform is dominated by the signal oscillating at the in-

ht =T+ —(8, —80) .
z

(6.7)

Once into the severe distortion regime, the propagated
field structure becomes completely dominated by the
front and back Brillouin precursors whose peak values
occur at 8=80 and 80+cT/z and are thus separated in

put signal frequency co, . In particular, this pulse-signal
width is seen to decrease with increasing propagation dis-
tance z from its input value T to zero at the transition
point to the severe distortion limit. Nevertheless, the
overall temporal width of the entire propagated
waveform is seen to increase with the propagation dis-
tance z. Up into the severe distortion regime the pro-
pagated pulse waveform is seen to be defined between
8=80 and 8, +cT/z, with corresponding temporal width
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FIG. 17. Dynamical evolution of the propagated field due to
an input rectangular modulated signal with below resonance
carrier frequency cu, =1.0X10' /sec and initial pulse width
T=6.283X10 ' sec in a strongly dispersive and absorptive
medium. The e ' penetration depth at this signal frequency is
d =1.82X10 cm.

FIG. 18. Dynamical evolution of the propagated field due to
an input rectangular modulated signal with below resonance
carrier frequency co, =1.0X10' /sec and initial pulse width
T=1.257X10 " sec in a strongly dispersive and absorptive
medium.
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time by the initial pulse width T. Since these two points
in the field evolution experience no exponential decay
but rather decrease with the propagation distance only as
z ', they will remain the prominent feature in the pro-
pagated field structure long after the signal contribution
has attenuated away. This behavior applies throughout
the below resonance frequency domain co, E[0,coo) and
remains applicable up through most of the absorption
band co, E [oio,coi]. In the upper region of the absorption
band and for signal frequencies co, &co& the Sommerfeld
precursor becomes a dominant feature in the propagated
waveform and must be included in any description of its
overall temporal width.

The dynamical evolution of the propagated field at
several increasing values of the propagation distance z is
illustrated in Fig. 21 for the above resonance signal fre-

quency co, = 1.0X10' /sec, where co, &oiso. The e

penetration depth at this signal frequency is
d =2.68 X 10 cm. The initial pulse width here is
T =6.283 X 10 ' sec, which corresponds to ten oscilla-
tion periods of the signal. At the smallest propagation
distance illustrated in the figure, z/d=0. 037 while at the
intermediate propagation distance illustrated z/d=0. 37,
so that these two propagated waveforms are in the imma-
ture dispersion regime. In both cases eT/z &8, —1 so
that the pulse distortion is minimal. At the largest prop-
agation distance illustrated in the figure z/d=3. 73, so
that the propagated waveform is in the mature dispersion
regime. In this last case cT/z=8„—1, so that the
prepulse is almost fully distorted (due to interference with
the trailing edge Sommerfeld precursor) and the main
pulse has disappeared, being replaced by the interfering
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FIG. 19. Dynamical evolution of the propagated field due to
an input rectangular modulated signal with below resonance
carrier frequency co, =1.0X10' /sec and initial pulse width
T=2.513X10 " sec in a strongly dispersive and absorptive
medium.

FIG. 20. Dynamical evolution of the propagated field due to
an input rectangular modulated signal with below resonance
carrier frequency co, =1.0X10' /sec and initial pulse width
T=5.026X10 " sec in a strongly dispersive and absorptive
medium.
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~, = 1.0 X 10'"/sec

T = 6.283 x 10 ' sec
8=8 +(c /z) T, the overall temporal width is found to be

1.08

b, r = T—+ —(80—1)
z
C

(6.9)

—1.00-

0.84

z/d = 0.037

which is valid for all (c/z)T &8, 1.—Equation (68) is

the appropriate measure of the overall propagated pulse
width in the mature dispersion regime if one only detects
the high-frequency content of the field, while Eq. (6.9) is

the appropriate measure if one includes all significant fre-

quency components.

A(z, t) 0

z/d = 0.373 VII. DISCUSSION
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z/d = 3 73

FIG. 21. Dynamical evolution of the propagated field due to
an input rectangular modulated signal with above resonance
carrier frequency co, =1.0X10"/sec and initial pulse width
T=6.283X10 ' sec in a strongly dispersive and absorptive
medium.

b, t'= —(8,—1), T& 8, —1—, —I z C

c z
(6.8)

while if one includes both the low- and high-frequency
structure, which evolves over the 8 domain from 0= 1 to

Brillouin precursors. The time origin for each propagat-
ed waveform illustrated has been shifted by the amount
8,z/c, and the dotted lines in the figure depict the loca-
tions of the front and back of the initial, undistorted
pulse which propag ates at the main signal velocity
v, =c/8, .

The temporal width ht, of the main pulse is then seen
to decrease from T to zero as the propagation distance z
increases from zero, as described by Eq. (6.5). In addi-
tion, the temporal width At of the prepulse is seen to
first increase with increasing propagation distance z, as
described by Eq. (6.4), and then decrease with increasing
propagation distance z as the pulse distortion becomes
severe, as described by Eq. (6.6). Nevertheless, the
overall temporal width of the entire propagated
waveform is seen to increase with the propagation dis-
tance z. If one includes just the high-frequency structure
in the mature dispersion regime, which evolves over the 0
domain from 0=1 to 0=00, the overa11 temporal width is
given by

The uniform asymptotic description of dispersive pulse
propagation presented here has, for the first time, provid-
ed a complete, accurate analytic description of rectangu-
lar pulse dispersion in a single-resonance Lorentz medi-
um. This description is valid for arbitrary initial pulse
widths T at any fixed input signal frequency ~, E [0, ao }
in the mature dispersion regime. The results clearly show
that the resultant pulse distortion in a linear causally
dispersive medium is primarily due to the precursor fields
that are associated with the leading and trailing edges of
the input pulse. Other approaches' ' to linear disper-
sive pulse propagation which rely upon the quasimono-
chromatic or some slowly varying envelope approxima-
tion neglect, by the very nature of their approach, these
precursor fields and so cannot provide such an accurate
description for either rapid rise-time pulses or ultrashort
pulses. The central difficulty in these other approaches is
that they expand the complex wave number k(co} appear-
ing in the integral representation of the propagated field
in a Taylor series about the carrier frequency co, . For ei-
ther rapid rise-time or ultrashort pulses the number of
terms in this Taylor series expansion that is necessary to
accurately describe the underlying dispersive pulse dy-
namics becomes prohibitively large from both a computa-
tional and physical point of view, while the first few
lower-order terms completely misrepresent the physical
processes involved. The asymptotic approach, on the
other hand, expands the complex phase function $(co,8}
in a Taylor series about just those frequencies that pro-
vide the dominant contribution to the integral represen-
tation at each space-time point. This then results in an
asymptotic series representation whose leading terms
provide a completely accurate representation of the phys-
ical processes involved in dispersive pulse dynamics.

The analysis presented here is one important facet of a
canonical theory of the dynamics of dispersive pulse
propagation in causal media and systems. This analysis
clearly rests upon the canonical problem of the unit-
step-function-modulated signal whose complete solution
has only recently been obtained for a single-resonance
Lorentz medium and finally extended to the more
physically realistic case of a double resonance medium.
Taken together, these two asymptotic representations
provide a valuable description of the dispersive pulse dy-
namics of both rapid rise-time signals and pulses of arbi-
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trary initial time duration. In addition, they provide a
correct, detailed description of the pulse velocity in the
dispersive and absorptive medium that is not aCorded by
any other approach.

The next class of problems to be treated includes both
finite rise-time signals and pulses of arbitrary time dura-
tion. Preliminary results for ultrashort Gaussian pulse
propagation once again prove the fundamental role that

the precursor fields provide in the correct description of
dispersive pulse dynamics.
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