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Uniform semiclassical quantization conditions are obtained for a one-dimensional Hamiltonian
possessing octahedral symmetry. The Hamiltonian describes the rotational dynamics of SF6, a sys-
tem in which tunneling plays an important role. Quantization conditions are obtained for each sym-

rnetry class. These are shown to agree with previously obtained primitive quantization conditions
in the small tunneling limit and to reproduce a characteristic periodicity in the symmetries labels.
Quantum and semiclassical eigenvalues are computed numerically. Near the classical separatrix the
uniform quantization provides orders of magnitude improvement in accuracy over primitive quanti-
zation. Our calculation is based on periodic orbit theory, modified here to include classically for-
bidden reflections and transmissions, and completes a study undertaken in a previous paper. The
methods used may be generalized to other Hamiltonians and symmetry groups.

I. INTRODUCTION

In a semiclassical treatment of tunneling, it is desirable
to obtain quantization conditions which are uniform.
Uniform quantization conditions remain valid near classi-
cal separatrices, where tunneling amplitudes are no
longer small. If the system under consideration possesses
symmetry, one would also like the quantization condi-
tions to determine the symmetries of the energy levels.
The simplest example of a tunneling system with symme-
try is the symmetric double well. For this example, uni-
form quantization conditions accurate both below and
above the barrier are well known, ' and one easily assigns
parities based on them. For example, below the barrier
the energy levels occur in nearly degenerate doublets.
Within a doublet, the lower-energy state is symmetric un-
der reAection, and the higher-energy state is antisym-
metric. In this paper we derive analogous uniform quant-
ization conditions for a system whose dynamics has a
more complicated topology and a nontrivial symmetry
group.

The system we consider is a model for the rotational
dynamics of the octahedrally symmetric molecule SF6.
Ultrahigh-resolution spectroscopy has revealed a rich
structure in the rotational spectrum of SF6. ' The gross
structure is that of a spherical top, in which rotational
energies depend only on the total angular momentum.
However, vibration-rotation interactions create non-
spherical perturbations in the moment of inertia tensor
and introduce fine structure in the spherical top spec-
trurn. Tunneling between equivalent rotational motions
produces an even smaller superfine structure within the
fine structure. There also exists a remarkable periodicity
in the octahedral symmetry labels. The theory underly-
ing the spectrum has been extensively developed, most
notably by Harter and Patterson, who obtain semi-
classical quantization conditions in the small tunneling

limit. In this limit they obtain an elegant derivation of
the periodic sequence of symmetry labels.

The semiclassical quantization of rotational dynamics
has been studied by severa1 authors. ' In particular,
Colwell, Handy and Miller, using methods of traditional
WKB theory, have obtained uniform quantization condi-
tions for the asymmetric top. " It is more difficult to ap-
ply these methods to the SF6 rotational Hamiltonian, be-
cause its Hamiltonian is not a sum of kinetic and poten-
tial terms, and the topology of the classical dynamics is
complicated. Tunneling occurs among six or eight
equivalent classical orbits rather than two, as with the
asymmetric top and the symmetric double well.

Our derivation is based instead on periodic orbit
theory. Periodic orbit theory, as developed by Gutzwill-
er, Balian and Bloch, and Berry, provides a semiclassical-
ly approximate expression for the trace of the quantum-
mechanical Green's function in terms of a sum over clas-
sical periodic orbits. ' ' It is an important tool in the
study of quantum chaos, i.e., the study of systems whose
classical limit is chaotic. Indeed, it is the basis for the
only known analytic results concerning the spectra of
such systems. Pursuing a different application, several
authors have applied periodic orbit theory to tunneling
problems.

' ' Tunneling effects are introduced by in-
cluding complex as well as real orbits in the sum. A prin-
cipal advantage of these treatments is their representa-
tion independence. Unlike traditional WKB methods,
which are usually carried out in the coordinate represen-
tation, periodic orbit theory involves only geometrical
and topological features of the classical dynamics, and its
formulation is coordinate free.

In a previous paper, referred to in what follows as I,
we carried out the complex periodic orbit sum for a rnod-
el Hamiltonian describing the rotational dynamics of SF6
and obtained semiclassical quantization conditions
equivalent to those of Harter and Patterson. Here we
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moaiiy the prescription proposed in I. We introduce the
WKB barrier reflection and transmission coefficients.
This leads to uniform quantization conditions; these de-

pend on the actions of the classically allowed and forbid-
den orbits, as well as the representations of the generators
of the octahedral group. We obtain separate quantization
conditions for each symmetry class. From these, we
derive the periodic sequence of symmetry labels, and
show that it proceeds without interruption through the
separatrix. Quantum-mechanical and semiclassical eigen-
values are computed numerically. Near the separatrix,
the uniform quantization is one to two orders of magni-
tude better than previous quantization schemes. The pa-
per is organized as follows. In Sec. II we derive the uni-
form quantization conditions. Numerical results are
presented in Sec. III, and conclusions are given in Sec.
IV. Some explicit calculations are presented in the Ap-
pendixes.

II. DERIVATION OF QUANTIZATION
CONDITIONS

This section is organized as follows. Section II A con-
tains a discussion of the rotational Hamiltonian in the
quantum and classical settings. In Sec. II B, the complex
periodic orbit sum is carried out, and the uniform quanti-
zation conditions are obtained. Several analytical results
follow. The small tunneling limit of the uniform quanti-
zation conditions is examined in Sec. II C and is shown to
be equivalent to the primitive quantization conditions. In
Sec. IID we show that the uniform quantization condi-
tions are continuous at the separatrix and may be analyti-
cally continued around it. In Sec. II E we derive the
periodic sequence of symmetry labels. Throughout this
discussion we take A'= 1.

A. The Hecht Hamiltonian

The rotational spectrum of octahedral-symmetric mol-
ecules is well described by the Hecht Hamiltonian,

H(J)=aJ +b(J +J +J 'J )——

H is a function of the body-fixed angular momentum
operators J that act on angular momentum states

~ jk ) in
the usual way. The first term in Eq. (1) is the rigid-body
Hamiltonian for a spherical top. The second term, which
breaks the spherical symmetry, describes centrifugal dis-
tortions of the moment of inertia tensor due to rotation-
vibration coupling. The parameters a and b may be fit to
spectroscopic data; for SF6, a =0.091 083 cm ' and
b=1.81X10 cm '. ' ' Thus the effect of the rotation-
vibration coupling is small. The Hamiltonian conserves
the total angular momentum J, so that j is a good quan-
tum number. For given j, the rotational energies are ob-
tained by diagonalizing H in the (2j+1)-dimensional
subspace spanned by ~ jk ), where —j k ~j. In this sub-
space the spherical top term is completely degenerate; it
is the centrifugal term which breaks the degeneracy. We
observe that H has octahedral symmetry. As a conse-
quence, its energy levels may be classified according to
symmetry type. The symmetry types of the octahedral

group are A t and A 2 (both nondegenerate), E (doubly
degenerate), and r& and T2 (both triply degenerate).

The classical version of the Hecht Hamiltonian is ob-
tained by regarding J as a classical angular momentum
with magnitude J=(j+—,')R. Its time evolution is given

by Euler's equation,

J=coXJ, a)= —VH . (2)

Euler's equation conserves the total angular momentum
J, so that trajectories are confined to spheres in J space.
It turns out that Eq. (2) may be cast in canonical form.
The variables q =P and p = —J,= —J cos8, where (8,$)
are polar angles, are canonically conjugate. In terms of q
and p, the Hecht Hamiltonian is given by

H=bp +b(cos q+sin q)(J —p ) (3)

[In Eq. (3) and in what follows, we drop the terms aJ
and —3/5bJ as these have no effect on the dynamics. ]
The canonical equations of motion,

dH . dHp=
Bp

'
Bq

(4)

are then equivalent to Euler's equation. Equation (4) de-
scribes a system of one degree of freedom. Its phase
space is spherical rather than Cartesian. Also, the Ham-
iltonian is not simply a sum of kinetic and potential
terms. It is these facts which complicate the application
of standard WKB methods.

Let us discuss the classical dynamics generated by the
Hecht Hamiltonian. Trajectories are curves of constant
energy. These are displayed in Fig. 1(a) in the (q,p) rep-
resentation. The energy ranges between E~;„=,'bJ and—
E,„=bJ". At the maximum and minimum energies
there are six and eight stable fixed points, respectively.
At E=—,'bJ—:E, there are 12 unstable fixed points. In
physical terms the fixed points describe the uniform rota-
tion of the molecule about a fixed axis. For
E,„&E & E, there are six periodic orbits encircling the
energy maxima. Similarly, for E, &E&E;„,there are
eight periodic orbits encircling the energy minima. These
orbits describe the precession of the molecule about a
stable axis of rotation. The sense of precession is indicat-
ed in Fig. 1(a): clockwise for E )E, and counterclock-
wise for E & E, . Finally, at E=E, there are separatrices
which join the unstable fixed points and separate the two
kinds of periodic orbits.

One disadvantage of the (q,p) representation is that it
obscures the symmetry of the dynamics. The octahedral
rotations are rather complicated when expressed in terms
of q and p. However, within the J representation [i.e.,
Eqs. (1) and (2)] it is easily shown that the periodic orbits
at a given energy are mapped into each other by octahe-
dral rotations. In particular, orbits at E & E, are invari-
ant under a fourfold rotation about their centers, and or-
bits at E &E, are invariant under a threefold rotation
about their centers. These features are readily apparent
in the figures and discussion in I, as well as in Ref. 9.
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FIG. l. Phase-space dynamics of the Hecht Hamiltonian. q =P and —p =J cos8, where (8,$) are polar angles on the angular
momentum sphere and J=j+—,. (a) Orbits above, at, and below the separatrix. The separatrix is the dotted orbit. Energy maxima

are closed circles, saddle points are half-closed circles, and energy minima are open circles. (b) Periodic orbits above the separatrix.
Tunneling orbits are dotted and nodes are closed circles. The orbits along which the classical and tunneling actions (S, and e„re-
spectively) are calculated are as indicated. (c) Periodic orbits below the separatrix. As in (b), tunneling orbits are dotted and nodes
are closed circles. The orbits along which Sb and eb are calculated are as indicated.

B. The complex periodic orbit sum

The discussion of the classical Hamiltonian already
provides insight into the corresponding quantum spec-
trum. The Bohr-Sommerfeld quantization rule predicts
energy levels at values of E for which the actions of
periodic orbits are quantized. As there are either six or
eight equivalent orbits at a given energy, one expects cor-
responding degeneracies in the quantum spectrum. In
fact, these degeneracies are only approximate; the sym-
metry among classical orbits is broken at the quantum
level by tunneling between the orbits. It is these tunnel-

ing effects which we would like to describe. Our calcula-
tion is based on periodic orbit theory, according to which
the trace of the quantum-mechanical Green's function,
g(E)=Tr[(E H) '], is approx—imately expressed as a
sum over classical periodic orbits with energy E and their
repetitions, as follows:

g"(E)= QF, e
J

The j sum is taken over periodic orbits with energy E,
and the amplitudes and phases F and I are determined
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/I, =S, /4, A b
=Sb /3 . (6)

(Here and in what follows, we use subscripts "a" or "b"
to indicate that a quantity is evaluated at energies above
or below the separatrix. When it is not necessary to
make this distinction, we omit the subscripts. ) A, is one-
fourth the action around an orbit above the separatrix;
Ab is one-third the action of an orbit below the separa-
trix. There are some subtleties concerning the definition
of S arising from the fact that the phase space is spheri-
cal. The canonical variables (q,p ) are defined with
respect to a polar axis, and S depends on whether or not
the orbit encloses this axis. In Eq. (6), the polar axis is
taken through the periodic orbit. Explicit formulas for
S, and Sb are given in Appendix A. When the trajectory
reaches a node, it is either reflected or transmitted.
Reflected trajectories continue along the real orbit and
transmitted trajectories tunnel to another real orbit and
continue from there. At each reflection the trajectory ac-
quires an amplitude r, and at each transmission, an am-
plitude t. The quantities r and t are the WKB barrier
reflection and transmission coefficients, given by

—ib ib

r, = rb(1+e—2e)1/2 ' b
( 1+e —2B)1/2

(7)
i (

—1)~e e ' — i (
—1)'e e'

ta = —2e)1/2 ' b
( 1+ —28)1/2

In Eq. (7) 6 is the tunneling action i fp dq along a tun-

by the classical dynamics, and will be discussed presently.
Energy levels are given by the poles of Eq. (5). To obtain
tunneling effects, we include complex as well as real or-
bits in the sum. We will often refer to g(E) simply as the
Green's function. g"(F) is its semiclassical approxima-
tion.

In I we discussed a prescription for the complex
periodic orbit sum, hereinafter called the primitive
prescription. We shall not review it in any detail. In-
stead we shall proceed directly to the new results and
point out differences with the earlier treatment along the
way. In what follows, we introduce a modified prescrip-
tion for the complex periodic orbit sum, the uniform
prescription. Applied to the double well, the uniform
prescription leads to the familiar uniform results. Here,
we use it to derive uniform quantization conditions for
the Hecht Hamiltonian.

The structure of the complex periodic orbits is shown
in Figs. 1(b) and 1(c) for energies above and below the
separatrix. Pairs of real periodic orbits (solid curves) are
joined by tunneling orbits (dotted curves) along which ei-
ther q or p is complex. Tunneling occurs at generalized
turning points, or nodes (closed circles). For E )E, there
are four nodes per real orbit; for E &E, there are three
nodes per real orbit. We will call the portion of a real or-
bit between two neighboring nodes a classical segment.

A complex trajectory in the sum begins on a real orbit.
Between nodes it acquires a phase e'", where A is the ac-
tion along a classical segment. if S= ItIp dq around the
complete orbit, then

The sign of 5 in Eq. (7) corresponds to an overdense bar-
rier for E &E, and an underdense barrier for E&E,.
The phases of r and t in Eq. (7) do not agree with the
phases quoted in the references. Their phases are
chosen here to incorporate the Maslov index for the
spherical phase space, and are discussed in I.

This prescription is to be contrasted with the primitive
prescription, in which

t, = i (
——1)je, tb =i( —1)je

In the small tunneling, or large-6 1imit, the two prescrip-
tions coincide. However, the uniform prescription has
the important property of probability conservation;

(9)

Also, because of the definite phase relation between r and

r —t =e—+ ' (10)

As it turns out, an important consequence of Eqs. (9) and
(10) is that the semiclassical Green's function has poles at
real energies. The primitive prescription does not satisfy
a relation like Eq. (9) or (10), and leads to a semiclassical
Green's function with complex poles. (The complex part
of the poles is small when the tunneling amplitude is
small, and one obtains primitive quantization conditions
by simply ignoring the complex part. ) There is another
difference between the uniform and primitive prescrip-
tions. In the primitive prescription, we include trajec-
tories which tunnel back and forth between nodes an ar-
bitrary number of times before continuing along a real
trajectory. In the uniform prescription, trajectories are
allowed to tunnel only once between nodes. In effect, the
reflection and transmission coefficients take into account
the effects of multiple reflections within the barrier.

In order to carry out the complex periodic sum, we
need a way to to parametrize the complex trajectories.
The following scheme is convenient. Take n to be the
number of times a trajectory is transmitted, and let a, be
the number of classical segments between the ith and
(i+1)th transmission. It follows that a, —1 is the num-
ber of reflections between consecutive transmissions.
(The coefficient a„has a somewhat different meaning; it is
the number classical segments between the last transmis-
sion and the trajectory's end. The number of reflections
along this stretch is a„and not a„—1, because there is an
extra reflection at the trajectory's end as it closes on it-
self). The parameters (n, a, ), where n )0, a, )0 for
i =O, . . . , n —1 and a„~O uniquely specify the complex
trajectories. (We allow a„=0 to account for orbits which
end immediately after their last transmission. ) The am-
plitude and phase of the trajectory (n, a; ) is given by

neling orbit. Explicit formulas for e above and below the
separatrix are given in Appendix A; as defined, it is real
and positive. The phase 5 is given by"

.e e e
6 =argI —+i———ln ——1

2 7T K 77
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(a —1)+
r

+(a
&

—1)+a „ i(a0+ . +a ) 3n —1 ntne 0 n and a; are geometric series and are easily carried out.
The result is

It is the product of the reflection and transmission
coefficients and the semiclassical phases accumulated
along the trajectory.

The complex periodic orbit sum is to be taken over
closed trajectories. However, the trajectory (n, a;) is, in

general, not closed. Using geometric and group-theoretic
arguments, we showed in I that the expression

gd g (cd 1co ' 'leo )
m

(12)

is equal to 1 if (n, a, ) is closed, and vanishes otherwise.
The sum in Eq. (12) is taken over irreducible representa-
tions of the octahedral group; y (g) are the characters
and d the dimensions of the representations. The group
elements co and ~ are defined as follows:

co, =R (n/2)R, (m/2),

cob =R, ( —n /2),

Ry(m/2)R (~)

(13)

where the operation R, (a) consists of a rotation about
the e axis by an angle a. Taken together, co, and ~ gen-
erate the octahedral group, as do cob and ~.

To restrict the complex periodic orbit sum to closed
trajectories, we sum over the parameters n and a;, but
then multiply the trajectory amplitudes Eq. (11) by Eq.
(12). We obtain the following:

X[e'"D (co)]J . (15)

In Eq. (15), I is the identity matrix of dimension d
The poles of g"(E) occur when the matrix
e '"D (co) rI —tD—(r) is singular. Thi". leads to
the quantization condition

det[(e '"D (co) rI t—D —(r)]=0 . (16)

Note that each irreducible representation generates its
own quantization condition.

The determinant in Eq. (16) may be expressed as a po-
lynomial in e of degree d . (d is the dimension of
the mth representation. ) Its roots determine the semi-
classical energy levels. For the energy levels to be real,
the roots must have unit modulus. It is not obvious from
Eq. (16) that this is the case, but it turns out, by virtue of
Eqs. (9) and (10), to be so. A demonstration of this fact is
given in Appendix C.

To obtain explicit expressions for the quantization con-
ditions we need the matrix representatives D (co) and
D (r). These are given in Appendix B. In Appendix C
it is shown that the complex quantization condition Eq.
(16) can be reduced to a real quantization condition,

g (&)=g g g g y (co 'no ' r~")
m n =0 a, =1 an=0

Q (E)=0 . (17)

0&i &n

a+ +aXr —
ntn(peed) 0

(14)

Above the separatrix, the quantization functions Q are
given by

The energy dependence of the right-hand side is con-
tained in the action A and the reflection and transmission
coefficients r and t.

In Eq. (14), if m is fixed instead of summed, the result-
ing expression contains poles at energy levels with sym-
metry m. This fact was discovered in I; the explanation
for it is developed in Ref. 25. There it is shown that the
sum over open trajectories can be interpreted as a sum
over periodic orbits on a symmetry-reduced phase space.
By appropriately weighting these orbits by group charac-
ters, one obtains an expression for the symmetry-
projected density of states g (F), whose poles are energy
levels with symmetry m. Let us fix m in Eq. (14). Also,
let us replace y(g ) by TrD (g ), where the matrix
D (g) is the matrix representative of g. Using the repre-
sentation property D (gg') =D (g )D (g'), we obtain

g"(E)= g g g r "Tr(Q TQ ' . . TQ "),
n =0 a. =1 a =0

t n
0&i &n

where A=re'"D (co) and T=tD (r). The sums over n

Q =sin
I—

a

Qg cos
I, +P

2

QE =sinI, + ~sinP,

QT = cosI, +tan—I—
a

sinI, —cosp, E )E, ,

where

I, = A, —5, P=( —1)~tan '(e e) .

Below the separatrix, they are given by

I, +P
Qr =cosI, +cot sinI, —cosP,

t

(18a)

(18b)
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Q„=—0 &sin

Q„=—cr2sin
Ib +P

2

b
I—

Qr =cr2 sinIb+tan
2 2

Qz = ( —1)i(cosIb +—,
' cosP),

Ib +P
Qr =a, sinIb+tan

(18c)

cosIb —sinP

sinI„+sinP, E (E, ,

for large 8. As 8 is of order j,5 is of order 1/j. It is a
correction of higher order than the asymptotic expansion
warrants.

Next, we expand Q (E) about the EBK energy Ek, re-
garding e as small but not vanishing, and taking
E Ek—to be of order e . Note that S'(E)= T, where T
is the classical period. The six- and eightfold degenera-
cies are partially split, leaving nearly degenerate clusters
of levels. The levels in the clusters have definite symme-
try type. The splitting patterns depend on k, specifically
on k mod4 for E &E„and k mod3 for E &E,. Letting
b, =( —1)je,we obtain the splittings

eE = —2h, eT =0, e„=46; k mod4=0

where

I„=—A„5, P—=( —l)Jtan '(e ),
—1, j mod4=1, 2

1, j mod4=3, 0

—1, j mod4=0, 1

1, j mod4=2, 3 .

(18d)

~r = —2h, eT =2k; k mod4=1
1 2

ez = —4h, eT =0, eE =26; k mod4=2

eT = —2h, eT =26; k mod4=3
1 2

for E & E, and for E (E„

(20a)

The overall sign factors which appear in Eq. (18c},o
~

and
o &, are irrelevant as far as the quantization condition Eq.
(17) is concerned. However, they are needed to make the
quantization functions continuous as E„as will be ex-
plained in Sec. II D.

The quantization conditions, Eqs. (16)—(18) represent
the principle result of this paper The .formulas depend
on the actions of the classically allowed and forbidden
trajectories as well as the generators co and r of the sym-
metry group. The preceding analysis may be applied to
other symmetry groups. In what follows, we discuss
some analytic results which follow from Eqs. (16)—(18).

C. Small tunneling limit

k mod3=0

eT = —2A, ez =0, eT =25; k mod3=1 (20b)

eT = —2h, eE =0 ~T =26; k mod3=2 .

In Eq. (20), e is the energy shift relative to Ek of an en-

ergy level with symmetry m. As an example, suppose
Ek & E, and k mod4=0. Then there is an A, level with
energy Ek =45, a T, level with energy Ek, and an E level
with energy Ek —2A. Note that the number of levels in

the cluster, counting degeneracies, is six. It is straight-
forward to verify that Eq. (20) is equivalent to the results
obtained in I and to those of Harter and Patterson. '

Let us examine the uniform quantization conditions in
the small tunneling, or large-8 limit. This limit is ap-
propriate for energies far from the separatrix. First, let
us take p=e to be identically zero. Then Eqs. (18a)
and (18c) simplify to give a single quantization condition
irrespective of symmetry type,

S(Ek } 5=2nk . — (19)

Except for 5, the shift in action, Eq. (19) is just the usual
Einstein-Brillouin-Keller (EBK) quantization condition

S=fp dq= —(j+—,
' f}cos8 dan=2m'k

(Ref. 26). The EBK energy levels are either sixfold or
eightfold degenerate according to whether E & E, or
E &E, . In fact, the shift in action 5 is not significant for
large e. The EBK quantization may be derived from an
asymptotic expansion in powers of 1/j. It contains terms
of order j and order 1, but neglects terms of order 1/j
and higher. From Eq. (8), one determines that

5(8)- 1

24 8

D. Continuity at the separatrix

The real power of the uniform quantization conditions
is near the separatrix. There the tunneling amplitude
e is no longer small, and the primitive quantization
conditions Eq. (20) are no longer valid. The uniform
quantization conditions, however, remain accurate near
the separatrix, as the numerical results demonstrate.
Here we show that the functions Q (E) are continuous
at E=E,.

The tunneling action vanishes at the separatrix. It fol-
lows that

1r=t=
v'2 ' (21)

at E=E, . There exists as well a relation between the ac-
tions A, (E, ) and Ab(E, ). It is straightforward to show
that the area of phase space above the separatrix, denoted
here by II, , is given by 6[2m( j+—,

'
) S,(F., )]. Similarly-,

the area of phase space below the separatrix Qb is given
by 8[2m.(j+ ,' )+Sb(E, )]. [The —area is the integral
(j+—,

'
) f jsin8 d Odp, and the results above follow from
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Stoke's theorem. ] The total area of phase space 0 is

4'(j + —,
' ). From 0, +Qb =0 and Eq. (6), it follows that

A, —
Ab =(j+—,')m' . (22}

A, = Ab+(j+ —,
'

)m . (23)

e, may be analytically continued below the separatrix so
that

If we substitute Eqs. (21) and (22) into Eqs. (18a) and
(18c), it is straightforward to show that Q (E) is con-
tinuous at E=E,. The sign factors cr, and o 2 in Eq. (18c)
are needed to establish this result.

The quantization functions are not smooth at the
separatrix, however, because the derivatives of both S
and e have logarithmic singularities at E=E,. But with
a suitable analytic continuation of S and e around the
branch point at E =E, in the complex energy plane, we
can derive Eq.(18c) from Eq. (18a). Let us sketch this re-
sult. By choosing branch cuts in p appropriately, we can
analytically continue A, to energies below the separatrix.
Its continuation is related to Ab as follows:

E. Periodicity in symmetry types

Fox et al. discovered a remarkable periodicity in the
spectrum of the Hecht Hamiltonian. With increasing
energy, the eigenvalues occur in one of the following se-
quences, depending on the parity of j:

(A„T„T„A„T„E,T„T„E,T, ), j even

(T„E,T„T„E,T, , A, , T, , T„A, ), j odd.
(30)

These sequences can be deduced from the small tunneling
limit of the quantization conditions, Eq. (20). In this lim-
it they have been beautifully explained by Harter and
Patterson, who show that the nearly degenerate semiclas-
sical eigenstates transform according to induced repre-
sentations of the octahedral group. Equation (30) then
follows from the Frobenius reciprocity theorem. Howev-
er, the analysis of Harter and Patterson breaks down near
the separatrix. Surprisingly, the eigenvalue sequences
continue uninterrupted through the separatrix. In this
section we derive this result from the uniform quantiza-
tion conditions.

To begin, we scale the tunneling action e in Eq. (18),

(24) e se, 0&s&1. (31)

det[(e 'D (to, )
—r,I,„—t, D (r)]=0 . (25)

Let us continue it below the separatrix. From Eq. (24)
and Eqs. (7) and (8) it follows that

Above the separatrix the uniform quantization condi-
tion Eq. (16) is given by

We obtain thereby a family of quantization functions
Q (E;s ) =0 and their roots E„(s), parametrized by the
scaling factor s. With s=1 we recover the original
quantization conditions. Consider instead the case s =0.
This is sort of the opposite of the small tunneling limit;
the magnitudes of the reflection and transmission
coefficients are both I/&Z, P=( —1 )jn/4 and 5=0, and
Eq. (18) simplifies considerably. Above the separatrix,

t, = i ( —1—)~rb,
(26} Qz =sin

A, —
(
—1)jn/4

2

COa
—Vmb . (27)

where rb and tb are the reflection and transmission
coeScients below the separatrix, and r, and t, are the
same coeScients analytically continued from above.
There is also a relation between the group element co

above and below the separatrix. From Eq. (13), it follows
that

Q =cos
A~

A, +( —1)~m/4

2

QT cosA~ +cot
A, +( —1)jm./4

(
—1)~&2

QE sin A, +

sinA, —

(32)

Substituting Eqs. (23), (26), and (27) into Eq. (25) we ob-
tain Qr = —cosA, +tan

A. —
(
—1)J~/4

sinA, —
a

det[(e 'D (cob ) rbI tbD (r)]=—0 . — (29)

This is precisely the quantization condition below the
separatrix.

det[ i( —1) e — D (co&)D ' (r)
—i( —1)~tbI i(1)'r&D—(r)]=0 .

(28)

Let us multiply the determinant in Eq. (28) by
det[i( —1 )~D (r)]. From Eq. (13), 2=I, so that
[D (r)] =I . Equation (28) becomes

For s =0, the quantization functions below the separatrix
are obtained from those above by the substitution
Ab = A, —(j+—,')n. . Therefore the entire spectrum may
be obtained from Eq. (32). The functions in Eq. (32) are
periodic in A, . This explains why the symmetry labels
appear in a periodic sequence, at least for s=0. Let us
determine the order in which they occur. For A, and A2
symmetries we can write down quantized actions; these
are A, =(Zn+ —,')n. and A, =(Zn+ ,')~ for j even, —and

A, =(2n+4)rr and A, =(2n+45)m. for j odd. For the
other symmetry classes the quantized actions must be cal-
culated numerically. The results are given in Table I over
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TABLE I. Roots of quantization functions for 8=0, E & E, . TABLE II. Energy splittings near separatrix (10 cm

j even j odd EE„(Q)' bE„(Uj" hE„(P )'

Al
Tl
T2

A2

T2
E
T]
T2

Tl

m. /4
1.38
1.76
3m /4
3.24
3.50
4.22
5.21
5.92
6.18

Tl
E
T2

Tl
E
T2
A2

T2

T]
Al

0.10
0.36
1.08
2.07
2.78
3.04
5a/4
4.52
4.90
7m. /4

the range 0~ 3, ~ 2m; they show that the quantization
functions produce the sequences of Eq. (30).

Next we continuously increase s to its original value
s =1. The roots of Q (E;s) shift along the energy axis.
However, they cannot cross the separatrix. Because e
vanishes at the separatrix, se(E, ) =0 regardless of s, and

Q (E„s) is constant. Thus the roots of Q (E;s) are
pinned on either side E, . The final step in the argument
is to demonstrate that with increasing s, the roots of the
different quantization functions cannot cross each other.
The calculation is straightforward but somewhat tedious,
and is given in Appendix D. Since the sequences of Eq.
(30) are produced when s =0 and the ordering of the ei-
genvalues does not change with s, it follows that Eq. (30)
is produced by the original quantization formulas, Eq.
(18).

III. NUMERICAL RESULTS

hE„=E„—E„ (33)

according to the three quantization schemes. The quan-

Quantum-mechanical, uniform, and primitive eigenval-
ues of the Hecht Hamiltonian were calculated for angular
momentum j=88. [The explicit form of the primitive
quantization conditions is obtained by taking 5=0 in Eq.
(20).] Away from the separatrix, the energy levels
coalesce into nearly degenerate clusters containing eight
levels for E & E„and six levels for E & E, . In this regime
one distinguishes two splitting scales: the fine splitting
between adjacent clusters and the superfine splitting be-
tween levels within a cluster. The fine splitting is the en-

ergy difference between consecutive Bohr-Sommerfeld en-

ergy levels and is given approximately by the classical fre-
quency co=2vrlT co scales wit.h j as j The su. perfine
splitting is produced by tunneling and is proportional to
e /T. e scales linearly with j, so the superfine splitting
becomes exponentially small with j.

This separation of scales breaks down at the separatrix.
There e approaches zero, and the fine and superfine split-
tings are of the same order. In this regime one expects
uniform quantization to be superior to the primitive
quantization. In Table II, we give the energy splittings
AE„near the separatrix between consecutive nondegen-
erate energy levels, defined by

4o
52
54
57
58
61
64
65
68
70
73
76
78
81
82
85

17.170
1.044
0.981

10.485
2.211
2.224
4.463
4.746
1.306
9.087
1.784

12.743
0.301
0.563

15.431
0.169

17.174
1.040
0.977

10.496
2.205
2.221
4.450
4.754
1.307
9.072
1.788

12.728
0.301
0.564

15.418
0.169

17.341
1.128
1.128
9.245
3.006
3.006
3.006
3.844
1.996
8.842
1.817

12.927
0.312
0.625

15.496
0.177

'Q denotes quantum-mechanical eigenvalues.
U denotes uniform semiclassical quantization.

'P denotes primitive semiclassical quantization.

IV. CQNCLUSION

Periodic orbit theory provides uniform semiclassical
quantization conditions for a tunneling system with octa-
hedral symmetry, namely the rotational dynamics of SF6.
The quantization conditions depend on the actions of the
classically allowed and forbidden orbits as well as the
generators of the symmetry group. A separate quantiza-

turn number n is counted upwards from the bottom of the
spectrum. The separatrix lies between n =64 and 65.
The values of n are not consecutive because some energy
levels (those with symmetry E, T„or Tz) are exactly de-

generate, and the splitting between them is trivially zero.
From Table II, the uniform splittings are accurate to
three or four decimal places, while errors in the primitive
splittings occur in the first or second decimal place. For
example, at n =61 the uniform error is between 0.1% and
0.2% while the primitive error is about 30%.

From the numerical results it is evident that near the
separatrix the order of magnitude of EE„remains the
same from one level to the next. As we leave the separa-
trix, the disparate scales of the fine and superfine split-
tings manifest themselves. Compare, for example,
EE76=12.743 and AE78 =0.301. E78 and E77 belong to
the same cluster; E76 and E75 do not.

Far from the separatrix the primitive and uniform
quantization conditions give comparable results. They
must, because to within terms second order in e, the
two quantizations conditions differ only by the phase
shift 5 which appears in Eq. (19). As explained in Sec.
IIC, this correction is only significant near the separa-
trix. A comparison of uniform and primitive quantiza-
tion throughout the spectrum may be found in Ref. 27;
the uniform results tend to be a bit better. A comparison
between primitive and quantum results was given by Har-
ter and Patterson.
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tion condition for each symmetry class is obtained. To-
gether these account for a previously observed periodicity
in the eigenvalue symmetry labels. The uniform quanti-
zation conditions are shown to agree with previously ob-
tained results in the small tunneling limit, and to provide
significantly improved accuracy near the classical separa-
trix. The methods used here may be applied to other tun-
neling systems with symmetry, such as the rotational dy-
namics of icosahedrally symmetric molecules. The role
of complex periodic orbits in periodic orbit theory
deserves further investigation, particular in higher-
dimensional systems. One hopes that such investigation
will lead to a theory of multidimensional tunneling.
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APPENDIX A: ACTION INTEGRALS

t(P)=cos /+sin P= 3+cos4
4

(A 1)

e=E/p in the above. Then

S,(E)=f J,+dP,
m/2 —

P0
Sb(E)= f (J,+ —J, )dp 2m(j + —,'), —

0

(A2)

(A3)

We provide explicit formulas for the action integrals S
and e. First, some general remarks. The action is
defined by S= gp dq = —fJ,d P, where J, = (j + —,

' )cos8.
The integral is taken around a periodic orbit and the
sense of the integral is the sense of the orbit as deter-
mined by the equations of motion. J, is determined by
the equation H(J„P)=E. It turns out that the value of S
depends on the choice of z, the axis of quantization. To
illustrate this, assume for the moment that the orbit is
clockwise (with respect to an outward normal on the an-
gular momentum sphere. ) Take the positive z axis
through the orbit, and choose another axis z ' outside the
orbit. One can show that S=S'+2m(j+ —,'), where S and
S' are the actions referred to the quantization axes z and
z', respectively. If instead the orbit is counterclockwise,
then S=S'—2m.(j+—,'). For both E (E, and E)E, the
axis of quantization is chosen through one of the periodic
orbits. It is therefore different in each case.

Define
' 1/2

J+(p E ) ( +, )
t(ctp)+&e (1—e)t(p)—

1+t(P)

APPENDIX B: IRREDUCIBLE
REPRESENTATIONS

We give matrix representatives of the group elements cu

and r defined in Eq. (13). The representatives of cob can
be obtained from those of co, and ~ from the relation
D (cob ) =D (r)D (co, ). [Cf. Eq. (27)] The one-
dimensional representatives are D „(co,)=D „(r)=1
and D „(co,)=D „(r)=—1. The E and T, representa-

tives are

1 0
D E(cog ) = ()

—1
D E(r)=

—&3i

(Bl)
0 1 0

DT(co, )= —1 0 0
0 0 1

0 0 1

DT(r)= 0 —1 0
1 0 0

The T2 representatives may be obtained from the relation
D T (g ) =D z (g )D T (g ), where g is any group element.

APPENDIX C: CALCULATION
OF QUANTIZATION FUNCTIONS

We show that the roots of the complex quantization
condition Eq. (16) are real and then derive the real quant-
ization conditions, Eqs. (17) and (18). For the sake of
brevity we consider a single representative case, namely
the case of T, symmetry for E)E,. Substituting Eq.
(Bl) for the matrix representatives and Eq. (7) for r and t
into Eq. (16), we obtain the following explicit quantiza-
tion condition:

around which the integrals are taken are indicated in

Figs. 1(b) and 1(c).
The tunneling integrals are defined as follows:

m /2 —
tti0e.= —t f 'J;dy, (A4)a

where cos4$o=4e —3. Po is taken between 0 and vr/4.

J, is pure imaginary, and the branch cuts in Eq. (A 1) are
chosen so that ImJ, )0,

m. /4+ i $0e = 2—if J, dg, (A5)
n/4

where cosh4$0=3 —4e. (t makes an excursion into the
complex plane, and dP is positive imaginary along the
contour. The paths of integration for Eqs. (A4) and (A5)
are indicated in Figs. 1(b) and 1(c).

where z —(cosP)z + (cosP)e'~z —e'~=0, (C1)
7E 3cos4$0=

1 —e

In Eq. (A2) Po is taken between 0 and m. /4. The orbits

where z=e '" ' and p=( —1)~tan 'e . In deriving
Eq. (Cl) we have made use of Eq. (10). The left-hand side
of Eq. (Cl) is a cubic polynomial in z. For the quantiza-
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tion condition to have real solutions, its roots must be
phase factors. Let us try to find roots of the form

e ', e ', e ', where a; is real. The necessary and
sufficient conditions are that

This is precisely the quantization condition QT (E}=0
1

for F. )E, .

i(a&+ a2+ a3);p
e =e' (C2a)

APPENDIX D: NONCROSSING PROPERTY

i(ai+a2) i(a2+a3) i(a 3+a 2)

e +e +e = cosp)e'

ia& i a2 ia3
e '+e '+e '=cosP .

(C2b)

(C2c}

Equations (C2) constitute three complex equations in
three real unknowns; one would not expect solutions to
exist. However, one readily sees that the second equation
can be obtained from the first and the third, and that the
remaining equations are equivalent to the following three
real equations:

Qz(E, s)=Qr (E,s)=0.
1

(D 1)

It is simplest to proceed from the complex quantization
condition Eq. (16). Substituting Eqs. (7), (16), and (Bl)
into Eq. (Dl) we obtain

In Sec. IIE we introduced a scaling of the tunneling
action e~se and claimed that the roots of the scaled
quantization functions Q (E,s) cannot cross. Let us

demonstrate this result for a representative case, namely
m =E, m'= T„and E & E, . Suppose that

izl+ iz2+ tz, =2srk +P,
cosa, +cosa2+ cosa3 cosP,

sina, +sina2+sina3 0

(C3a)

(C3b)

(C3c)

z —i(sinP)z —1=0 for E

z —(cosP)z +(cosP)e'~z —e'~=0 for T,

(D2a)

(D2b)

Let us eliminate a2 and a3 in favor of ai. From Eq. (C3b)
one has

where z=e '" and P=( —1)~tan '(e ' ). Multiply-
ing the first equation by z and subtracting from it the
second, we obtain

a2 —a3 a2+a3
cosa, =cosP —2 cos cos

2 2
(C4) e '~z —(e'~cosP+1)z+e'~=0 . (D3)

From Eq. (C3c) follows

a2 a3 a2+a3
2 cos

2 ' 2
= —sina csc (C5)

(cos p)z =cosir) . (D4)

Next we multiply Eq. (D2a) by e '~ and subtract it from
Eq. (D3). With some manipulation we obtain

cosa, =cosP+ sina, cot
2

a)
(C6)

Substituting Eq. (C4) into Eq. (C5) and using
a2+a3 =P—a, —2m k from Eq. (C3a), we obtain Since z has unit modulus, the only possible solutions are

cosP=O and +1. But cosP=(1+e '
) ', so there are

in fact no solutions of Eq. (D 1).
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