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The procedure of the preceding paper [Bohn and Fano, Phys. Rev. A 41, 5953 (1990)] has been
applied to extract dynamical parameters of the collision process e (80 eV)+He(1S)—e +He(2 'P).
These parameters, free of the experimental geometry, have been unraveled from the experimental
polarization data available and their roles in the excitation and the alignment of the target have

been analyzed.

I. INTRODUCTION

The identification of dynamical information from ex-
perimental collision data has attracted extensive study,
without arriving at an explicit solution.! These early
studies focused on disentangling dynamical parameters
from observables which are bilinear combinations of
scattering matrix elements. Interferences among such
matrix elements induced oscillations and slow conver-
gence in the Fourier analysis of observables. An alterna-
tive, more straightforward, procedure which extracts the
matrix elements directly from the observables measured
in “complete” experiments has now been developed.?

The main purpose of this paper is to apply the pro-
cedure of Ref. 2 to the process

e(80 eV)+He(1!S)—>e+He(2'P), 1)

which has been widely studied in experiments providing a
large set of polarization and cross-section data.’> A set of
dynamical parameters thus extracted will be reported
here, with analysis and discussion of their roles in the
process (1).

The unraveling of dynamical parameters has been ap-
proached in two different frames: (i) the conventional
transition amplitudes* which are calculable directly by
existing theory; (ii) the probability amplitudes defined in
Ref. 3 which are essentially transition amplitudes scaled
down by the square root of the differential cross section.
Note that the experimental study of target polarization is
generally carried out within frame (i1).

As discussed in Sec. II, forward scattering predom-
inates in higher-energy collisions, whereby transition am-
plitudes and differential cross sections concentrate in a
small range of scattering angles ( <30°); their peaks
spread out in the probability amplitudes which have
smoother profiles throughout the angular range. Because
of this smoothness, we will mainly unravel dynamical pa-
rameters in the frame (ii), but will also analyze them
within frame (i).

A second purpose of this paper is to demonstrate the
application of the concept, developed in Ref. 4, of sorting
out the effect of long-range interactions which can be
evaluated by the first-order Born approximation (FBA).
The aggregate effect of weak long-range interactions be-
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tween projectile and target contributes heavily to both
the target alignment and the cross section. These long-
range interactions involve numerous partial waves and
hence a large set of dynamical parameters; their evalua-
tion by FBA affords analytic compactness. Departures
from the FBA evaluation, to be dealt with in this paper,
will thus prove more tractable.

Section II reviews the theory for process (1). The tran-
sition amplitudes and the probability amplitudes are ex-
tracted from the experimental data; their FBA values are
also evaluated separately in Sec. III. Results and analysis
are presented in Sec. IV. Section V contains some final
remarks and comments.

II. THEORY AND FORMULAS

The probability amplitude (LzMzk|a|L 4M 4k;) in-
troduced in Ref. 3 is related to the standard transition
amplitude (L Mpk/|T|L ;M 4k;) by>*

(LgMgk,la|L 4M 4k;)=(LyMpk/|T|L ;M ,k;)
—172

ki da(6) @)

k; dQ

where
cos(9=ﬁf-ﬁ,- . (2a)

Here k; and k; are the final and initial wave vectors of
the projectile, (Lz,Mp) and (L 4,M ;) are the final and
initial angular momentum quantum numbers of the tar-
get, and do(0)/dQ is the differential cross section.

The transition operator T is proportional to the opera-
tor T' that satisfies the Lippman-Schrodinger equation

T'=V+V(E—H+ie) 'T' (2b)
through the dimensional and sign factors:’

2m ]
4t |

'

(2¢)

Here m is the reduced mass of the projectile and the tar-
get.

Containing all
metrical

of the dynamical
information of the

and the geo-
collision  process,
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(LpMpk,la|L 4M 4k;) pertains to the fractional proba-
bility of excitation from the initial state
of the target to alternative final states, while
(LpMpk/|T|L ;M 4k;) pertains instead to the actual
cross section of excitation.

In process (1), L , =0 and M , =0 because of the spher-
ical symmetry of the initial state of the target. Only
the final state quantum numbers Lz and My of
the target appear in both the probability ampli-
tude (LBMkaIa'OOki) and the transition amplitude
(LpMyk|T|00k; ), which we will indicate as ap,(6)

and TMB(G) for brevity, respectively.

The collisionally excited state of the He target in (1) is
a coherent linear superposition of |[My) components
along the incidence axis:

I'P,Y=ayl0)+a,[1)+a_,|—1) (3)

with Ly =1. Here aMB(O) indicates the probability am-

plitude of the magnetic substate |Mpz) among the 2P
states of He; extraction of the ay (6) from experiments

to within a phase factor is described in Sec. III. We shall
set this factor so that a((0) is real. Here spin flips of the
electron have been disregarded in view of the weak spin-
orbit coupling. Symmetry under reflection with respect
to the scattering plane requires a; = —a _,.°

In an alternative form,? a MB(B) is indicated in terms of
dynamical parameters and of geometric factors (scatter-
ing angle and orbital quantum numbers of the projectile)
by
2, +1 ]

47

=l

ly—my

XY, (6,00(—1)
X{LpMg|l,0l, —m,)
X{LgO0|Gll, 1,) , (4)

which requires m, +Mp to vanish. The desired dynami-
cal parameters G are then obtained by inverting Egs. (4),
as in Eq. (21) of Ref. 2,

—-1/2

2la+1 =141

20, +1
U, +1"

47

(Lg0|Gll,1, )=
I, —Mp
X 3 2m(1,0l,My|LyMp)(—1)
MH

+1
><fvld(cos@)Y,bmb(G,O)aMB(O) .

(5)

Equations (4) and (5) differ from (21) of Ref. 2 by includ-
ing in G a factor i.

The null values of (L ,,M ,) for the initial state and
the value Ly =1 for the final state of the target state
make it possible to reduce Eq. (5) to a very simple and in-
structive form,
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477'3/2
[3(21,+3)]'/2

X[(L,+1)"24,1,+1)
—QL+4)"24,(1,+1)], (6)

(10[G|l,+11,)=

4,”.3/2
[3(21,—1)]'?

X[V, Ap(l,—1)
+1,-2)"24,(1,—1)], (6

(10|G|l,—11,)=

with
+1
AMB(I,,)zf_ld(cose)Y,b —1,(6,0)ay, (6) . 7

The parameter {10|G|l,+1 I,) is called unfavored and
(10|G|l,—11,) favored as discussed below. Notice in
Eqgs. (6) that the value of A, is real and that the imagi-
nary part of G depends on that of 4, that is, on that of
a,(0) averaged through the integration in Eq. (7). The
physical roles of the imaginary parts of a Ms( 6) and G will

be discussed in Sec. IV.

Since the angular momentum quantum number /,
ranges to infinity, the sum /,+/, is unrestricted, even
though |I, —1,| is restricted to <Ly by the triangular
condition on (/,,1,,L); a large set of dynamical parame-
ters G identified by (/,,/,) is thus anticipated. The aggre-
gate contribution of this set of small G values with large
(l,,1,) remains finite. On the other hand, the small
values of G with large (/,,/,) are adequately represented
by the analytic Born formula.* Therefore we shall con-
centrate on the departure GR=G —G?® of each experi-
mental value G from its FBA value G&; the convergence
of G® with increasing (/,,1,) is readily tractable because
of cancellation between G and G2 for high values of
(15, 1).

Although the theory and formulas have been
developed above in the frame (ii) for probability ampli-
tudes, a parallel development can be carried out in the
frame (i) of transition amplitudes. An alternative set of
dynamical parameters will be extracted from transition
amplitudes according to Eq. (5), defined by

—-1/2
2,41 e [ 20,41
L — b e
(LpOlH1yL,) 2Lp+1 4
X S 2 (1, My1,0|LyMy Y(— 1) M5
MB

+1
X f_l d(cosf)Y), ,, (6,0)Ty (6),
®)

with Ty (6) standing for the T of (2).

Recall here that the definition (8) of H differs from the
definition (5) of G by the replacement of aMB(G) with

TMB(()) in accordance with (2). The transition amplitude
Ty (8) itself is related by (2¢) to the solution of the
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Lippman-Schréodinger equation (2b) for He excitation to
the magnetic sublevel Mp.

As in the treatment of the parameter G, the deviation
of the experimental value of H from its FBA value will be
dealt with here and indicated by HR.

III. DATA FITTING

The experimental polarization data available for pro-
cess (1) are familiarly translated into a pair of real
parameters. Conventionally two different but intercon-
vertible parametrizations are utilized: {L,(6),y(6)} or
{A(8),x(0)].> L (6) indicates the expectation value of
the angular momentum component of the excited target
perpendicular to the scattering plane and y(6) represents
the alignment angle of the excited charge cloud relative
to the incidence direction. In the alternative parametriz-
ation, A(0) is the fractional excitation probability of the
Mp =0 state and x(6) stands for the phase difference of
a,(6)and a,(0).}

From either of these two sets of parameters, the proba-
bility amplitudes a,,(0) can be determined to within a
phase factor, which has been set by letting a,(6) be real,

ag(0)=1{1+[1—L%(6)]'"*cos2y(6)} (9)
and
_ [1-L}(6)]'*sin2y(6)
Re[al(e)]_ 200(6) )
Im[a,(6)] L.(®) 9"
mi|a == .
! V'8a,(6)
Alternatively,
ay(8)=V'A(6) (10)
and
-0 |7
Re[a,(0)]= [% cosy(8) ;
1—n0) |7 1o
Im[a,(0)]= [—% siny(6) .

Two procedures, namely, x? fitting and interpolation-
extrapolation have been applied separately to the polar-
ization data available from the experiments’°® in order
to produce smooth curves for {L (6),y7(6)} and, alterna-
tively, for {x(0),A(6)} over the whole range of the
scattering angles. Two difficulties emerged in implement-
ing these procedures.

(1) There remain some discrepancies among the polar-
ization data reported by different authors. For example,
the values of {A(0),x(6)} reported in Ref. 7 differ from
those of Refs. 8 and 9 by as much as 30-40 % in the an-
gular range 70°-110°. This introduces an uncertainty of
20% in the probability amplitudes for that range.

(2) Data lack for large scattering angles (130°-180°) as
seen in Fig. 3.1.3h and Fig. 3.1.3i of Ref. 3.

We resolved the first issue by using mainly data from
Refs. 8 and 9 in the angular range 70°-~110°. This seems
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reasonable since these two different sets of data agree
fairly well with each other. In addition, the reported er-
ror bars were much smaller for these sets of data than for
those of Ref. 7. The extrapolation to large scattering an-
gles, however, remains ambiguous to about 10%. While
this ambiguity introduces an uncertainty in the calcula-
tion of aMB(G) in Egs. (9) and (9') or Egs. (10) and (10°),
no indication exists of significant error in the general
trend of a,, (6).

Fits for the two alternative parametrizations were car-
ried out independently by the two authors. About 35
points of experimental data were used in y? fitting, with
resulting x? values of around 50.

The curves for the probability amplitudes a MB(G) were

then calculated from the fitted parameters (L ,(6),y(6))
or (x(6),A(6)) by use of Egs. (9) and (10). Figures
1(a)-1(c) show the curves of aMB(G). The corresponding
FBA values 0153(9)’ on the other hand, are evaluated

through the FBA value y2(8) which is related analytical-
ly to the momentum transfer in the collision,

sin@

Bioy—
(0)=
14 cosf@—x "~

T (1n
Here 6 indicates the scattering angle and x =k /k; is the
ratio of the final and the initial momenta of the projectile.
The expectation value L2(8) vanishes in FBA because of
cylindrical symmetry of the collision about the wave vec-

tor k;,—k,. The evaluated departures a}}B =aMB—a1f}B
are shown in Figs. 1(a)-1(c), respectively, for process (1).

Combining the differential cross-section data represent-
ed in Ref. 3 and the data of aMB(B) from Egs. (3), the ex-
perimental transition amplitude is obtained at each

scattering angle. The corresponding FBA differential
cross section is expressed by'°

doB) 44} xf(8)

dQ (kg (1—x2)(1+x%—2x cosf)

(12)

where a, is the Bohr radius and f(6) indicates the gen-
eralized oscillator strength of He. Here a semitheoretical
formula!!

0.2762 0.87y
(6)= (13)
/ (1+y)° 1+y
with
(k;ag)?
=2 (1+x2— 13’
Y=3 301 (1+x°—2x cos6) (13')

has been applied to determine the function f(6) to be en-
tered in Eq. (12).

The FBA values of transition amplitudes have been
evaluated from the calculated values of do(6)/dQ and
the af,B(B) in Figs. 1(a)-1(c). Figure 2 gives the differ-

ences T,{}B between the experimental and FBA values of

transition amplitudes. Overestimates inherent in the
FBA values at small scattering angles cause the transition
amplitude residue T,ﬁs to be negative. It is noticed that
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the concentration of transition amplitudes in the small
range of scattering angles ( < 30°) (see Fig. 2) spreads out
in the probability amplitudes (see Fig. 1).

IV. RESULTS AND ANALYSIS
A. The probability amplitudes a Mx(e)

The fitted values of a MB(O) from experimental polariza-
tion data are shown in Fig. 1. Some features of these

1.0 ———==

-

-1.0 *
0

1.0 : -

057

0.0

Re [0,(8)]

-1.
° 180

1.0 T T

0571 T

0.0

Im[a,(8)]

0 60 120

Scattering Angle (deg)

180

FIG. 1. Values of probability amplitudes. (a) ay(6), —;
ak), ———; ak®, --- . (b)  Re[a,(8)], —;
Re[af(0)], — — —; Re[af(@®)], --- . (© Im[a,(6)]
=Im[af(0)], —.
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FIG. 2. Transition amplitude residues (107° cm).
T8), —; Re[TR(O)], — — —; Im[TR(O)], ---.

curves are readily understood. At the extremely forward
and backward scattering angles (6—0° and 180°), we
have ay(6)—1 and a,(8)—0; only the magnetic substate
|0) of the He 2P state is excited because the momentum
transfer along the z axis contributes no angular momen-
tum in that direction. Since forward scattering is
favored, most aMB(O) values lie in the range 6 <90°; nev-

ertheless, the probability amplitudes aMB(O) are indeed

widely spread out as compared with the concentration of
the corresponding transition amplitudes TMB(G) (<30°)

(see Fig. 2).

The actual dependence of a,(8) on the scattering angle
seems obscure, but can be understood with the help of the
curves in Figs. 1(a)-1(c) of ay(8) and a,(8). First of all,
the Im[a,(0)] originates from the second term of the
Lippman-Schwinger Eq. (2b) as a generalized Hilbert
transform of the Re[a;(0)]. Accordingly, Im[a,(6)] is
roughly proportional to the derivative of |Re[a,(8)]
which peaks at ~70°; this is why Im[a,(0)] goes through
a zero. On the other hand, a #(0) originates from the first
term of (2b) and remains real. A second feature of
Fig. 1 stems from the normalization relation among
ay(0), Im[a,(0)], and Re[a,(0)], lao|>+2|Re(a,)]?
+2|Im(a,)|*=1. It requires ay(6) to approach unity
where both |Re[a,(6)]|> and |Im[a,(6)]|? are small, as
apparent from Figs. 1(b) and 1(c), respectively.

The imaginary part of a,(6) plays an important role in
process (1), by setting the sign of the target angular
momentum L ,(8), according to (9'). Note here that
Im[a,(6)], and hence L (6), vanish unless the excited
charge cloud astride the scattering plane loses the cylin-
drical symmetry about the momentum transfer k; —k,
which is characteristic of the FBA.

The shortage of measurements at small and particular-
ly at large scattering angles makes the fitting of a MB(O) in
these ranges ambiguous. This ambiguity extends of
course to the values of ‘11{;5 (6). For instance, Re[a,(0)]

becomes larger than its FBA value after 6 ~130°, in Fig.
1(b), but this feature needs verification because it depends
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on extrapolation of the probability amplitudes extracted
from scarce experimental data. Although the values of
aMB(B) remain ambiguous at small and large scattering

angles, the smallness of these values and the plots of
aMB(O) in Fig. 1 suggest that it should have a minor effect

on the dynamical parameters { Lz0|G%|l,1, ), except pos-
sibly for large values of the orbital momenta (/,,l,). The
same ambiguity, on the other hand, has a lesser effect on
the transition amplitudes TMB(G) shown in Fig. 2, whose

backscattering values are negligible as compared to their
forward peaks. Its influence on the dynamical parame-
ters HR will be similarly reduced.

B. The dynamical parameters

We focus here on the values of the “residue’” parame-
ters ( Lz0|GR|l,1,), which are evaluated by Eq. (5) with
the residue aﬁa (8) in place of aMB(G). A main issue con-

cerns the convergence of the G¥ as (1,1,) increase;
specifically we look into their convergence with increas-
ing I, —i.e., with the total angular momentum—since
l,=1,£1. This convergence is illustrated in Fig. 3 by
plotting the moduli |G¥| rather than their real or imagi-
nary parts whose signs may alternate.

The separate plots of |GX| for I, =1, F 1 decay rapidly
as [, increases, falling to ~6% of their peak values, as
expected. We attribute their jagged behavior at large /,
(by =1% of the peak values) to inaccuracies of measure-
ment and of curve fitting. The nearly linear decay of the
|GR| for 1, <6, on the logarithmic scale, implies an ap-
proximate law
GRl e’ ™, (14)
with [;~1.5. The parameter /, represents the number of
partial waves of the incident electron that are expected to
penetrate the target atom; the exponential law (14) may
be viewed as representing the target’s profile. The fitted
value /,~ 1.5 appears plausible considering that (a) the
projectile’s kinetic energy exceeds that of the target elec-
trons by a factor of ~3, implying /,~V'3, and (b) the
projectile’s penetration is opposed by exchange forces but
favored by the nuclear attraction.

Figure 3 also displays FBA values |G B|, which decay
less sharply than exponentials. Indeed the analytical
treatment of FBA in Ref. 4 indicates a convergence of
scattering amplitudes proportional to a second kind
Legendre function of /,.

A parallel evaluation of the parameters |H |, through
Eq. (8), has documented their much slower convergence
resulting from the sharp peaking of T,{;B () at

small scattering angles. Typically the value of
(LgO|HR|1,+1 1,) for I, =10 still amounts to ~15% of
its peak value.

Displayed in Fig. 3 is the influence of the propensity
rule that favors the transitions I, —/, =I, —1 over those
with I, —1, =1, +1. The qualitative interpretation of this
rule in Ref. 12 suggests that it might apply mainly to
large values of I, with lesser influence in the lowest range
of /,. Figure 3 shows its violation at /, <1.

Figure 4 shows, in contrast to |G|, the real and imagi-

X. C. PAN AND A. CHAKRAVORTY 41

10 T T r :

0.01 : : X "
0

FIG. 3. Dynamical parameters. |GR®|: favored (I,=1I,—1),
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FIG. 4. The values of the real and imaginary parts of the
dynamical parameters (a) favored (/,=I,—1); (b) unfavored
(I,=1,+1). Re(G), B ; Re(GF), B; Im(G)=Im(G"), O.
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nary parts of G® as functions of /,. Their convergence at
large I, is partly obscured by sign reversals, as expected.
Nevertheless, the sign reversals in Fig. 4 are readily un-
derstood. According to Egs. (6) and (6'), the imaginary
parts of the dynamical parameters G are totally deter-
mined by those of the probability amplitudes a,(6) which
depend on the sign of the perpendicular component
L ,(6) of the target’s angular momentum. With /, =0,
only the unfavored component of G [Eq. (6)] exists
because I/, can only be 1. The combination of
Y, _,(6,0)xsin@ and Im[a,(0)] in Eq. (7) makes
Im[ 4,(1)] positive and consequently the imaginary part
of (10/G|10) negative because of the minus sign in front
of 4,(1) in Eq. (6). For /,=1, the imaginary part of the
favored component of G has null value because the factor
(21,—2)""? vanishes in Eq. (6'). In the corresponding
unfavored component of G we have [,=2 and
Y, _,(6,0)=<sin260 and the integral A,(2) over the
scattering angle in Eq. (7) becomes negative. The minus
sign preceding A4,(2) in Eq. (6) makes the imaginary part
of the unfavored component of G positive in contrast to
its value for I, =0. Similarly, the sign reversals for higher
l, and for the real part of the dynamical parameters in
Fig. 4 may be explained.

V. FINAL COMMENTS

Dynamical parameters G and H have been evaluated
from the target orientations and alignments measured for
process (1). These parameters are independent of the ex-
perimental geometry, as intended, but the connection of
their magnitudes and signs to the observed data has been
traced in Sec. IV.

The FBA contribution to these parameters—indicated
by G2 (or H®) and adequate for large orbital momenta—
has been provided and analyzed by the procedure of Ref.
4. The parameter residues GR=G —G?, significant for
low momenta only, can be expressed in terms of mul-
tichannel quantum defect theory (Refs. 13 and 14) eigen-
phases and eigenvectors accessible to ab initio R-matrix
calculations,'®> whose prototype is currently in progress.
A full eventual interpretation of experimental data
remains to be traced through such calculation of the GX.

We have used the dynamical parameters GR=G —G?
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1o 90 180
Scattering Angle (deg )

FIG. 5. The values of L,(8) reconstructed with the dynami-
cal parameters G®. The solid line is obtained with I, <11 and
the dashed line with I, <5. @ are the experimental data of
L, (0) from Ref. 9.

with I, <11 to reconstruct ay(8). The a&(6) thus recon-
structed is indistinguishable from the curve a&(6) in Fig.
1(a) except for an ~2% difference at 6~0°. This pro-
cedure has been tested further by multiplying the a,(6)
thus reconstructed with the Im[a,(6)] from Fig. 1(c) to
yield the plot of L (0) in Fig. 5, compared there with ex-
perimental values. The figure also shows the L ,(8)
reconstructed using only G ® values with /, <5.

The present study of process (1) has been confined to
collisions at 80 eV, the only example for which available
data appeared adequate. Its extension to other energies
and materials, including the targets with nonspherical
symmetry treated by Ref. 2, remains open. The acquisi-
tion of the required data through “complete” experi-
ments presents, however, a nontrivial challenge.
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