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Extracting dynamics from collision data. I. Analysis of integral angular momentum
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Collision data in forms currently available from experimental sources are reduced by quadratures
and algebraic transformations to dynamical parameters. The reduction hinges on suitable normali-
zations and utilization of sum rules and removes the influence of experimental geometries. The
dynamical parameters, labeled by angular momenta restricted to a modest range, appear more suit-
ed to comparison with theory than the original experimental data. Our analytical developments are
simplified by certain restrictions, whose removal is discussed in a final section.

I. INTRODUCTION

The problem of extracting dynamical information from
collision experiments has been formulated and discussed
extensively in a series of papers by Lee, ' without arriving
at an explicit solution. Formulas of Ref. 1 express col-
lision data as bilinear combinations of scattering matrix
elements S XS with algebraic coef6cients that represent
the joint influence of angular momenta and other
geometric factors. No procedure has been developed pre-
viously to disentangle individual elements of such bilinear
expressions from an adequate set of measured data, ex-
cept for a conference report on part of the present work.

We introduce here three remarks.
(I) The algebraic expression of collision data trans-

forms a set of elements of StXS into the set of collision
data; the matrix U of this transformation is unitary, pro-
vided both sets are properly normalized.

(2} Each of the normalized sets of collision data and of
S XS elements may be interpreted as the set of com-
ponents of a unit vector, related to the other by U.

(3) The relevant collision data are constructed as prod-
ucts of polarization parameters of the initial and final
states of the target by the following procedure: each of
these complete sets of parameters is evaluated for targets
prepared in a specific pure initial state; their product is
then averaged over a complete set of alternative initial
states. The total set of measurements will form a "com-
plete experiment. "

Remark (2} is critical for disentangling single elements
of the S matrix frotn their bilinear products S XS. Unit
normalization of the set of elements of S XS, viewed as
components of a vector, implies that the square of the ma-
trix S XS has unit trace. It follows that each set of ma-
trix elements IS ttI or IS sI represents the cotnponents
of the eigenvector correspondin~ to the single nonzero
(unit) eigenvalue of the matrix S XS. Each element S tt
(or S„s) can thus be extracted from the bilinear set

ISrsS tt).
These remarks will be developed in Sec. III. Section II

will instead show how to extract the S matrix elements
from collision data for targets that are initially in a 'S
state without resorting to the full machinery of Sec. III.
Section II stands thus also independent of Ref. 1. Its ap-

plication to the extensive data on the process

e +He( ls 'S)~e'+ He( ls2p 'P)

is reported separately. Section III will instead relate to
Sec. II of Ref. 1(c) and to general aspects of Ref. 1(a).
The remainder of Ref. 1(c}and other parts of Ref. 1 that
stress symmetries will bear only on applications, which
are not presented here.

Successful unraveling of scattering amplitudes S &

from collision data will also shift the focus of dependence
on the scattering angle. Reference 1 focused on the ob-
servables' dependence on this angle and therefore ex-
panded the observables in harmonic series. The harmon-
ic analysis will be performed here on probability ampli
tudes already unraveled from the observables, thus
bypassing interferences in their angular dependence. In-
terferences in the linkage of projectile and target parame-
ters are also bypassed.

Certain restrictions are implied for simplicity by the
formulations of Secs. II and III, as in Ref. 1: spins of
electrons and nuclei and exchange effects are not con-
sidered. Only pure states of projectile and target are con-
sidered. Reactive collisions are excluded. In addition,
effects of parity and of angular momentum conservation
are not dealt with explicitly, in contrast to Ref. 1. Pros-
pects for lifting these restrictions are presented in the
final Sec. IV.

II. SPECIAL CASE:
INITIALLY SPHERICAL TARGETS

A. Target polarization formulas

Experimental studies of electron collisions with atoms
have dealt extensively with He and alkaline earth targets,
initially in their 'S ground states. Inelastic collisions
have largest cross sections for excitation to 'I' levels, but
we find it instructive here to consider excitations to 'L
levels with an unspecified value of L. We disregard, how-
ever, for simplicity, the incident electron s spin, which is
realistic for low-Z targets.

Following general practice we characterize the col-
lision effect at the outset by a set of probability ampli-
tudes [aM(8)) for target excitation to each of its degen-
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crate states —L ~ M L of a specific 'L level. The index
M represents the angular momentum component L, with
the z axis along the incidence ("collision frame"). Each
amplitude a~ depends on the scattering angle 0. Symme-
try under reAection through the scattering plane requires
that

a ~(8)=( —1} a~(8); (2)

The collision data describe the polarization of the
target s final state, in addition to its excitation cross sec-
tion. Following Ref. 5 we represent the polarization by
the set of mean values of multipole operators T& whose
matrix elements consist of Wigner coefficients

(LM'l Tg lLM ) =( —1)™(LM',L —MlKQ ),
0 E 2L KQ E—. (4)

These coefficients pertain to the addition of the angular
momenta of a ket lLM ) and a bra (LM'l. The set of
operators {Tg j is a special case of the complete sets of
orthonormal operators I U; j in Ref. 6, regarded as vec-
tors in a Hilbert space (the "Liouville representation").
Specifically, there are (2L +1) operators Tg, as many as
there are elements of the matrix (LM'lOlLM) of an
operator 0, and the T& satisfy the orthonormality condi-
tion

Tr(Tg Tg)=5xx 5gg, .K'f K

The mean value of the operator T& for the target state
with probability amplitudes as'(8) will be indicated by

(Tg )g= g a~ (0)&LM ITglLM )a~(8) .
M', M

(6)

Applying the normalization (3) and orthonormality of the
Wigner coefficients in (4) normalizes the set of mean
values,

g (Tg )g(Tg)g= g law(0)l

This normalization characterizes {(Tg )gj as the set of
components of a unit vector, which in the Liouville rep-
resentation represents the state of the target.

The operator To deserves special mention because it is
proportional to the identity operator,
(LM'l TolLM ) =(2L +1) ' 5~~.. Consequently its
mean value is a constant independent of the target state,

accordingly we need consider only M & 0.
This representation of a collision effect by probability

amplitudes aM(8) replaces the use of S matrices in Ref. 1.
Recall that rows of a scattering matrix correspond usual-
ly to all final states attainable by a collision with given
energy, whereas we deal here only with a subset of such
states. Parametrizing elements of the subset by the prob-
ability amplitudes a~(8) affords the appropriate normali-
zation. Specifically, we assume they are normalized to
unity at each scattering angle:

(3)

( TQ ) g=(2L +1) ' y la~(0)l =(2L +1)

The cross section itself is, however, irrelevant to our pur-
pose of extracting dynamical parameters for a specific ex-
citation, being factored out of the normalization (3). Dy-
namics will be extracted here from ratios of measure-
ments. Accordingly, the term "collision data" will indi-
cate hereafter the values of polarization parameters of the
final target state {( Tg ) g j.

[Our use of (2L+1) target polarization parameters
contrasts with the smaller number of parameters, 4L,
that suffice to identify a "pure state" of the target. The
vector of the Liouville representation with components
(Tg)g is accordingly restricted to a 4L-dimensional
manifold. Its (2L + 1 ) —1 components with K%0
would, however, be linearly independent for a general
("mixed" ) state, to be touched upon in item (e) of Sec.
IV.]

B. Extracting the probability amplitudes

Measurement of the entire set {( Tg ) gj provides infor-
mation on the an't(8) through the relation reciprocal to
(6), namely,

ax't (8)a~(8)= g ( Tg )g(KQlLM', L —M)( —1)™.
K, Q

(10)

The squared modulus of each amplitude a~(8) is found
by setting M'=M, in which case the Wigner coefficient
vanishes for QAO,

la„(0)l'= y & Tf ) &EolLM, L —M )( —1)'-

Since the coefficients on the right of (11) vanish for odd
values of K, owing to symmetry under sign reversal of M,
we see that L + 1 nonzero values of ( To ) g determine the
L+1 different values of last(0)l . Noting that even
values of K correspond to electric charge multipoles of
the electron density in the excitation of the 'L level, Eq.
(11) specifies that the axia11y symmetric components of
these multipoles determine the squared amplitudes
fa„(0)l'.

We are thus led to represent the a~(8) through their
moduli and phases,

a~(0) = la~(8)le (12)

This means that vectors representing pure states are
confined to a hyperplane of dimension (2L+1) —1 in
the Liouville representation. We will return to this point
in Sec. III B.

The collision data themselves, namely, the expectation
values of the operators T&, correlated with the detection
of an electron scattered through an angle 8 with cross
section do (8)Id 0 for excitation of the 'L level, are then
represented by the set

( g) der(8)
Q
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The phase differences QM(8) —pM+, (8) are determined

by setting Q= 1 in (10),

aM+ i (8)aM(8) = IaM+, (8) I laM(8) I

i [P( 8) PM + I( g)]Xe

x g & T', &,& Sc I ILM + I,L —M &

tile, as in Ref. 1, and g replaces the amplitude a to avoid
confusion. The dependence on the directions is expanded
into spherical harmonics using the relevant elements of
plane-wave expansions [Eq. (4.7) of Ref. 7]

lp, )= g i'Y, (p, },
l, m

(15)

x( 1)L —M (13)
&p, l= g ' 'Y*., (p, )

(by mb

We have thus completed our immediate task of determin-
ing the aM(8) to within a common phase factor to be set

by convention. This task has utilized only the values of
& T& ) e with Q=o and 1. Measurements of the values for
Q) 1 may, however, be required to verify the complete-
ness relation (7). Specifically, a sufficient number of
& T& ) s, or of equivalent linearly independent parameters,
need to be measured to exhaust the sum in (7).

6 o,
a

(15')
Yi' (pb)= Yi' (8,0) .

Equation (14) expands thus into

Having set the z axis parallel to p, and setting now the x
axis in the scattering plane, we have

21, +1
Y( (p, )=

C. Dynamical parameters

' 1/2
21, +1

aM(8)= g i '
4mI,(b™b

Yi* (8,0)

aM(8)= &LM, pb Igloo, p, &, cos8=pb p, . (14)

Here (a, b) label the initial and final states of the projec-

The Introduction to Ref. 1(a) has stressed the desirabil-
ity of comparing experimental and theoretical data in the
form of dynamical parameters free from geometrical or
incidental aspects of experiments (see also Sec. 7.10.1 and
p. 248 of Ref. 7}. These parameters should thus depend
on the magnitudes rather than on the directions of angu-
lar momenta and on the profiles of the functions aM(8)
rather than on the selection of specific scattering angles.
We should accordingly replace the parameters aM(8)
with a new set independent of both the scattering angle 8
and the magnetic quantum number M. The dependence
on 8 will be removed by expansion in spherical harmon-
ics, while the dependence on M indices will be factored
out in the form of Wigner coefficients.

We begin by indicating explicitly the dependence of
aM(8) on initial and final quantum numbers of the target
and on the initial and final directions of the projectile,

x &r.M, l, m„Igloo, l.o& . (16)

The desired dynamical parameter 6 emerges now by
factoring out of g its dependence on magnetic quantum
numbers, setting

& LM, lb m b I g I
00, 1,0 & =—& L0

I
G I lb I, ) & LM

I 1,0, lb
—mb )

x( —1)b b (17)

which requires mb+M to vanish. Entering (17) into (16),
we find that 6 is related to the probability amplitudes by

1/2
( (, 21 +1

aM(8}= X i "

(,lb

x &r, olGll, l, &&LMll. o, lbM)( —1) '

(18)

The orthonormality of the spherical harmonics allows us
to single out a particular value of I&

..

1/2
1 ( (,' 21+1

2m J d(cos8)Y, , (8,0)aM(8)= gi '
—1 b I 4n

a

&r.olGI1„'1. &&r.MI1.0, 1,'M &(
—1) ' (19)

Now we appeal once again to the orthogonality of the Wigner coefficients, using the modified relation

y & 1.'o, 1; Mlr.M ) & r.MI 1,o, 1; M &
=

(,'(, ' (20)

which can be derived from the formulas in Chap. 1 of Ref. 9. Using (20), our final result for G, after removing the
primes for simplicity of notation, becomes

—1/221+1 ( ( 21 +1
2L +1 4n

2'I d(cos8)Yi M(8, 0)aM(8) (
—1) ' '&l, o, lb

—mblLM) .

(21)
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where m indicates the reduced mass of projectile and tar-
get, as discussed further in Ref. 4.

Equation (21) identifies a very large set of dynainical
parameters G because the magnitudes of the orbital mo-
menta (l„lb } range to infinity. The difference ll, —

lb I
is

restricted to ~ L by the triangular condition on (l„lb,L)
but the sum I, +Ib is unrestricted. The magnitude of G
converges to zero as I, +lb increases but a very large set
of 6 values remains nevertheless significant. On the oth-
er hand, the small values of 6 with large I, + lb need not
be extracted from experiments, being provided depend-
ably by the perturbative Born approximation. A pro-
cedure for systematic application of this approach has
been developed recently and is applied and evaluated in
Ref. 4.

Note here that the dynamical parameter 6 is defined

by (21) in terms of the probability amplitude abr for the
target transition O~M. This amplitude is proportional
in turn to the corresponding transition amplitude TM,
solution of a I.ippman-Sch winger equation TM

=[V+V(E H+ie—) 'T']bi, according to

a, {8):— g (j,m, IL„—M„,L~M~ )( —1)"
MA, MB

x (LsMs, pb I gIL qM„,p, ) .

The a (8) have a normalization parallel to (3}:

(22)

Characterization of the collision efFect on the target by
a set of probability amph'tudes a~(8) no longer suffices
here. Equation (14) associates each a~(8) to a transition
of the target from an initial state IOO) to a final state
( LMI. The more general probability amplitudes
(LsMs, pblgIL„M„, p, ), which bear on the present
case, pertain to the probability that the target undergoes
the transition IL„M„)~ (LsMs I when the projectile is
scattered through the angle 8=arccos(pb p, ). Following
again Ref. 1, we characterize this transition by the angu-
lar momentum j,=La —L'„ transferred to the target.
The probability amplitudes transform accordingly into a
new set I a. (8) j defined by

aM
4iriii . do
2m k~ dQ

' —1/2

TM (21')
g Ia.. .(8)l'= g I&L M, p IglL M, p. &l'

Jt'Off MA, MB

(23}

III. INITIALLY NONSPHERICAL TARGETS

A. Target yolarization formulas

Whereas Sec. II labeled a base set of target states by in-
dices (L,M), we consider now initial states IL„M„)and
final states (L~Ms I, in accordance with Ref. 1. We still
consider targets in singlet states and disregard any pro-
jectile spin, for simplicity. Also, we restrict ourselves to
"parity favored" transitions, i.e., those in which
L„+Ls+j,and I, +Ib+j, in Eq. (22) are both even.

reflecting the fact that the total probability of the target
making a transition from L„ to Lii is set to unity.

As in Sec. II, the polarization of the target's final state
is given by a set of mean values of tensoria1 operators

t ( T& )sj with matrices and normalizations analogous
B

to (4) and (5). Here, however, we must take into account
the nontrivial initial state, indicated by a density operator

p „, and consider the mean values [ ( T& )z s j condi-

tional on this initial state. Initial and final target states
are related by the probability amplitudes in the usual

way, analogous to (10) of Ref. 1(c),

(Tg~ ) 8=Tr[g(8)p„g (8)Tg ]

I
MA, MA, MB, MB

&LBMB PblgIL. M~ p. &&L~M. Ip. IL~M~ &

X(L„M„',p, lg ILsMs, pb)(LsMslTg ILsMs) . (24)

We now expand the density operator p„ into a set of tensorial operators

EA EAT
p~ = X & Tg„" &,„Tg„"

A' A

(25)

ZAPwhere the Hermitian conjugation of T& accords with the minus signs of L~ in the relation j,=Lz —L'„and of M„ in
(22). Using (4), the definitions (22) and (25},and rearranging, Eq. (24) becomes



EXTRACTING DYNAMICS FROM COLLISION DATA. I. 5957

(Tg~ ) s= g (Tg" ) g a.', , (8)a (8)
K,Q

. I I
j, , m, J, , m

I t
MA, MA, MB, MB

I ~ I I

( —1) (LqM„', L~ —Ms l j,' —m,')( —1) '

X( —1) " "(L„—M„,LsMsjl, m, )
I

X( —1) " "(L„M„'—,L„M„lK„—Q„)(—1) "

X( —1) (LsMs, Ls —MslKsgs) . (26)

The final sum on the right of (26) transforms according to Eq. (3.21) of Ref. 9 into

'&j,'m, ',j, m, lK—,Q, &&K,Q, IK& —Q&, Kings &(
—1) "

K, , Q,

~ s)ji'( ~ a)jtl«~L~)K~ «aLa)Ka& (27)

This transformation has the effect of reducing the di-
KAt KBrect product of operators I T& X T& I in the

A B

lL&M„,Lsd�) representation to a set of operators

t T&' j in the
lj,m, ) representation. The coefficient on

the far right of (27), which as an invariant does not de-
pend on Q„ is expressed in terms of a 9-j symbol in Eq.
(3.9) of Ref. 9. It also appears in Eq. (14) of Ref. 1(c),
where a similar reduction takes place. Hereafter, we
shall suppress the indices L„and Lz in this coefticient,

writing it as (j,'j, lK„Ks )
Now we write expressions for "mean values" of the

TQ' which correspond to the state multlpole moments

transferred to the target, by analogy with (6),

( T&' )s= g a.', , (8)(j,'m, 'l T&' lj, m, )
r I

J],m], J],m]

Xa, (8)(j,'j, lK„K )

(28)

The initial and final state polarization data are therefore
related through the multipole moments ( T&' )e by

l

(Tq')p s= g g &Tq')s
KA, QA K, Q

(T~'&&,=+F(i;K„g,),(U, &+ . (29')

As j varies, Eqs. (29') describe a linear system in the un-
knowns F with matrix V, = ( U,. ) . But V,, is the ma-

A

trix of the transformation which carries each orthonor-
mal basis vector U; onto the corresponding orthonormal
basis vector p'„, and is therefore unitary. Equations (29)
and (29') can thus be inverted analytically:

sured ( T&s ) s resolves into two steps, namely (28) and
B ~A

(29). Our first step of inversion should therefore disen-

tangle the initial state parameters (T&" ) from the

right of (29), thus recasting the collision data into the
directly invertible form (28).

To this end we denote the quantity in large parentheses
in (29) by F(K„,Q„;Ks,Qs )s, and note that it is explicit-

ly independent of the initial state pz. Next we choose a
complete orthonormal basis t p'„ I consisting of
(2L„+1) density operators. Likewise, we choose an or-

dering of the basis set I T&" ) and denote the resulting set

by I U, I, 1&i «(2L„+1); by convention, we set

U, = To. Then for each jinxed pair (Ks, Qs ), (29) reads

X (K,g, lK„Q„,K,g, &—
X( 1)x'~ &~ ( T~~ )

(29)

F(i;Ks,gs)s= g (U; ) (Tg )

g &T~'),&K,Q, IK„—g„,K,g, )( —1) "
K, Q,

(30)

B. Extracting probability amplitudes

Whereas Sec. II 8 extracted amplitudes by direct ana-
lytic inversion of their relationship to the polarization of
the final target state, the relation of the a (8) to mea-

t
The multipole moments are therefore given by
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x( —1) " "&K„—Q„,K,g, lK, Q, &,

(31)

requiring a sum over a complete set of initial states.
Equation (31) provides the desired set I & T&' )((I as a

r

weighted sum over collision data & Trr ) e. A geome-
B ~A

trical aspect of the inversion of (29') views the set

[ & U; )+ ] as the components of a vector representing the
A

density operator p'„. Upon multiplication of both sides
of (29') by one component & Uk ) and summation over

all values ofj, p'„ranges symmetrically over the hyper-
plane defined by U& =(2L„+1) '~ in the Liouville rep-
resentation. This causes the sums over dyadics

gJ & Uk ) & U; ) with k Ai to vanish, whereas

QJ & U; ) & U; ) reduces to unity owing to (5).

Having thus seen that the measured values of the final
KB

target parameters & T& ) ((, properly averaged over a
B ) A

complete set of p„, yield the set of parameters & T(r' )e,
r

we may enter the latter in (28) and extract the a~ (8)
r r

x &K„K~lj,'j, &

x & K,Q, lj,'m(, J( —m()

x( 1 )I—™ (32)

Proceeding as in Sec. IIB we begin extracting ampli-
tudes by selecting the terms of (32) diagonal in (j„m(),
which determine the amplitude moduli,

K,

K, (K, )
& To' & 8& Kg Ks jl(j ( &

KA, KB

x &K,Olj(m„j( —m, )( —1) ' ' . (33)

The next step, parallel to (12), introduces the phase of
each amplitude

a, (8)= la, (8) l exp[i', (8)], (34)

and uses the terms with j,'=j, but m,'=m, —1 and

Q, =l,

values by analytic inversion. The inverted equation,
analogous to (10), is

.;,(8) J (8)= y
Kr'~r KA, KB

&(8)l lu, (8) expI i[&, (8) P, ~(—8)]I

&T, ')s&K„Kz jJ() ' &K(ljl(m( —1 j(m, )( —1)1™
Kr KA, K

(35)

The third and final step determines the phase differences between the amplitudes with any pair of different (j„j,') but

with m,'=m„

(8) l lu, (8)
l exp I i [P, (8)—P .. (8)]I

& To' &g&KgKslj(i'(& ' &K0jl('~„i( —~(&( —1)"
Kr KA ~KB

Application of this formula for a single value of m„say
m( =0, together with recursive application of (35), deter-
mines all the phases to within a single phase to be set by
convention for all (2 (8).

r r

We review now the circumstances that have afforded
the determination of the amplitudes a (8) from col-

r r

lision data, particularly the role of the Introduction's "re-
mark (2)." Let us indicate for this purpose the right-
hand side of (32) as a matrix ~. . . which corresponds

Jr err Jirrrr

to the S XS of Ref. 1. The matrix so defined is readily
seen to satisfy both Tr(r}=1 and Tr(r }=1,owing to (a)
the orthonormality of all Wigner coefficients, (b) the

(K, )
orthonormality of & K„K~ lj,j', ) ', and (c) the complete-

KAness of the operator sets [ T& ] and I T& I as represent-
A B

ed by (5). The condition Tr(v)=Tr(v )=1 guarantees
that ~ has a single nonzero eigenvalue equal to 1, just as
the condition Tr(p) =Tr(p )=1 guarantees that the den-
sity operator p represents a pure state. Also, the set of
amplitudes I a ) represents the eigenvector for r that

r

belongs to its unit eigenvalue.
Two further and essential circumstances, however, un-

derlie the expression (31) of r in terms of collision data

I & T& ) 8]. Each element of this complete set must
B r A

have been measured, and it must have been measured for



EXTRACTING DYNAMICS FROM COLLISION DATA. I. 5959

each initial state of the set I p'„ I, whose normalization to
Tr[ QJ (p'„) ]=1 requires each state to be pure. This re-
quirement goes beyond the usual sense of the term "com-
plete experiment, " in which only a single set of collision
data are measured. Failure of either condition would
cause Tr(r ), as determined from collision data on the left
of (32), to fall short of unity, with consequences to be de-
scribed in item (e) of Sec. IV.

C. Dynamical parameters

The extraction of dynamical parameters proceeds now
as in Sec. IIC, except that we must first determine the
correct partial wave expansion of the a, (0). To do

t t

this, we expand the probability amplitudes

(Lsd, pblglL„M„, p, & by analogy with (16),

1/2
I, 2I, +1

(L.,M„p, fglL, „M„,p. &
=

4mI,Eb, mb

Y~" (0,0)(LCM&, ll, ml, lglL&M„, I,O& . (37)

The matrix element on the right of (37) can, in turn, be expanded into products of Wigner coefficients and rotationally
invariant factors depending on the total angular momentum J=L„+I,=Ls+ lb of the target plus projectile complex:

&LsMs, 1~mb lglL, M, , I.O& = & &LsMg, lbmb l
JM &(Lql, lG(J) lL„I, & & JMlL„M„,I,O& . (38)

A recoupling similar to that in Eqs. (3)—(6) of Ref. 1(c) translates (38) from the total angular momentum representation
to the angular momentum transfer representation,

&LtiMti, lbmblglL~M~, I.O&= g ( —1) " "&L~ Mg, L~—M~jl, m, &&LsL~IG(j, )llbI. &

X (j,m, ll, O, lb
—mb &(

—1) ' (39)

The same transformation also serves to define the dynamical parameters G,

L„ I, J
&L~L~ IG(j()II~I, &—:g (LslblG(J)lL„I. &(2J+1) '

J b B jr
(40)

[Note that the phase factors in (39) and (40) are different from those in Eqs. (5) and (6) of Ref. 1(c). Our concern here, as
throughout this paper, is to emphasize that writing a ket in bra notation involves a contragredient transformation, e.g. ,

"lL„M„&"and "(—1) " "(L„—M„ l" both denote ket states. ]
Substituting (39) back into (37) and rearranging yields

(LsM~, pblglL„M„, p, &= g ( —1) " "(L„M„,LtiMtilj—, m, &

j, , m,

1/2
2l, +1

a'b' b

Yi' (0,0)(j,m, l1,0, li,
—mb &

X( —1) ' '(L~L„ IG(j, )ll„l, & (41)

Comparison of this relation with the inverse of (22) identifies the quantity in square brackets in (41) as a~ (0); indeed,
t

this relation motivated the definition of a (0) in (22). Having made this identification, the inversion which gives the
t

dynamical parameters G in terms of a (0), paralleling (18)—(21), is immediate:
t t

&I.,r. „lG(J, )ll, l. &
= 21 +1 i I 2l +1

). b a

2j, +1 4a

—1/2

mb, m,

2m I d(cos0)Y& (0,0)aj (0) (
—1) ' '(I,O, I&

—mblj, m, & . (42)
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In the event that L„=O, we have Ls =j, =L, and (42)

reduces to (21},as we would expect.
For purposes of comparison with theory, recall that

calculations exploit the rotational invariance of the Ham-
iltonian by dealing with eigenstates of the squared total
angular momentum,

~
J

~
. This paper, however, has treat-

ed the target and projectile as separate entities, and has
therefore presented the dynamical parameters 6 as func-
tions of the angular momentum transfer j,. The advan-

tage of the latter treatment lies in the limited range of the
quantum number j„~L„Lit—~

~j, ~L„+Ltt, as op-
posed to the unlimited range of J. ' Our method, then,
need only extract a few G (j, ) from collision data, as op-
posed to many G(J). [Values of G(j, ) for large 1, and Ib

are again to be found using the Born approximation, as
discussed in Sec. IIC.] The G(J) are, nevertheless, ob-
tained from the inverse relation to (40), namely,

(L,l, I G(J)IL„l.&
= y (L,L, I G(J, )llbl. &(&j &+1}

L„ l, J
X '

!b Lti
(43)

IV. COMMENTS ON EXTENSIONS

We discuss here the several restrictions on the treat-
ments of Secs. II and III that were listed in Sec. I, as an
introduction to their removal in future works.

(a} Targets with halfinteger angular momentum. Re-
placement of the integral angular momentum indices
(L,L„,Ls) with alternative notations (J,J„,Js), whose
values may be integral or half-integral, affects none of the
equations pertaining to the target amplitude parameters
alone. The J indices are understood here to be either all
integral or all half-integral, whereby j, and m, are in-

tegers. Half-integer values of J~ —Jz occur only upon
change in the number of target constituents, the subject
of item (h) below.

(b} Projectiles with spin The in. dication of incidence
and scattering directions by (p„pb ) is complemented in
this case by spin indices (m„,m,b). The harmonic func-
tions Y& (8,$) in (15) and thereafter, are then replaced by
the transformation functions of Euler angles
D~ ($,8, 1/i), properly normalized. Laying z along the
incidence and x in the scattering plane sets P and g to
zero.

(c) Parity under coordinate inuersion. Conservation of
parity in the transition of the projectile plus target system
from its initial to its final state is a feature of atom-
molecular processes. The parity of projectile states is an-
alyzed by harmonic expansion. The parity of the whole
system is then represented by the parity of l, +I.„and of
Ib+L~ in the present notation. Analysis of collisions in
terms of the angular momentum transfer j, classifies
them as "Parity favored (unfavored)" when L„+Le+j,

and l, + lb+j, are even (odd) (see, e.g. , Sec. 7.10.3 of Ref.
7). Processes involving only single particle transitions
from one to another eigenstate of orbital momentum are
parity favored. (Reference 1 was tacitly restricted to
these cases. } The mechanism of parity unfavored transi-
tions involves a vector product, a spin flip, or analogous
operations, which exclude, e.g., projectile scattering at
8~0' (Ref. 10). Effects of parity unfavoredness may
combine with the permutation symmetries of Wigner
coefficients to restrict the magnitudes of polarization pa-
rameters.

(d) Exchange sects Th. e identity of electrons or of nu-

cleons requires analysis of each collision process into al-
ternative symmetry classes, except for the cases of closed
shells or analogous features to which this paper has been
restricted. The analysis of projectile-target systems into
such symmetry classes (see, e.g., Sec. 7.2 of Ref. 7) leads
the amplitude parameters a, g, and G of Secs. II and III
to be labeled by additional invariant symmetry indices,
typically by the total spin S label for electron-atom col-
lisions.

(e) "Mixed" states. The treatment of Secs. II and III
hinges on maximum information being provided on the
initial and final states of both projectile and target. This
condition is embodied in the unit normalization of the
target polarization parameters and in the assumption that
any projectile spin remains unaffected by the collision.
Failure of this condition forces on the matrix r in Sec.
III 8 the condition Tr(r ) & 1, in which case r no longer
factors as a dyadic product of eigenvectors a.*, ,aJ mt

The matrix ~ can still be represented as an incoherent su-
perposition of eigenvector dyadics g„p„(a'.,"', )'al~"',

n n J ~, Jtm

whose p„are nonzero eigenvalues of r, but the informa-
tion embodied in r fails to determine the phase differences
of the eigenvectors aJ'"', thus restricting the knowledge

of dynamical parameters.
(f} General scattering partners Even tho. ugh the im-

mediate motivation of this paper stemmed from
electron-atom collisions such as (1), its development ap-
pears readily adaptable to any collision of electrons, ions,
atoms, or molecules which preserves the integrity of pro-
jectile and target.

(g) Nonstationary states We have .dealt here explicitly
with collisions that excite a target from one to another
stationary state. Excitations to states with a fine struc-
ture, or to quasidegenerate levels, often do not afford en-

ergy resolution of individual stationary states; the final
state is then nonstationary and its polarization displays
quantum beats. " Extension of the treatment of Sec. III
to allow for nonstationary excitations is favored by the
flexibility, e.g., of Eq. (27},where pairs of identical Lit in-
dices could be replaced by unequal pairs (Lit, Lit) to
represent interference effects between alternative final
states. Procedures of Ref. 11 extract from quantum beat
observations the initial values of polarization parameters

K~
(T& & e, these are independent of fine structure quan-

B l A

turn numbers that become relevant later.
(h) Reactiue collisions Collisions in.volving transfer of
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constituent particles between projectile and target
proceed through the formation and fragmentation of a
"complex, " a process that exceeds the scope of this pa-
per.
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