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A quantum theory of atom-molecule collisions is developed for potentials with a hard core. It is

assumed that the potential is spherically symmetric in the medium- and the long-range parts. The
scattering amplitude is given as a solution of algebraic equations.

I. INTRODUCTION

One of the basic problems in the study of atom-
molecule collisions is how the energy transfer is related to
the potential between the two species. There have been
various attempts to solve this problem, and the simplest
is to use the distorted-wave approximation, in which the
nonsphericity of the molecule is treated as a perturbation.
The number of cases where this approximation is applic-
able is very limited and therefore it is not generally used.
The exact method, solving the close-coupling equations,
is also seldom used because in most cases it is nearly im-
possible to solve multichannel equations numerically, the
reason being the large number of channels involved.
Furthermore, when molecules are moderately nonspheri-
cal the Legendre expansion of potential, which is re-
quired as the input to the close-coupling equations, in-
volves a large number of terms from which it is difficult
to deduce their contribution in the energy transfer.
Multichannel equations can be solved by various approxi-
mate techniques, e.g., coupled state or various types of
sudden approximations. Among them the method which
has been extensively used for analysis of the rotational
energy transfer is the infinite-order sudden (IOS) approxi-
mation. Despite success in many applications and
analysis of rotational energy transfer the IOS approxima-
tion has limited use. It can be used in systems with small
energy transfer and for nearly spherical molecules.
Furthermore in the analysis of rotation-vibrational ener-

gy transfer the IOS approximation shows poor perfor-
mance. Better results are achieved if it is used in con-
junction with the exact quantum treatment. The same
criticism applies to the other approximate methods, al-
though some are better than the others in di8'erent situa-
tions.

The breakthrough in understanding of the rotational
energy transfer came when it was assumed that the
short-range repulsive core of atom-molecule potential
determines most of the energy transfer. The concept of
molecular shape was introduced which was de6ned in
terms of the repulsive part of the atom-molecule poten-
tial. At one of the equipotential lines the repulsive poten-
tial was replaced by an infinite wall while the remaining
part of the potential was neglected. An order of magni-
tude estimate showed that indeed this is a reasonable ap-
proximation and that deviations from this model are ex-

pected for systems with a large attractive and nonspheri-
cal part of the potential. ' In fact most of our under-
standing of the rotational energy transfer stems from this
model, but almost all studies of this model were classi-
cal. ' ' There have been relatively few quantum formu-
lations of the model that did not solve it in general but
were rather specific to a particular system, e.g. , the IOS
solution of the model is only applicable to systems with
little energy transfer into the molecule. " The major
difFiculty in formulating a general quantum theory of the
hard-core models is that the appropriate multichannel
equations cannot be obtained in the diabatic basis, be-
cause the coupling is infinite. ' Multichannel equations
should be formulated in the adiabatic basis' but this
greatly complicates the theory. Another approach is to
use generalized coordinates (e.g. , elliptical' ), but this re-
stricts the theory to only a few shapes of molecules.

The relationship between the shape of the molecule
and the energy transfer is therefore crucial for under-
standing collision processes of atoms and molecules. The
link between the two is provided by the general quantum
theory of collisions for hard shapes, which also includes
molecular vibrations. It is not expected that the model
shall give perfect agreement with the real potential but it
should be possible to treat deviation from the hard shapes
as perturbation. In this work we set out to fulfill this
task: to formulate the quantum theory of collisions in-
volving vibrating hard shapes. In fact we go one step fur-
ther by assuming that outside hard shape the potential is
nonzero; however, it is assumed to be spherically sym-
metric. In this way modification of collision energy at
the moment of impact with the hard core is taken into ac-
count. Since energy transfer occurs only at the hard core
we shall call it the impulsive collision or the impulsive
model.

The quantum theory of impulsive collision, as it is for-
mulated, is generalization of the idea developed in the
study of molecular-surface transfer, ' using the hard-core
model. The method of solution is relatively simple and
the scattering amplitude is obtained as the solution of a
set of linear equations rather than solution of the mul-
tichannel equations. Within the impulsive model the
scattering amplitude is given exactly and has no restric-
tions, e.g., as the IOS approximation. The solution also
includes vibrational energy transfer and therefore the
theory can be used in the study of the most general col-
lision problem of atoms and molecules.
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II. THEORY

R =g(8, $, r) (2)

is obtained, which we call the boundary of the molecule.
8 and P are the polar and azimuthal angles of R, respec-
tively. Energy dependence in Eq. (2} is omitted because it
is assumed that in most cases this is negligible.

Beyond the boundary given by (2) the potential is
spherically symmetric so that we can write

V(R, r) = U(R)g(R, r) (3)

where g has infinite value if the coordinates are within
the boundary (2), but otherwise it is equal to one. The
function U(R) is determined by taking a spherically sym-
metric average of the true potential. It will be assumed
that the difference between U(R) and the true potential
can be treated as perturbation on the scattering ampli-
tude.

For diatomic molecules the boundary of the molecule g
is a function of the relative angle y between the vectors R
and r, given by

cos(y }=cos(8}cos(P)+sin(8)sin(P}cos($—a) (4)

where a is the azimuthal angle and P is the polar angle of
r. This fact will be used in the derivation of the scatter-
ing amplitude in the impulsive model.

The Schrodinger equation for an atom-molecule system
1s

[T(R)+T(r)+ U(r)+ V(R, r)]V=EV

where T is the kinetic energy. If we use approximation
(3} for the potential V, a particular solution of Eq. (5)
anywhere outside the boundary of the molecule is

„(r)~„1 (R) (6)

where n is the vibrational quantum number, (j,p) are the
rotational quantum numbers of the molecule, and (l, m)
are the orbital quantum numbers of the relative motion of
atom and molecule. Any solution of (5} is therefore a
linear combination of the solutions (6), and in particular
the one which describes scattering. This linear combina-
tion must satisfy the following conditions: (a) all the par-
ticular solutions (6) must have the same total energy, (b)
at the boundary the solution must be zero, and (c) for

In the impulsive model it is assumed that the short-
range repulsive atom-molecule potential (for simplicity
we shall consider only the atom-diatom potentials} is re-
placed by infinite potential (hard core} while the remain-
ing part is assumed to be spherically symmetric. The ex-
act point at which the hard core replaces the repulsive
potential is to a certain extent arbitrary. Our choice is
the following: if the potential is V(R, r) where R
represents the atom-molecule separation and r the atom-
atom separation within the molecule, then the shape of
the hard core is determined by the equation

V(R, r}=E
where E is collision energy. From this equation the rela-
tionship

large atom-molecule separations the solution must have
proper scattering boundary condition. This solution can
be written as

S
Q)

iRk„, ,
e

fnj''p', njp '

If the condition (b) is to be applied on (7) the correct form
of the functions (8} should be known at the boundary of
the molecule. Let us designate by co„+I and co„ I the two
irregular solutions of the lth partial-wave radial equation
for the potential U(R } (for the spherically symmetric po-
tential the solutions are independent of the magnetic
quantum number of I}, which are defined asymptotically
by

+iRk
nJ

njl (9)

For large R the incident plane wave co'„ is given as ex-
pansion in the Legendre polynomials and the Bessel func-
tions JI+,&z.

' The asymptotic form of the Bessel func-
tions is a linear combination of the incoming and outgo-
ing spherical waves so that for large R

co'„1— g(2!+1)PI(8)(—e "'+e "'
) . (10)

nj I

In the expression the spherical waves can be replaced by
the functions (9) in which case for finite R it goes into

g(21 +1)Pi(8)[—a)„+Ji+(—1)'co„ I] .
2Rk„,

At this point we introduce a complete set of angular
functions with the following properties: they are eigen-
functions of the total angular momentum operator and
the rotational operator of the molecule. They are also
functions of the scattering angles (8,$), the relative angle

y, defined in (4), and the azimuthal angle b, defined in the
Appendix. These properties of angular functions are
essential in finding a solution to our scattering problem.
It is shown in the Appendix that the functions

Y, =DM ($, 8,0)Y (y, b, )

21+1
l, m'

X C(1,j,J;O, m )C(1,j,J;m', M —m')

X Y,M (p, a) Y( (8,$) (12)

satisfy these requirements. C(a, b, c;d, e ) are the
Ciebsch-Cxordan coe%cients and D,b(a, P, y } are the rota-
tion matrix elements. ' Using the functions (12), and re-
lationships developed in the Appendix, it can be shown
that the most general particular solution [of the type (6)]

where the functions co' and co' are solutions of the
Schrodinger equation in the R coordinates with the fol-
lowing asymptotic forms for large R:

iZk„.
co' -e

nj
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Z

0nj p~nj
1T

2Rk„

' 1t2

g(2J+ 1)4„"„
J

(14)
L

where Anj~(R)=i'J&+&&z(k„JR } if U(R)=0, i.e., for a
plane wave. Likewise the scattered waves in (8) can be
written as

of the Schrodinger equation (5), which has the above-
mentioned properties, is given by

q„,(r)
(R,r)= gY. -Q(21+1)A„ji(R)

m" I

XC(1j,J;O, m)

XC(l,j,J;O, m") (13)

where A„ I(R) are solutions of the radial equation for the
relative motion and y„,(r) are the radial functions for the
molecule. The functions (13) are equivalent to those
defined in (6). For example the incident wave in (7) is
given by

where now A„j&(R)-exp(iRk„.)/R. The set of indices

(noj opo) in (15) designates the state of the incident chan-
nel (14). By taking the limit R ~ ~ of (15) it is relatively
straightforward to obtain the scattering amplitude,
defined in (8). After some manipulation with the
Clebsch-Gordan coefficients we obtain

&4m(21 +1)
fnj p;nojopo ~ 2J + 1 njm;nOJoy'0

J,M, l, m

X C(l,j,J;O, m )C(1,j,J;M —p, p)

X YiM „(8,$) . (16)

It will be shown later that for diatomic rnolecules (i.e.,
linear) M =pc.

The coefficients F determine the scattering amplitude.
They can be obtained from the requirement that the wave
function (7) is zero at the boundary of the molecule. Us-
ing the basis functions (13) the wave function is given by

s ~ FJMm @JM
Pnj p nj p ~ njp;nOjOpO njm

J,M, m

(15)
where

(17)

(4, 8,0)Yj (Y,~)g(21+1)co„ I(R)C(l,j 0, JO, p 0)C(l j O, J;O, m )
2Rk„j

where co= —co++( —1 }'co . The scattered part of the wave function is

(18)

FN jv g Ds'r .($,8,0) Y (y, b, )g(21+1)co„+&(R)C(l,j,J;O, m )C(l,j,J;O, m')

where the simplicity the index N of F designates the triad
N:—(n, j,m). If R now takes values on the boundary of
the molecule, i.e., R is given by (2), then 4=0, which
determines the coefficients I'. They are obtained by mul-

tiplying (17) with Dsr. ($,8,0) and integrating over the
solid angle spanned by the angles 8 and P. It should be
recalled that R is not a function of these angles. As the
result of this integration it is obtained that M=p0. In
the next step the set is multiplied with YJ'. .(yb, ) and in-

tegrated over the solid angle spanned by the angles y and
Finally the set is multiplied by y„.' and integrated

over the coordinate r. The set of equations thus obtained
can be given in a compact form if we define new matrices
8'and 8'+, having the matrix elements

W„J' .„j =g(21+1}C(1,j,J;O, m)C(l j,J;O, m')
1

X f dr r y„y„fQd. Y, co„,.I Y;
0

(20)

where the solid angle integration is over the variables
(y, h). The matrix elements of W+ are the same as in
(20) except that co is replaced by co+. The set of equations
is now

which is easily solved for the unknown coefficients F.
The set (21) is solved for each J' and then the scattering
amplitude is obtained from (16).

The scattering problem in the impulsive model is
solved. The only problem is calculating matrices W and
W+ and subsequently solving the set of equations (21).

III. ROTATIONAL ENERGY TRANSFER

F '=QC(1', j,J;0. , m )f I.
/I

(22)

then the product of W and Fmatrices in (21) is given by

g W,+. . , F, ', =Q(. 2J+1.) C(l, j, J; 0, m')

X (j'm '
~jl ~jm ' )f I

As an example the theory will be applied to the atom-
molecule rotational energy transfer. The formulas (21)
and (16) are used in this case without referencing to the
vibrational quantum n. For simplicity it will be assumed
that initially the molecule is not rotating.

Calculation of the scattering amplitude can be much
simplified by a suitable modification of the previously
mentioned formulas. If the partial scattering amplitude
is written as

W +~W+ F '=0
2k N';No ~ N', N N, NO

nOgO

(21)
(23)
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where (
~ ~ ) designates the integral over the solid angle

in (20) with, however, co+ replacing co. In this form one
saves time by not having to evaluate the sum in the ex-
pression for W+ in (20). If the parametrization of the
partial-wave scattering amplitudes (22) is introduced into
(16) the scattering amplitude becomes

0 4—

J
Iio Pili—~ (24)

which is also a simplification since only one summation
index involves the angular-dependent functions, the
spherical harmonics.

The systems on which we wanted to test the impulsive
model are D2-Ne and HD-Ne, well studied both experi-
mentally and theoretically. ' ' Although the system ap-
pears to be quite simple, because at the considered col-
lision energies only a few open channels are involved, it
is, in fact, quite a difficult test case for many approximate
schemes, e.g., for various types of the sudden approxima-
tions. The quantum effects are also quite pronounced
(e.g. , diffraction in the forward direction) and therefore
the tail of the potential may play a significant role in the
rotational energy transfer, while in the impulsive model it
is ignored. However, we have chosen these systems in or-
der to show how successful the model is for interpreting
the rotational energy transfer in what we believe is the
worst test case.

Rotational energy transfer in the D2-Ne system was
studied for collision energy E =84.9 meV. At this energy
the channels j =0, 2, and 4 are open. The shape of the
molecule D2 was assumed to be an ellipsoid, the axes of
which were determined from the potential which was
used in the analysis of the experiments on the same sys-
tem. ' The choice of these axes is to a certain extent arbi-
trary. We have decided on the values of the atom-
molecule separation in the collinear (the major axis A)
and the perpendicular configurations (the minor axis B)

0.0
45 90

FIG. 2. Comparison between the cross sections calculated
from the impulsive model (solid line) and the full potential (cir-
cles) from Ref. 18, for the system D2-Ne.

at which the kinetic energy of the relative translational
motion equals the potential energy. The values of A and
B thus obtained are A =2.364 A and B=2.255 A, from
which it is inferred' that the maximal accessible final ro-
tational state is j =2. This implies that a relatively large
fraction of the total collision energy could be transferred
into the rotation of the molecule. As a result the basis
which was needed to converge the scattering amplitude
included also a j =6 channel, which is closed at this col-
lision energy.

The solid line in Fig. 1 shows inelastic 0~2 differential
cross for the given values of A and B. The interesting
feature of this system is that the differential cross section
is very sensitive to the variations in A and B. The same
figure shows differential cross section for two other values
for A. The long-dashed line is the cross section for
A =2.464 A, which is an increase of 0.1 A compared to
the previous choice for the major axis. A dramatic
change in the cross section is noticed, which is an indica-
tion that fitting of the potential to the experimental data
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FIG. 1. Inelastic differential cross section for the system D2-
Ne in the impulsive model. Different curves correspond to the
various values of the large axis of the ellipsoid representing the
molecule. The values for the axes are given in the text.

FIG. 3. Inelastic differential cross section for the system
HD-Ne in the impulsive model. Different curves correspond to
the various values of the large axis of the ellipsoid representing
the molecule. The values for the axes are given in the text.
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is open which is very efficiently populated through the
energy transfer. Making the energy transfer more
efficient, by increasing A, does not contribute much in
terms of drastic change in the cross section.

Comparison with the cross section which was obtained
from the full potential' is shown in Fig. 4, where the cir-
cles designate points of that calculation. The solid line is
the cross section of the ellipsoid with A =2.70 A. Again
the two curves are not far apart and deviation may be due
to the details of potential.

IV. DISCUSSION

0.0
90 135

O(d )
180

FIG. 4. Comparison between the cross sections calculated
from the impulsive model (solid line) and the full potential (cir-
cles) from Ref. 17, for the system HD-Ne.

will be quite sensitive to the choice of parameters. The
short-dashed line is the cross section with the choice
A =2.334 A. Again by lowering the value of the major
axis by only 0.03 A the differential cross section decreases
considerably for large scattering angles, bringing it to a
relatively good agreement with the cross section which
was obtained from the full potential. ' This comparison
is shown in Fig. 2 where the circles designate the points
which were calculated from the full potential. Consider-
ing that the whole potential was parametrized using only
two variables ( A and B axes}, which is a great
simplification of the system, the comparison is relatively
good. In fact this shows that energy transfer is mainly
determined by the shape of the repulsive core of the po-
tential. Furthermore we have concluded that differential
cross section is a very sensitive probe of this shape.

Another system which was studied is HD-Ne at col-
lision energy E=31.5 meV. At this energy only the
channels j =0 and 1 are open. The shape of the HD mol-
ecule was assumed to be a shifted ellipsoid, the shift being
determined by the isotope difference of the two hydrogen
atoms. The axes of the ellipsoid were determined as in
the previous example, from the potential for H2-Ne. '

Their values were A =2.56 A and B=2.46 A. For this
shape the maximal value of the effective impact parame-
ter ' is b„=0.2 A thus giving the estimate that energy
transfer is well over the hj=1 transition. This implies
that closed channels were needed in calculation of the
scattering amplitude. Indeed it was found that channels
up to j =4 had to be included in order to achieve accu-
rate cross sections. Figure 3 shows calculation of the
differential cross section for transition 0~1 for three
values of A. The solid line represents the cross section
for the initial choice of the axes A and B. The long-
dashed line represents cross section for A =2.65 A and
the short-dashed line for A =2.70 A. Unlike the system
D2-Ne here the cross section is not particularly sensitive
to the variations of the shape of the molecule. However,
this may be due to the fact that only one inelastic channel

Within the proposed model the expression for the
scattering amplitude (16), together with solution of (21},
is exact. From that expression one can derive various ap-
proximations for the scattering amplitude. For example,
one could search for approximate ways of evaluating the
integrals (20). However, more important is to find ap-
proximations of the inverse ( W+) ' since these usually
give relatively simple expression for the scattering ampli-
tude (from now on we drop the reference to J) . If the ma-
trices W and W+ can be partitioned in the form

W= W + W'; W+ = W+ + W+
0 ~ 0 (25)

The product of this form is the solution of (21) for the
coefficients F. The approximation of the product (26) is
useful if the inverse ( Wo+ )

' is simple. The diagonal ma-

trix for Wo is the simplest choice, which is only possible
if it is assumed that the function g in (2) is constant. This
corresponds to the choice of the spherically symmetric
and nonvibrating molecule for the unperturbed system.
In other words, it is assumed that the function g in (2)
can be written as

(27)R =Ro+e(8, $, r)
where e is small. The radial wave function is then ap-
proximately

d +
conti=m i(Ro)+e(8, g, r) co I(Ro)

dR

which simplifies for the WKB solution of co„+~I

~+i=co„+,I(Ro)[1+ie(8,g, r. )k„,I(Ro)l (29)

where k„.i is the wave number which corresponds to the
relative momentum of atom and molecule at the moment
of impact.

The matrix elements of W+ are related to the integrals
over the function e. These elements are small compared
to the matrix elements of 8'0 provided that

k„,, (Ro)~e(8, g, r)) «1 (30)

where the average of the absolute value of e was taken.
The inequality (30) determines the quality of the approxi-

where 8" and 8'+ are small, it is then approximately

(W+) 'W-(W+ ) 'Wo

+(W+ )-'[W W —W'(W,')-']W, .

(26)
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ination (26). The expansion of the scattering amplitude
based on (27} is very similar to the distorted-wave Born
series. The difference is that the former is based on dis-
tortion of the boundary of the molecule, while the latter
is based on the off-diagonal elements of the potential ma-

trix in the multichannel equations.
Another very useful approximation for the inverse of

8'+ is obtained in the limit of large number of open
channels, small overall energy transfer into the molecule,
and nearly spherical molecule. The conjecture is

(8'+)„&'~ „& .=. 2+(21+1)C(l,j',J;O, m')C(l,j',J;O, m) I dr r y„jyj' JdQ . YJ' (coj+'&) 'Y
(2J + 1) 0

(31)

which can be shown by multiplying (20) from the left
with (31). The completeness of the spherical harmonics is
invoked, of the form

5 8— 8'
g Y (8,$)Y'(O', P'.)= e' '& &' . (32)
1

APPENDIX

We show how to obtain angular functions (12). First it
is necessary to transform

Y)„(P,a)Y, (8,$) (Al)

into a linear combination of the product of two functions,
one of which is a function of the relative angle y, defined
in (4), and another which is a function of the angles (8,$).
This is achieved by applying rotation to Y „

YJ„(P,a) =g 5„„YJ„(P,a)

Furthermore, it is assumed that k„ is independent of the
value of the channel indices n and j (the assumption of
small energy transfer) and that change in the orbital an-

gular momentum 1 is not large (the assumption of nearly
spherical molecule). The last assumption is required for
the approximate equality co„+&/m„+Ji.= l. All these impli-

citly assume a large number of channels since, for exam-
ple, the completeness (32) would not have been fulfilled
even approximately. This approximation produces the
same result for the. scattering amplitude as the IOS
method.

In conclusion we can say that there are at least two
merits of the theory which was developed here. Firstly
within the impulsive model it is possible to relate directly
the shape of the molecule to the cross sections, the devia-
tions being small and treatable as perturbation. For this
model the quantum theory of collisions was developed.
Secondly, the scattering amplitude is given as solution of
a set of linear equations and it is not necessary to solve
multichannel equations. This is not a minor point know-
ing that any moderately large scattering problem of atom
and molecule is nearly impossible to solve from the
close-coupling equations. The only alternative is the IOS
method which works under rather restrictive assump-
tions. Our result is exact and relatively simple, but it is
based on the assumption of the impulsive model, which is
not far detached from the reality.

where D,'b is the rotation matrix. ' In the derivation of
(34) we have used the orthogonality properties of the ro-
tation matrices with respect to the summation index p".
The sum over the index p' is recognized as rotation of the
spherical harmonic so that

Y,„(P,a ) =gD „"„'.($,8,0) Y,„-(y,b, ) (A3)

where y is the polar angle of the molecular axis with
respect to the new coordinate system and it is given by
(4). The angle b, is the azimuthal angle of the molecular
axis with respect to the same coordinate system and it is
given by

sinp sin(a —p)tank =
cos8 sinP cos(P —a }—sin8 cosP

' (A4)

If the spherical harmonic Y& is written in terms of the
rotation matrix

' i/2

Yi (8,$)= D' (0$, 80), (A5)

then the product (Al) is

YJ„(p,a)Y, (8,$)
' 1/2

21+1
4m. g C(l j,J;m, p)C(l j,J;O,p, ")

XD",„„:(y,8,0)Y,„.(y, b, ) (A6)

YJM(j, l)=QC(l, j,J;m, M—m )YM (p, a) Yi (8,$)

1/2
2I +1

4m
QC(l, j,J;O,p")

where we have used the coupling rule for the rotation
matrices. From the product of the two eigenfunctions
(A6) we can produce eigenfunction YJ~(j, l) of the total
angular momentum operator using the coupling rule of
angular momenta. If we designate M =m +p then

= g D„'~.($,8,0)DJ„„-($,8,0)Y, (A2)
x D * „($,8,0)Y,.„-(y,b, ) .

(A7)
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Any linear combination with respect to l of these func-
tions is again eigenfunction of the total angular momen-
tum and the rotational angular momentum operator of

the molecule. In particular we can make linear combina-
tion with the coefficients C(J,j, l; —p', p'), in which case
we obtain the functions (12).
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