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Saddle-point electrons in proton-impact ionization of H: A classical trajectory study
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Ionization in H(1s)+H collisions is studied in the relative collision energy range 4.0—25.0 keV

by classical trajectory simulations. Improved total ionization cross sections are reported for the col-
lision energies 2.0-10.0 keV. A thorough study of the qualitative dynamics of ionization has been
carried out, with emphasis placed on the distinction between "direct-impact" and "saddle-point"
mechanisms. A precise criterion for classifying trajectories according to these mechanisms is given,
and by analyzing the trajectories in a quasistatic molecular frame it is shown that the distinction is
established early in the collision. The development of position and velocity-space correlations in en-

sembles of trajectories of each type is studied.

I. INTRODUCTION

The profound significance of dynamical correlations
for ionization processes that lead to three particles in the
final state has been appreciated since the pioneering work
of Wannier. ' Wannier's derivation of the threshold law
for two-electron double escape showed that Anal-state in-
teractions dominate the ionization dynamics at low ener-
gies. The efforts of subsequent investigators have pro-
vided a detailed understanding of the qualitative dynam-
ics, as manifested by radial and angular correlations, that
lies behind the unusual threshold laws. The resulting pic-
ture has been aptly termed "a paradigm of highly corre-
lated motion. " While the original theory deals with two
light particles escaping from a heavy one, Klar has con-
sidered general mass and charge combinations. His re-
sults imply that the dynamics of electrons released in
low-energy proton-impact ionization of atoms will be
strongly influenced by correlations.

While Wannier's work was directed toward a deriva-
tion of an asymptotic threshold law, it is clear that the
underlying physical mechanisms also operate at higher
energies. ' This point has recently been demonstrated
by Olson in classical trajectory simulations of proton-
impact ionization of hydrogen atoms. Olson found that
at energies less than 60 keV, a substantial fraction of the
ionized electrons emerge with close to half of the projec-
tile velocity. These electrons are caught in the region be-
tween the receding nuclei —in the vicinity of the "Wan-
nier saddle" —and their presence shows that the tradi-
tional analysis of secondary electron spectra in terms of
"charge transfer to the continuum" and "electron cap-
ture to the continuum" requires modification at low ener-
gies. Independent evidence for this phenomenon was ob-
tained by Winter and Lin in a quantum-mechanical cal-
culation which included basis functions localized between
the nuclei. The importance of the Coulomb saddle point
in collisional ionization is also demonstrated by the fact
that the adiabatic molecular continuum states, which
form an appropriate basis to describe the ionized electron

probability, are centered at the saddle point rather than
on the nuclei, even at very large internuclear separa-
tions. Very recently, research in this area has been
stimulated by experimental investigations, ' ' and ac-
companying trajectory simulations, ' '" of proton-helium
and He +-He collisions. (At the energies involved double
ionization is negligible so this is not essentially different
from the proton-hydrogen case. In fact the results have
been successfully modeled using three-body trajectory
calculations and an independent-electron approxima-
tion. ' ")

While the physical mechanism involved in these sys-
tems is the same as that which leads to the Wannier
threshold law, one cannot expect that the detailed dy-
namics associated with the latter persists at these high
energies. In particular, threshold ionization is dominated
by motion on or near to a two-dimensional submanifold
of the phase space. (In the language of modern dynami-
cal systems theory, Wannier isolated a center manifold'
and analyzed the linearized dynamics in its neighbor-
hood. ) One consequence of this reduction is that thresh-
old electrons are emitted near 0', at higher energies, the
correlated dynamics takes place in a larger phase space
and leads to electron emission at nonzero angles. (To em-
phasize this distinction, Olson et al. ' have introduced
the term "saddle-point mechanism" to be used in place of
"%'annier mechanism" for the high-energy correlated dy-
namics. ) While considerable evidence for the importance
of the saddle-point mechanism has accumulated, and the
experimental manifestations of the phenomenon have
been worked out in detail, not much attention has been
devoted to unraveling the detailed dynamics of the mech-
anism. Since this dynamics takes place in a eight-
dimensional phase space (taking into account constancy
of energy and angular momentum) a complete description
must be very complicated. Our purpose in this paper is
to elucidate, through numerical experiments, some of the
qualitative aspects of the saddle-point dynamics.

The most satisfactory sort of numerical experiment
would be based upon numerically exact quantum
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mechanics; at the present time, though, such a calcula-
tion is beyond our reach. We wish, insofar as is possible,
to avoid approximations that would bias the results
against correlated dynamics. We have therefore used
classical mechanics for all particles. The utility of the
classical approximation for problems of this sort is well
documented. ' ' It has been demonstrated recently'
that not only highly averaged quantities such as total
cross sections, but also resolved double-differential cross
sections, can be accurately calculated classically at high
energies. In our own work we find that microcanonical
classical trajectory simulations give reasonably accurate
(within a factor of 2 of quantum calculations} total cross
sections at energies as low as 4 keV. Of course this does
not imply that the detailed dynamics is correct; tunneling
and interference effects must become significant at
sufficiently low energies. (It is interesting to note that at
threshold, classical mechanics becomes accurate again-
Wannier s original calculation was classical. ) An assess-
ment of the validity of the classical approximation can
only be based upon direct dynamical comparisons to
quantum calculations when such become available; in the
meantime, classical calculations may suggest the phe-
nomena to be found in a more accurate theory.

In this paper we make four contributions to this prob-
lem. First, we describe technical modifications of the
standard classical-trajectory Monte Carlo (CTMC) simu-
lation procedure. These include a simplified sampling
procedure and the use of perturbation theory for the
asymptotic part of the inward propagation. The latter al-
lows us to carry out simulations at low energies where the
length scales involved in the problem become very large.
Second, we introduce a precise criterion for distinguish-
ing direct-impact and saddle-point electrons, in terms of
a dividing surface in the space of asymptotic final mo-
menta. Third, we develop an appropriate quasistatic
molecular frame in which to analyze the behavior of indi-
vidual trajectories. (The reader who is familiar with the
use of electron-translation factors in molecular state close
coupling calculations may be amused by their reappear-
ance, in a sort of inverse form, in the present context. )

With the aid of this frame we are able to trace the distinc-
tion between impact and saddle-point trajectories back
into the interaction region. Finally, we analyze the devel-
opment in time of position, momentum, and joint
position-momentum correlations in the ensemble. Our
largely empirical results will be useful in the construction
of a comprehensive theory of such correlations.

equations. In standard notation they are
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P and p are the momenta conjugate to R and r. (R and r
are defined in Fig. 1.) For the three-body Coulomb prob-
lem, the Hamiltonian (in a.u. ) is
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with
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a, g, and e are the "mean anomaly, " "eccentric anoma-
ly,

" and the eccentricity of the ellipse. They are related
to the more familiar dynamical variables (in a.u. ) as fol-
lows
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The first stage involves the specification of the dynami-
cal state of the hydrogen atom and the relative motion of
the projectile and the atom at t~ —~. In the classical
hydrogen atom, the electron is in an elliptic orbit de-
scribed by Kepler's equation, '

II. COMPUTATIONAL PROCEDURE

The classical-trajectory Monte Carlo method' ' in-
volves three stages: (i}choice of initial conditions, (ii) nu-
merical integration of equations of motion, and (iii)
categorization of each trajectory as excitation, charge
transfer or ionization. When Coulomb potentials are in-
volved, special procedures are required. As our pro-
cedure differs somewhat from that used in previous stud-
ies, we describe it in some detail below.

In the center-of-mass frame, the motion of a three-
body system is described by a set of 12 coupled Hamilton

BC

FIG. 1. Definition of various position vectors. A, B, and C
are the projectile, target mucleus, and the electron. m, and Z,
represent the mass and charge of the particle i, respectively.



415880 GUNADYA BANDARAGE AND ROBERT PARSON

om 1 is the angular momen-U is the total energy of the atom,
is the momentum conjugate to rB. T ree an-tum, and pB is

' ~1 i, 0, and co rrequen yf tl encountered ingular variab es i,
ics roblems, wnic areh h defined in Fig. 2,p

ecif the orientation o t e orip
They are p yh sically transparent an are c

d h olli io
ssible correlations e w

h drogenic oribt an e cg
s. The also enable easy eva uation o

to h y totic motion of the in-tion corrections due to h y o
f these vari-coming projecti e ( pp

' . esendix). In terms o es
ables, the components of rii and '~ gnd r are given y

r = rii [cos cos ~r =
ii Q ( +8)—sinQ cosi sin(co+8)],rB B

1

r = rii [sinQ cos coQ ( +8)+cosQ cosi sin(co+8)],B2 B

r =rssini sin(co+ ),L9B3 B

(8a)

(8b)

(gc)

r —1[cosQ sin(co+ 8)rB —~ (PB
MrB

+ sin Q cosi cos(co+ 8)]}, (9a)

Ip r —1[sinQ sin(co+8)B M tPB B22 rB

—cosQ cosi cos(co+8)]}, (9b)

[p r +I sini cos(co+8)}, (9c)

where the "true anomaly" 8 is given by

8 1+e
tan —=

2 1 —e

1/2

2
' (10)

wish to choose these variables from a microcanoni-
O. 5 a.u. To achieve this, wecal ensemble, with U= —. a.u.

choose a an e romd f m a uniform distribution in

0+a&m, O~e (1 .2

Isotropy o spf pace dictates that cos i,i) Q, and co are uni-
forn1ly distributed in

—1 cosi +1, 0& 0 &2m-, 0 ~ &2~ . (12)

'ectile moves in eth xz plane along the z axis
locit dictate y ethe collision energy.

Since the proje ro'ectile beam is assume to ave
nsit over its cross section, t e square

pa
' '

1 distributed in the rangeparameter b is uniformly is ri u

O~b ~b (13)

1.0

is the maximum impact parameter beyond
which the reaction

'
n of interest is neg igi

nt. For this purpose
'

ed b numerical experiment. or i
'1 those shown in Fig. 3, gen-

TMC rogram at constant b.
used curves simi ar to t ose

1 13) hosen for each tra]ecto-
b running the C pro

q qE s(11 —,c o
om numbers, along wi ery using six ran om

full s ecify the state o eof the system at
1 th i li-he second stage invo ves et ~—~. The

we have used a vana e-or
'

bl - rder variable-step
h E . (1) ina doutofther-g a routine) of the qs. , i

zone, starting from a su cien y
1 1 t d cross sections are con-

tth 1'
that the cacua e c

omb singularities a
lficant difficulty since ( ) p o

i hl sin ular trajectory is very low an
le ste size in the integration rou in

th ear singular trajectories. )

b i th
ratel integrate t e near

h h-k- h.'--,".---collision energies one as to egin

d th's by using classical per-
lar e distances whic ma es

We have alleviate is
e 1 th changes in the Keplertheor ' to calcu ate e cy'

dd. o o f
h'h 1

of motion accrue uring
infinity to an inner radius, at w ic num

0.$

0.6

kcV

~0 keV

.0 keV

~ 0 kV

5.0 keV

P E R I K E L I 0N

0.4
C4

0.2

0.0
0.0 2.0 8.0

b (a.u.)
4.0 5.0

s i Q and co. The plane of theFIG. 2. Definition of the angles i, , an
alon the line of nodes.orbit intersects the xy plane a ong

of im act parameter at a num-FIG. 3. Opacity as a function of impac p
n ener ies. Each curve is nor-bero i eb f different relative collision energies.

nit ~malized so t a eh t th maximum is equal to un y.



SADDLE-POINT ELECTRONS IN PROTON-IMPACT. . . 5881

Nion0. =2mb (14)

where N;,„ is the number of ionizing trajectories in an en-
semble of N trajectories.

III. IONIZATION CROSS SECTIONS

The impact parameter dependence of the classical ion-
ization is depicted in Fig. 3. At each energy, the opacity
function bP (b) is normalized so that the peak height is
unity. At lower collision energies a larger fraction of ion-
ized electrons are produced by the trajectories with small
impact parameters. These curves are qualitatively similar

I ( I I I I

commences. The technique we used to calculate the vari-
ations of the components of angular rnomenturn and the
Laplace-Runge-Lenz vector is outlined in the appendix.

When the receding nuclei are sufficiently far apart,
several tests may be used to characterize the reaction.
We have used a criterion similar to that described in Ref.
19. A negative electronic energy in a rest frame of one of
the nuclei, disregarding the other, indicates that the elec-
tron is bound to the former nucleus. An ionizing trajec-
tory is characterized by the electron not being bound to
either of the nuclei and moving away from them. The to-
tal ionization cross section is then given by

to those obtained in quantum mechanical calculations
except that the quantum curves have long tails extending
to large impact parameters. However the classical func-
tions cover the range of impact parameters where most of
the ionization originates, so the effect of these tails on the
cross section is small.

In Fig. 4, we have compared our total ionization cross
sections, at low collision energies, with quantum-
mechanical close-coupling calculations, ' experi-

and the ex&sting CTMC results. ' The
present results, which have a maximum estimated error
of 30%%uo at the lowest collision energy 2.0 keV, are in
better agreement with the quantum calculations and with
experiment than the previous CTMC calculations. The
improvement in our results over the past CTMC results
may be due to (a) our accounting for the corrections due
to the asymptotic motion of the incoming proton, (b)
better statistics, and (c) better coverage of the contribut-
ing impact parameters. (As expected, the agreement
eventually deteriorates with the decreasing collision ener-

gy. ) Our results for more energetic collisions agree with
the CTMC calculations reported in Ref. 25.

A representative distribution of an ensemble of ioniz-
ing trajectories (generated by CTMC method) on the pz
plane when the distance between the receding protons is
100.0 a.u. is shown in Fig. 5. In this figure p and z are
the two distance components in the familiar cylindrical
polar coordinates (in a molecule Sxed reference frame).
One observes an enhanced density of electrons near z =0,
where the saddle point of the Coulomb potential created
by the two nuclei is located. These electrons may be
called the "saddle-point" (SP) electrons. In the rest of
this paper we present a characterization of these elec-
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FIG. 4. Total ionization cross section for H(ls)+H+ col-
lisions as a function of relative collision energy: (a)
present results. The estimated error decreases with increasing
collision energy. At 10.0 keV the error bars are of the size of
the solid dots. (b), experiment (Ref. 21); (c) 0, experiment
(Ref. 22); (d) ———,AO+ calculation (Ref. 20); (e) X, triple
center calculation (Ref. 8); (f) 4, CTMC (Ref. 23); (g) ~, CTMC
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FIG. 5. Distribution of the electronic positions on the pz
plane in an ensemble of 1000 ionizing trajectories when the
receding protons are 100 a.u. apart. Relative collision energy
equals 4.0 keV.
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trons and show that, as an ensemble, they behave
differently from the rest which may be called the "direct-
impact" (DI) electrons. Our results and observations are
generally valid in the relative collision energy range 4.0
to 25.0 keV.

IV. QUASISTATIC MOLECULAR FRAME

1.0 I I t
I

I I I
I

I I I
I

I I I

Vd =f (r, R)R . (15)

The switching function f for an electron in a bound state
has the following asymptotic properties:

Saddle point electrons, because of their spatial loca-
tion, are equally strongly affected by both nuclei. We
therefore analyze our results using a molecule-fixed refer-
ence frame in which, at each instant in time, the nuclei
are held fixed with respect to laboratory coordinates. We
call this the "quasistatic molecular frame. " The electron-
ic energy in this frame, which we call the molecular elec-
tronic energy, is the classical analog of the Born-
Oppenheimer electronic energy. In a collision problem,
one must distinguish between the molecular energy and
the total energy of the electron with respect to the center
of mass of the nuclei. The latter quantity, because of its
oscillatory nature, is not an easily interpreted quantity.
The origin of these oscillations, exemplified in curve a of
Fig. 6, is easily understood: the moving nuclei "drag"
the electron with them which imparts a certain velocity
component on it. When freezing the nuclei one must sub-
tract this drag velocity, which creates the oscillatory be-
havior in total electronic energy, in order to obtain a
slowly varying quantity. At t~ —00 the drag velocity is
equal to the velocity of the target nucleus since the elec-
tron is in an atomic bound state of it. However, within
the interaction region, where the three particles interact
strongly with each other, the magnitude of the drag is not
so obvious.

One encounters the same question in close-coupling
calculations using molecular basis states. ' Molecular
orbitals do not contain any information about the nuclear
motion. One incorporates this information into molecu-
lar states using electron translation factors, to obtain dy-
namic molecular states which provide an appropriate
basis for the quasimolecule formed in slow atomic col-
lisions. The construction of the proper electron
translation factors requires a prior estimate of the drag
velocity.

In our classical calculation we are faced with the in-
verse problem; we have the exact (classical) dynamics in
hand, and we wish to represent it in a quasistatic picture.
With this proviso, we may adapt the devices used in pre-
vious studies. The drag velocity with respect to the
center of mass of the nuclei is represented by
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FIG. 6. Time dependence of electronic energy for two partic-
ular trajectories. Relative collision energy equals 4.0 keV.
Curve a, total electronic energy of a DI trajectory in a space-
Axed reference frame centered at the center of mass of nuclei.
Curve b, total electronic energy of the same trajectory in the
quasistatic molecular frame. Curve c, total electronic energy of
an SP trajectory in the quasistatic molecular frame.

f (r, R)=
—

—,
' as rB~oc, r„ finite

+—,
' as r„~~, rB finite,

which guarantees that Vd approaches the appropriate nu-
clear velocity when R ~~. Numerous models have been
proposed for a functional form of f; we use the one
in Ref. 28. In this model the switching function is in-
dependent of a particular molecular state which makes it
easy to adapt to our classical calculation. The drag ve-
locity is assumed to be equal to the velocity of the point
of intersection of the two vectors R and the total nuclear
force on the electron. The corresponding switching func-
tion is given by

3 3
Pg PB

fo(r, R)=—
~ +~B

A slight modification is necessary to take into account
the fact that there cannot be any drag when an ionized
electron is far away from the interaction region. We ac-
count for this by introducing an exponential decay factor.
Our switching function then becomes

fo(r, R)exp( Pr) if the ele—ctron is not bound to any nucleus
f(r, R)= .

fo(r, R) otherwise .

In our numerical evaluations we have used @=0.01. This
gives converged results for P„(t) defined below.

We now define the molecular energy of a trajectory at
any instant of time by

3

E (t)= —,'m g [r, f (r, R)R, ] ——1 1

A B

Note that the decay factor guarantees that E asymptoti-
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cally approaches the total energy of the ionized electron
with respect to the center of mass of the nuclei (which is
positive). Curve b in Fig. 6 shows that E is a much
smoother function of time ' than the total electronic en-
ergy.

1.0 I I
)

I

Legend
Q.S — b 0.0 a.u.

b ~ 1.0 a.u.

I I
i

I I
t

I I

V. TRAJECTORY RESULTS

A. Molecular energy of saddle-point
versus direct-impact trajectories

In an ensemble of trajectories, two extreme cases of be-
havior of E can be identified. In one case (Fig. 6, curve
b) the electron is impulsively promoted to a positive ener-

gy state, while in the other the (Fig. 6, curve c) trajectory
spends a long time in the portion of the phase space cor-
responding to molecular Rydberg states before entering
into the subspace of positive energy states. The former
type of trajectory produces the direct impact electrons
and the latter, the saddle point electrons.

The scaled time depicted in the figures and denoted by
T in the text is defined as T = —Ut, where U is the asymp-
totic relative nuclear velocity. To a good approximation
the nuclei move in straight line paths (although we have
not made such an assumption in our CTMC calculations)
except at very small impact parameters which make a
negligible contribution to the total cross section. Hence
for most of the trajectories T= —R3. At large t, T=R
for all the trajectories, and it directly represents the scale
of the nuclear subsystem.

To obtain a complete picture of an ionizing event in a
real atom, we must consider statistical properties. To
this end, we define the probability of population of un-
bound states P„(t) by

0.4
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-5.0 -R.O 1.0 4.0

Scaled Time (a.u.)
7.0 10.0

FIG. 8. Time variation of P„(t) at a number of different im-

pact parameters. Relative collision energy equals 25.0 keV.

P„(t)=N„(t)/N, (20)

where N„(t) is the number of trajectories whose molecu-
lar energy is positive, at time t, in an ensemble of N ioniz-

ing trajectories. The asymptotic properties of E
guarantee that

lim P„(t)=1 .
t~+ oo
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FIG. 7. Time variation of P„(t) at a number of different im-

pact parameters. Relative collision energy equals 4.0 keV.

FIG. 9. Time variation of P„(t) at a number of different col-
lision energies. Inset displays the long-time behavior of P„(t) at
the same collision energies.
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With our definition of molecular energy P„(t) is a smooth
function of time which provides insights into the ioniza-
tion process throughout the collision. Figures 7 and 8 il-
lustrate the typical behavior of P„(t) at constant impact
parameter. To construct each curve, we have used 1000
ionizing trajectories generated by the CTMC method at
fixed b. There is a sudden transfer of population into the
unbound molecular states around T =0 where the nuclei
are close to each other but the rise in P„(t) is slow at later
times. The impulsive excitation of the electron is seen to
be more eScient at lower impact parameters.

The behavior of P„(t) in an ensemble of 1000 ionizing
trajectories generated by the full CTMC method is illus-
trated in Fig. 9. Qualitatively these curves are similar to
those discussed earlier; but since they have been averaged
over b, they provide a more complete picture of the clas-
sical ionization process. Close to T =0, impulsive excita-
tion is most efticient at lower collision energies. This
seemingly counterintuitive behavior has a simple explana-
tion: at lower energies most of the ionizing events are
generated by trajectories having small impact parame-
ters, and these tend to produce more direct impact elec-
trons. The intuitive behavior of P„(t) is recovered at
longer times. It is interesting to note that even at
R =100.0 a.u. (T=100.0 a.u. ) a large fraction of the
ionizing trajectories correspond to molecular bound
states.

The rate of excitation to positive molecular states un-

dergoes a drastic change around T =1-2 a.u. which sug-
gests a natural definition of the DI and SP trajectories.
We regard the subensemble of ionizing trajectories which
attains a positive E before T =2.0 a.u. as direct impact
ionization. When analyzed in this way, the trajectory re-

suits are not very sensitive to the exact value of T as long
as it is close to 2. The rest of the ionizing trajectories
give rise to the SP electrons. Our results for the fraction
of SP electrons, i.e., P„(T=2.0 a.u. ) as a function of col-
lision energy are presented in Fig. 10. It is evident that,
at these energies, only a small fraction of ionization takes
place via direct impact trajectories.

B. Dynamical correlations
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The dynamics of the SP trajectories is qualitatively
different from that of the DI trajectories. The receding
protons have a profound influence on the SP electrons.
At an intermediate distance, the electrons are focussed
along the straight line which bisects the internuclear axis.
At zero impact parameter, the motion along this line
represents a dynamically unstable equilibrium state and
any electron which executes this motion will eventually
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ber of different times. Total of 1000 ionizing trajectories gen-
erated by the full CTMC method were used. Relative collision
energy =4.0 keV.



41 SADDLE-POINT ELECTRONS IN PROTON-IMPACT. . . 5885

become ionized. Figures 11 and 12 illustrate the strong
interplay of the forces acting upon the three particles.
We have depicted phase-space distributions of the two
different kinds of trajectories by means of a projection
onto a plane of two angular coordinates 8, and 8~.
8„=cos '(r R/rR) is the angle between the electronic
position vector r and the internuclear vector R and
8 =cos '(p R/pR) is the angle between the electronic
momentum vector and R (See Fig. 13). Note that p is the
momentum conjugate to r and is independent of any
model. When the distance between the receding protons
is much greater than the impact parameter, the time vari-
ation of (8„,8 ) for a trajectory provides a measure of the
degree of correlation. In particular an electron (nearly)
free from a nuclear attraction is characterized by an ap-
proximately constant L9 and a H„which asymptotically
approaches 8 .

At T= —10.0 a.u. , the electron has a drag velocity
component equal to —v/2 since it is in the ground atom-

P ROJECTI
PROTON

TARGET
PROTON

ic state of the target proton; because of this there are
more trajectories in the upper left quadrant at this time.
At T=O the trajectories are scattered in all four quad-
rants. In subsequent motion the DI trajectories quickly
become asymptotic in the sense that p become (nearly)
parallel to r while the SP trajectories are focused into the
point (m/2, n. /2). As time progresses the electrons move
away from the saddle point region and the direction of p
slowly spreads over all possible values.

At lower collision energies more DI trajectories are
found in the lower left quadrant but more energetic col-
lisions produce more DI trajectories in the upper right
quadrant. This effect is in qualitative agreement with the
conventional picture of ionization wherein the electron is
impulsively excited into an atomic continuum state of ei-
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FIG. 14. Asymptotic electronic velocity (relative to CMN)
distributions of DI and SP trajectories at two different collision
energies. V and V, are the velocity components in usual cylin-
drical polar coordinates.

FIG. 12. Distribution of electrons in (8„6I~) plane at a num-

ber of different times. Total of 1000 ionizing trajectories gen-
erated by the full CTMC method were used. Relative collision
energy =25.0 keV.

FIG. 13. Definition of the angles H„and 8~ for a planar tra-
jectory.
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ther the projectile (electron capture to the continuum) or
the target (charge transfer to the continuum) with the
latter becoming more important at moderately high ener-
gies. Such an effect is not very prominent with the SP
electrons. This fact is more clearly seen in the ejected
electron velocity distributions displayed Fig. 14.

C. An asymptotic definition of saddle-point electrons

Figure 14 was generated by integrating the equations
of motion (1) out to R =5000 a.u. and recording the
asymptotic values of the velocities V =—p and V,:—z in
the usual cylindrical coordinate system centered at center
of mass of the nuclei. The figure shows that in the space
of asymptotic velocities, DI and SP electrons are separat-
ed by the curve

(V +V )' =u/2
P

(22)

where u/2 is the proton velocity with respect to center of
mass of the nuclei. (There are, as one can see, a few
discrepancies at the highest kinetic energy; a small frac-
tion of the trajectories assigned as "saddle point" inside
the interaction region end up on the outside of the
asymptotic boundary, and vice versa. This probably
reflects a certain arbitrariness in any definition of a total
energy in a quasistatic molecular frame at such high ener-
gies. ') Hence, one may define the saddle-point electrons
as the ones having an asymptotic speed smaller than that
of the protons in the frame of the center of mass of the
nuclei. This definition has the advantage that it charac-
terizes the SP electrons with an experimentally measur-
able quantity and it is straightforward to evaluate the
fraction of such electrons using the double differential
cross sections. (To our knowledge, no published double-
differential cross sections, obtained either from experi-
ment or quantum-mechanical calculations, exist for this
system at the energies we studied. )

ensembles. By introducing an appropriate definition for
the molecular electronic energy, we are able to show that
the distinction between impact and saddle-point ioniza-
tion mechanisms is established very early in the collision.
The saddle-point electrons, which make a large contribu-
tion to the total ionization cross section even at rather
high energies, are strongly influenced by the motion of
both nuclei long after the collision has begun. In this
respect, they resemble the threshold electrons studied by
Wannier. The "Wannier electrons, " however, are emit-
ted in the forward direction whereas the classical saddle-
point electrons are emitted in all directions, presumably
up to a maximum scattering angle of m./2 in the laborato-
ry frame. The dynamics of the saddle-point electrons at
energies well above threshold is considerably more corn-
plicated than it is at threshold since it takes place in a
larger phase space. Our study of the evolution of
position-velocity correlations (Figs. 11 and 12) illustrates
this.

Using Wannier's arguments one can see that at thresh-
old all the ionization flux emerges as saddle-point elec-
trons. This fact, along with the results depicted in Fig.
10, implies the existence of a dip in the probability of
saddle-point electron production as a function of collision
energy. This effect is caused by the delicate dependence
of the energy transfer between the electron and the nu-
clear subsystem, not only on the relative nuclear velocity
but also on the impact parameter.

To this point our study has been largely empirical.
Many challenging questions emerge from this work,
among them the nature of the dividing surface inside the
interaction region that separates impact and saddle-point
trajectories, and the detailed mechanisms behind the
position-velocity correlations. Some (though not all) of
these issues can be addressed in the context of planar
model calculations. Work along these lines is in progress.
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VI. DISCUSSION

Our contributions to the problem of correlated dynam-
ics in proton-impact ionization have been of two sorts,
technical and conceptual. In the first area, we have
developed an improved technique for classical-trajectory
Monte Carlo simulations of proton-impact ionization.
Our use of perturbation theory to correct the long-range
propagation have enabled us to obtain accurate total ion-
ization cross sections at low collision energies. We have
also found a simple yet precise way to distinguish be-
tween "direct-impact" and "saddle-point" ionization
trajectories —one simply compares the asymptotic elec-
tron velocity to the asymptotic velocity of the receding
nuclei. This criterion, based as it is upon experimentally
observable quantities, can be directly related to the mea-
sured double-differential cross section. It also has a clear
quantum-mechanical analog, in terms of the overlap be-
tween an outgoing wave packet and the asymptotic states
specified by definite values of electron and proton mo-
menta.

We have devoted considerable attention to the qualita-
tive dynamics of individual trajectories and of trajectory

APPENDIX

We outline here an approximate semianalytical method
to calculate the changes in a Kepler orbit due to the
asymptotic motion of the incoming projectile. We use
classical time-dependent perturbation theory.

The Hamiltonian of the three-body system can be
decomposed into three parts:

H =H, +H~ +H', (A 1)

where H, represents the atomic Hamiltonian
B

P~ /2M —1/rz ) Free motion . of the projectile is
represented by HR, [PR /2p';p'=m„(m~+mc)/

This work is supported by National Science Founda-
tion Grant No. PHY86-04504 through the University of
Colorado. The graphics and the computations were done
on the JILA VAX 8600 and at the CU Academic Corn-

puting Services, respectively. We wish to thank Professor
C. H. Green and Professor J. S. Briggs for helpful discus-
sions.
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( m „+me +m c }]. The perturbation is

H'=H~ +H
Z+

IR'+c+., I

'

Pl g[g]
C+( —]

=
m&+mc

(A3)

(A4)

The time evolution of any constant of motion E of the
Kepler motion is given exactly by

(rtt, 8, 4) of re and their conjugate momenta (Pe, Pe,
pz, ). Since H+ involves only the spatial coordinates, we
have

ar aa ar aa ar aa
+ + . (A7)

Bp Brtt Bpe BB Bpq B@

The first-order approximation is obtained by performing
the time integral in (A6) over the path of unperturbed
motion. Then

~& =~&++~& (A5) R'= bi+ utk, (A8)

b,K+= f K+dt = f [K,H+]dt . (A6)

In Eq. (A6), [] represents the Poisson bracket which can
be evaluated conveniently in spherical polar coordinates

I

where i and k are unit vectors on x and z axes. u is the
relative collision velocity. This simplification allows one
to express E+ in an asymptotic expansion in ut. Direct
substitution of (A8) with x = —1Ivt gives

BH~ C+Z+x [(b sinBcos@+C+rtt )x —cosB]=+
[(b +C&rtt+2C brttsinBcos@)x +2C rttcosB+1]

(A9)

Similar expressions are obtained for BH+IBB—and
BH+IB4—. Expansion of the denominator in Taylor

series about x =0 gives asymptotic expansions in —ut,

Q++ n= t'ai —x',
Brt3

aH

ae =gb, x', —

J =2

(A 10)

By straightforward algebra one can evaluate the first few
coefficients a +—

, b —,and c +—. We do not list them here
since they are unwieldy. Insertion of these expansions in
(A6) gives

bK =g f A xjdt, —

J
~

2
OC

where

( 8@) BK ~~ BK b~~ BK

(A 1 1)

(A12)

hK~= g Bi
"—Si,

J =2
(A13)

A —are periodic functions of time along the path of the
unperturbed motion since (rtt, 8 4) describes a point
which moves on a Kepler orbit.

When v is much smaller than the typical orbit velocity
and the projectile is far away from the target, the change
in x over a Kepler period is much smaller than x itself.
Hence we can safely replace x in Eq. (All) by its average
over each period which reduces the integral to a surnma-
tion

S = g x,t, B =f —.A*(e}de .
i=1

(A14)

Note that using the analytical expressions for the Kepler
motion one can express A * solely as a function of the
true anomaly 8.

A Kepler orbit is completely characterized by six in-
dependent constants of motion. It is convenient to
choose these to be the three components of angular
momentum l, I, I, two components of the Laplace-
Runge-Lenze vector, say A, A, and the initial true
anomaly 00. Given the trajectory initializing variables
(E,ct, e, i, 0, tv) we can easily evaluate the constants.
Equations (A13) and (A14) reveal that the asymptotic
propagation is done over an (infinite) integral multiple of
orbit periods. Under such conditions we have found that
the changes in 00 are small compared to the perturbations
in the other five quantities, except in those few cases
where the eccentricity is nearly equal to unity. Hence
only the perturbations of the latter five quantities were
calculate.

Most of the integrals in the first few coefficients B+—can
be done analytically; the rest can be evaluated efficiently
by numerical integration. Since B— are independent of
collision energy, they can be stored and used to run tra-
jectories at different collision energies. Once a starting
point for the numerical integration of the Hamilton's
equations is chosen, S, can be evaluated to arbitrary ac-
curacy by performing the summations in-(A14) numeri-
cally. These quantities are independent of the parameters
of a particular trajectory; they need to be evaluated one
for a given collision energy. Once the perturbed quanti-
ties l, l, l„A, and A are calculated, it is straightfor-
ward to evaluate the corrected set of variables
(E,a, e, i, fl, tv) which can be used to initialize the trajecto-
ry.
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