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The saddle-point complex-rotation method is used to compute the energies and autoionization
widths of the 1s3s3p P' and 1s3p3p P Feshbach resonances for the lithiumlike ions with nuclear
charges from Z =2 to 6. These doubly core-excited quartet states rapidly autoionize, emitting low-

energy electrons via the continua associated with the 1s2s 'S and 1s2p 'P states of the residual ion.
The radiative decay rates of these initial states are shown to be small relative to their autoionization
rates, so that the lifetimes of these resonances are essentially determined by their widths due to au-
toionization. A detailed study of the closed-channel component of the 1s3p3p P resonance is made
in order to investigate the degree to which the saddle-point solution approximates this component
of the resonance wave function.

I. INTRODUCTION

The 1s3s3p P and 1s3p3p P states in lithiumlike sys-
terns are Feshbach resonances that for small values of the
nuclear charge Z decay predominantly by autoionization.
These systems are closed-channel resonances with respect
to the excited two-electron target states 1s3s S and
1s3p P'. The energies of both these resonances lie below
both the 1s3s S and 1s3p P' closed-channel target
states, except for the negative ion 1s3p3p P' state in
He, which lies above the 1s3s S threshold of He. The
Auger energies of the electrons emitted by these doubly
excited states is small compared to those doubly excited
states in the elastic-scattering energy region. The Auger
energy associated with the decay of the [ls(2s2p) P] P'
state' for instance is an order of magnitude larger for the
case of Be+ as compared to those Be+ systems being
studied here. Resonances positioned above the first
excited-state threshold of the target system ls2s S emit
lower energy electrons; an example is the lithium spec-
trurn where Auger energies lower than those studied
here were measured and identified with the decay
of the [(ls2p) P', 3p] D, [(ls2p) P', 3p] S, and
[(ls2p) P', 3d] F states. The well-studied lithiumlike
quartet systems, ls2p2p P (Ref. 3) and ls2s2p P, con-
trast with those studied here in that they are spin forbid-
den to autoionize in the nonrelativistic approximation.
They can couple to the continua associated with the
1sls 'S state of the target system only through the mag-
netic spin-dependent interactions. The 1s3s3p P' and
1s3p 3p P states on the other hand couple to the continua
associated with the 1s2s S and 1s2p P' states via the
Coulomb interaction and therefore autoionize quite rap-
idly. The radiative rates for decay from these quartet
states are much smaller than the autoionization rates,

making these states essentially optically unobservable for
small Z.

The calculation of the energies and wave functions of
the 1s2s2p P' and 1s2p2p P states is simple with a vari-
ational approach since they behave as bound states, and
as a result satisfy the upper-bound property. The inner-
shell vacancies in these states are implicitly present as a
result of the Pauli antisymmetry principle. On the other
hand, the vacancies in the 1s3s3p P' and 1s3p3p P
states must be included in the trial wave function explic-
itly. The saddle-point variational method is utilized in
this work to explicitly include all the relevant inner-shell
vacancies into the closed-channel wave function. This
method gives a good approximation for the energy of a
narrow Feshbach resonance. The full resonant wave
function is investigated for the purpose of computing au-
toionization widths by including the open-channel com-
ponent through the use of complex coordinates. This
saddle-point complex-rotation method is used at two
different levels of approximation. We find that correla-
tion effects for the very-low-Z systems necessitate the use
of a trial wave function which is flexible enough so that
the closed-channel and open-channel components of the
full resonant wave function can interact and consequently
influence each other's structure in the variation calcula-
tion.

II. CLOSED-CHANNEL WAVE FUNCTION-
THE SADDLE-POINT METHOD

The saddle-point technique is a variational method
which is used to obtain the best square-integrable wave-
function approximation for inner-shell vacancy states in
atomic systems. However, if the energy of the inner-
shell vacancy state is degenerate with a continuum of the
same angular and spin symmetry, then the full resonance

41 5S44 1990 The American Physical Society



41 ENERGY AND AUTOIONIZATION WIDTH OF THE. . . 5845

wave function will contain an open-channel component
which includes this continuum. The saddle-point wave
function can then be considered the closed-channel com-
ponent of this full resonant wave function. We have
found, for narrow Feshbach resonances, that the saddle-
point energy is usually a good approximation to the reso-
nance energy from which Auger energies are computed
and compared with experiment. A golden-rule analysis
of the resonance width via perturbation theory basically
yields an expression of the following form:

Here I is the autoionization width, T is the transition
rate, tI'I; and (([if are the wave functions of the initial and
final states, respectively, and p(e) is the energy density of
final states. An isoelectronic analysis of the width given
by this expression for a given resonance as a function of
Z where products of hydrogenic wave functions are used
for the initial and final states yields a result which is in-
dependent of Z. We have observed this trend to be ap-
proximately true in earlier works where the widths were
computed independently for each value of the nuclear
charge with the saddle-point complex-rotation method.
Examples may be seen in Tables II and III of Ref. 3 for
the 1s2p2p D and 1s2p2p S resonances, respectively,
and in Tables II and III of Ref. 4 for the [ ls(2s2p) P] P'
and [ls(2s2p)'P] P' resonances, respectively. These ex-
amples also illustrate that the widths for small values of

m, n, k m, n, k
0[(l I ()L2&2, I3] +a&, &I3, y&( lr, r2, r3 )

L,M A A AX P[(l, l )L,I ](rl r2 r3)

Xy(o'»o'2, o'3), (2)

where the radial, angular, and spin parts are given, re-
spective)y, by

Z are not independent of Z. This is to be expected, how-
ever, since nuclear screening effects and electron-electron
interactions in the low-Z systems act to significantly per-
turb the electron orbitals from the hydrogenic forms rela-
tive to high-Z systems. These correlation effects have
bearing on whether or not Eq. (1) is a valid approxima-
tion. Consider the same transition for small and large
values of Z from the point of view of Eq. (1). If the re-
sults for the widths are comparable in magnitude, then
the interactions between the electrons in the low-Z sys-
tern are much larger relative to the electron-nucleus in-
teractions. When this is the case, then the correlation
effects are large, and a determination of the full resonant
wave function will reveal that the open- and closed-
channel components can modify each other to the point
that the original initial and final state decomposition is
not accurate.

The basis functions used in these saddle-point calcula-
tions are eigenfunctions of L, L„S,and S, and are of
the following form:

~m, n k (r r r ) rnrmrke e e
—a r —P r —y r

a~P~y~ 1, 2& 3 1 2 3 (3)

L, M A A A
+[(I,, I )L, , I ](rl r2 r3)

m I,m2, p, m3

&l, l2m, m2IL(2p& Y, '(r, ) Y, '(r2)YI '(r3)&L(2l3pm3IL~&, (4)

g(o(, o2, o 3)=a(1)a(2)a(3) . (5)

The subscript 8 on the nonlinear variation parameters a,
P, and y refers to the particular angular partial wave,
[(l, , l2)L, 2, l3], with which these parameters are associat-
ed. Each partial wave has one such set of nonlinear pa-
rameters which are determined by the minimization of
the energy. The notation indicates that the individual an-
gular momenta of electrons one and two, l, and 12, cou-
ple to a L,2 state which couples to the angular rnomen-
tum of the third electron 13 to form the L quartet state
of interest. The same notation is used for the Clebsh-
Gordan coefficients in Eq. (4). The a in Eq. (5) is the
spin-up spinor.

Vacancies are built directly into the trial wave function
with single-particle projection operators

(6)

where

The radial part of this vacancy orbital is normalized and
given by

R„l"'(r)= A„l

' 3/2
29nI

'I

e "' F~((r) (8)
n

The value of q„i is determined by the saddle-point optimi-
zation procedure in which the energy of the inner-shell
vacancy state is maximized with respect to those parame-
ters in the vacancy orbitals. The explicit functional form
of F~& is determined by the requirement that the set of va-
cancy orbitals in a given inner-shell vacancy state be mu-
tually orthonormal. This will be made clear by way of
the examples given in this work.

The 1s3s3p P' saddle-point trial wave function with 1s
and 2s vacancies for electron 2 and a 2p vacancy for elec-
tron 3 is given by

where q„i is a nonlinear variational parameter, F„I is a
polynomial of the degree n —l —1 in r which may depend
parametrically on the vacancy-orbital parameters, and

1/2
(n —l —1)!

2n [(n +I)!]
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qi =A[1—P„(r2)—Pz, (rz)] 1 —Q P2 (r3) where & is the nonrelativistic Hamiltonian

X ~ [f],i~[(l i, lq)L (2 I 3]
.

[/], i

(10} (15)

The vacancy orbitals P„and Pz, in P„and P2, are or-
thogonal. A is the antisymmetrization operator. The
summation is over the Slater-like basis functions corre-
sponding to the powers of r, i =(m, n, k), with angular
symmetry [8]=[(l,, lz)L, zl 3]. The projection operators
in Eq. (9}affect only the radial part of the basis; this is be-
cause

I

Pi (r, )

I

~R„i"'(r )Yi (r ))(R„&"'(r )Yi (r )~ (ll)
m= —I

and
I

~ Yi (r, ))( Yi (r, )~[(l, , l2)L, z, l3]LM)
m= —I

(12)

The saddle-point variation is carried out by

(q, /%/q, )

(q, Iq, )
(14)

=
~ii, I [(I

~ l2 )L qq l3 ]LM ~

The vacancy orbital does not contain a spin coordinate;
this is because inner-shell vacancy states are formed by
orbital excitations; the correct spin eigenfunctions are as-
sumed in the trial wave function.

The ls3p3p P saddle-point trial wave function with 2p
vacancies for electrons 2 and 3 is given by

qi =A 1 —QP2 (r2) 1 —QP2 (r3)
m m

~ [I'],id[(ii, l2)Li2, I3] ' (13)
[F],I

More explicitly the saddle-point method minimizes the
energy with respect to the parameters in the electron or-
bitals: the linear parameters A t&~; and the nonlinear pa-
rameters (a&,P&, yz), and maximizes the energy with
respect to the parameters in the vacancy orbitals q„i.

Special consideration must be afforded to the 1s vacan-
cy in the 1s3s3p P' wave function. The reason stems
from the presence of a 1s electron in this system and the
Pauli antisymmetry principle. Consider for the moment
a trial wave function with the symmetry of Eq. (10), but
with no projected vacancies. The process of antisym-
metrization itself implicitly generates a 1s vacancy, i.e.,
the lowest root of the secular equation, Eq. (14), would be
the 1s2s2p P' state. Therefore one might initially sup-
pose that the ls projection in Eq. (9) is unnecessary for
the Is3s3p P' state and only the 2s and 2p vacancies are
essential. This premise would lead, however, to a varia-
tional breakdown: the resulting variation would mold
electron 2 into a ls electron (since we only required that
it not be in a 2s orbital} and electron 1 would then be-
come a 2s electron as a result of the Pauli antisyrnmetry
principle. With these considerations in mind we may
evaluate the requirement of the explicit presence of the 1s
vacancy orbital in the trial wave function as virtual, the
only use of which is to maintain the identity and integrity
of the 1s-electron orbital. A previous study' of this situ-
ation in two-electron bound states (ls3s S is one exam-
ple) has led us to the conclusion that the energy must
only be required to be stationary with respect to varia-
tions in the "virtual 1s vacancy" orbital. The investiga-
tion of the 1s3s3p P' system in this work has revealed
that the stationary energy is a maximum with respect to

TABLE I. Energy and width of the ]s3p3p P resonances in lithium-like ions. (H, +H, ), (H~), and (H, ) are the expectation
values of the relativistic operators corresponding to kinetic energy correction plus Darwin term, orbit-orbit or retardation, and the
nonrelativistic mass polarization effect, respectively. E total is the sum of the saddle-point energy (nonrelativistic energy) plus the
aforementioned corrections. The shift and width results correspond to computations from the saddle-point complex-rotation
method: the first results quoted (top of the line) are from the flexible-type wave function [Eq. (21)], and the second set of results (bot-
tom of line) are from the fixed-type wave function [Eq. (20)]. The width from the flexible-type wave function is more reliable. The
Auger energies are computed from E total and the shift resulting from the flexible-type wave functions. The results are quoted in
atomic units, except for the Auger energies which are quoted in electron volts [see Eq. (27)].

E
saddle
point

—2.064499

—4.846 711

—8.852 839

—14.081 796

—20.533 261

Qzp

0.976

1.989

3.005

4.017

5.024

(H, +H, )
(units

of
10-4)

—1.07

—5.47

—17.54

—43.32

—90.79

&H, )
(units

of
10-4)

+0.005

+0.052

+0.182

+0.432

+0.841

&H, )
(units

of
10-4)

—0.020

—0.079

—0.157

—0.240

—0.352

total

—2.064 607

—4.847 261

—8.854 591

—14.086 109

—20.542 291

shift
(units of

10 )

—5.3
—3.8
+0.01
—2.54
+4.33
+2.65
+6.55
+5.50
+7.83
+7.13

r
width

(units of
10 ')

1.213
0.678
4.614
4.128
5.365
5.221
5.683
5.630
5.858
5.836

Auger
energy

(eV)

1.854

4.925 36

8.777 70

13.3889

18.7572
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&+SP~~~+SP~
sp XBi@i where ~ i i =Esp .

I,
& +sp~+sp&

(16)

The saddle-point energies for the 1s3p 3p P and
1s3s3p P' systems are given in the first columns of

variations of q&, for Z 3, and it is a point of inflection
for the He system.

It is worthwhile to discuss the nature of the functional
form of the radial part F~&. For the 1s3s3p P' system,
for example, we first assume a hydrogenic 1s-vacancy or-
bital whose form is determined by Eqs. (7)—(9) with n = 1,
I =0 and F„=1,i.e., the associated Laguerre polynomi-
al. " The 2s-vacancy orbital is then determined by n =2,
I =0, and F), being the ( n —I —1)= 1st-order polynomial
in r determined wholly by requiring orthogonality be-
tween P„and Pz, . This function will then only be the
Laguerre polynomial if q„=qz„which in general is not
the case. For the case under discussion here we find that
q„=Z and q2, =Z —1. It is interesting to note that in
the case of the 1s3s3p P' doublet system we would find
q„=Z —

—,
' and qz, =Z —1. The "real 1s-vacancy orbit-

al" is half-screened by the Is electron in the doublet sys-
tem, while in the quartet system under investigation here
we find that the "virtual 1s-vacancy orbital" required to
prevent a variational breakdown is essentially unscreened
by the ls electron. It should also be pointed out that
physically it makes sense that the 2s-vacancy orbital is al-
most completely screened by the ls electron. Finally the
2p-vacancy orbital is chosen to be hydrogenic with n =2,
I =1, and Fz~ is the relevant associated Laguerre polyno-
mial in Eqs. (7)—(9). We find that q2 =qz„ i.e., the 2p-
vacancy orbital is also approximately fully screened by
the 1s electron as might be expected on physical grounds.
Actually in all the cases studied here, q2~ is slightly
smaller than qz, (by about —,'), indicating that the 2s-

vacancy orbital is screened less by the presence of the 1s
electron as compared to the 2p-vacancy orbital.

The final result of Eq. (14) via these saddle-point varia-
tion procedures, is a set of optimized antisymmetrized
basis functions 4; and optimum linear parameters B;,
such that the energy expectation value of the resulting
saddle-point wave function %&~ is the saddle-point energy

Esp i.e.,

Tables I and II, respectively. The 1s3p3p P wave func-
tions contained seven partial waves and a total of 65
terms for Z=2, 55 terms for Z =3, 4, and 5, and 63
terms for Z =6. The 1s3s3p P wave functions were
constructed from seven partial waves for Z =2—5 and
from eight partial waves for the case of Z =6; 46 terms
were used for Z =2, 52 terms for Z =3, 4, and 5, and 50
terms for Z =6. The optimized q„I values are given in
the second columns of these tables. The next three
columns contain relativistic and mass polarization
corrections to the energy. ' These corrections were com-
puted via first-order perturbation theory. The first
correction corresponds to the relativistic correction to
the kinetic energy plus the Darwin term. The second is
due to the retardation of the electromagnetic field be-
tween the electrons, often referred to as the orbit-orbit
correction. The third correction is a nonrelativistic
correction referred to as the mass polarization eAect. E
total is the sum of saddle-point energy and these first-
order corrections.

III. RESONANT WAVE FUNCTION-
COMPLEX COORDINATES

The considerations discussed in the previous section
suggest that the resonance wave function might be ex-
pressed as follows:

+s =ij'. +4. (17)

where the closed-channel component is constructed from
the saddle-point solution, and the open-channel com-
ponent is constructed with the use of complex coordi-
nates.

The open-channel wave function is expanded as fol-
lows:

40 =&Oi(1 2) X Dk +k(3) (18)
k

The two-electron target-state wave function g, is the
1s2p P' state for the case of the 1s3p3p P system; for
the case of 1s3s3p P', it can be either the 1s2p P' or
1s2s S state. These target states are approximated by
three partial-wave configuration-interaction wave func-
tions. The convergence of the energy of these target
states, along with the nonrelativistic energy of Accad,
Pekeris, and Schiff' for comparison are given in Tables
III and IV. The outgoing electron's wave function is ex-

TABLE III. Convergence of the nonrelativistic energy of the three-partial wave (, 1s2p)'P state (in a.u. ).

No. of
rtial waves Accad, Pekeris, and Schiff'

He I

Li II
Be III
Btv
Cv

No. of
terms

—2.131 666
—5.025 344
—9.172 195

—14.570 124
—21.218 544

—2.132 387
—5.026 591
—9.173 691

—14.571 763
—21.220 273

10

—2.132 418
—5.026 654
—9.173 771

—14.571 853
—21.220 371

Nonrelativistic

—2.133 164
—5.027 716
—9.174 973

—14.573 138
—21.221 711

Relativistic

—2.133 278
—5.028 278
—9.176 752

—14.577 510
—21.230 855

'Reference 13.
The number of terms for helium is 5, 8, and 9.
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TABLE IV. Convergence of the nonrelativistic energy of the three-partial wave (1s2s) S state (in a.u.).

No. of
ial waves Accad, Pekeris, and Schiff'

He I

Li II
Be III
BIv
Cv

No. of
erms

—5.109 360
—9.295 610

—14.732 227
—21.419010

—2.175 137
—5.110587
—9.297 097

—14.733 737
—21.420 584

—2.175 178
—5.110651
—9.297 097

—14.733 819
—21.420 672

Nonrelativistic

—2.175 229
—5.110727
—9.297 167

—14.733 897
—21.420 756

Relativistic

—2.175 344
—5.111342
—9.299 174

—14.738 898
—21.431 270

'Reference 13.
The number of terms for He I is 3, 6, and 7; the number of terms for Li II is 4, 7, and 8.

panded in terms of the one-dimensional complete set of
functions Qk which employ complex coordinates in order
to represent this continuum electron by a square-
integrable function. ' This basis has the form

"Mk(j)=rj"e ''FL(rj)a(a ) with r ~r e. (19)

The less restrictive case only utilizes the optimized basis
functions from the saddle-point computation to expand
the closed-channel component, i.e.,

(21)

The terms fixed and Qexible refer to the disposition of the
linear parameters B; and C, , respectively, in the complex
variational procedure

(e, /w/e„&
(22)

The parameters C; in the flexible resonance trial wave
function are determined in this variation along with the
D, in P„whereas . the B,. in the fixed resonance trial wave
function are held fixed [fixed to the values determined by
the saddle-point computation, Eqs. (14) and (16)] and
only the D; are allowed to vary.

The complex eigenvalue which results from the varia-
tion given by Eq. (22} is expressed as E„—i(1"/2). I is
the autoionization width due to the Auger decay from
the "initial state" g, to the "final state" continuum g, .

where y, is a nonlinear variational parameter. When Eq.
(19) is used in Eq. (18) the proper angular and spin cou-
pling is implemented to form the L symmetry of interest;
this coupling of Q to the target g, has only been
suppressed in these equations for ease of notation. All of
the calculations in this work are carried out by expanding
the open channel with 15 Dks; k runs from 0 to 14 for ss
electrons and from k =1 to 15 for sp electrons.

The closed-channel wave function g, in Eq. (17}is con-
sidered at two levels of approximation. The more restric-
tive case simply uses the saddle-point wave function from
Eq. (16) as the closed-channel component, i.e.,

4"„"' =1t""' +g, with f""' =4 = gB,4, . (20)

E„ is the resonance energy via which we define a shift
from the saddle-point energy by

Esp (23)

IV. RESULTS AND DISCUSSION-
(1s3p 3p)4P STATK

The results for the widths and shifts of the ls3p3p P
closed-channel resonances are given in Table I. Two re-
sults are quoted for both the width and the shift of the
ls 3p 3p P system which autoionizes via the
[(ls,2p) P, ep] P continuum only. The first set of results
quoted for these resonance parameters is obtained with
the flexible wave function given by Eq. (21}, while the
second set of results is obtained with the fixed wave func-
tion Eq. (20}. These results are substantially difFerent for
the case of the He ion, however the discrepancy be-
tween the two sets of results gets progressively smaller as
a function of Z at a very fast rate. More specifically the
two results for the width difFer by 44%, 11%, 2.7%,
0.93%, and 0.38% for Z =2 through Z =6. The nature
of the two trial wave functions used to obtain these re-
sults makes it clear that correlation effects are responsible
for this discrepancy. Apparently the open-channel com-
ponent of the resonance wave function significantly per-
turbs the closed-channel component from that obtained
from the saddle-point method for cases of small Z. This
is not surprising when considered in the context of the
discussion at the beginning of Sec. II where it was point-
ed out that electron correlations are enhanced in low-Z
systems.

A very interesting question is the following:
Specifically how is the closed-channel wave function
modified by the presence of the open-channel component.
We have investigated this question from the point of view
that the closed-channel component of the resonant wave
function can still be identified as an inner-shell vacancy
state in the cases of small Z. If the major change in the
closed-channel component results from a modified vacan-
cy orbital, then this situation can be tested by investigat-
ing various closed-channel components of the form given
by Eq. (13) with difFerent q values and appealing to the
general variational principle of stationary energy. More
specifically, the correct vacancy orbital in the context of
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the full resonance wave function may not be that chosen
by the saddle-point method which restricts itself to isolat-
ed inner-shell vacancy states which are not perturbed by
the continuum.

These ideas are checked out by computing the reso-
nance parameters two different ways with complex coor-
dinates: with the fixed wave function Eq. (20), and also
with the flexible wave function Eq. (21); this is done for a
range of q values that includes the optimum value gen-
erated by the saddle-point method. It should be stressed
that when the fixed-type wave function is used with a q
value that is not the optimum one chosen by the saddle-
point method, the linear parameters 8, and basis func-
tions 4; are generated by Eq. (14) using this nonoptimum
q. These results are displayed by plotting the resulting
resonance energies and widths as a function of q.

Figure 1 plots these resonance energies for the case of
He; also included in this plot is the energy of the
inner-shell vacancy state as a function of q, the maximum
of which is the saddle-point energy. The resonance ener-

gy yielded by the flexible wave function is stationary over
a very wide range of q values as compared to the other
energies. This might be expected on the basis of the
complex-rotation method with a basis set which is ap-
proximately complete. The energy yielded by the flexible
wave function takes on a minimum value —2.065 037 a.u.
at q2~ =1.04. The resonance energy yielded by the fixed
wave function is stationary over a much smaller range of
q values; a minimum —2.065 084 a.u. , is found at

q2~ =1.14. The stationary resonance energies from these
two methods di8'er by only 0.000047 a.u. These reso-
nance energies are both negatively shifted from the
saddle-point energy —2.064499 a.u. , this shift being gen-
erated by the interaction of the closed- and open-channel

components of the resonance wave function. The op-
timum q values for these resonances energies are some-
what larger than the 0.98 optimum q2~ value determined

by the saddle-point method which yields a maximum en-

ergy for the inner-shell vacancy state. The presence of
the open-channel component has the effect of decreasing
the amount of shielding of the nucleus experienced by the
2p-vacancy orbital.

The corresponding He widths generated by the two
resonance wave functions are plotted in Fig. 2 as func-
tions of qzz. The width from the flexible wave function
remains nearly constant for a wide range of q values as
might be expected once again based on the theory of the
complex-rotation method utilizing a large near-complete
basis. On the other hand, the width from the fixed wave
function grows fast with increasing q2~. An incorrect
value for the autoionization width would clearly be ob-
tained if the width result from the fixed wave function
with the saddle-point closed channel were chosen. How-
ever, if the fixed-type wave function were opted for and in
addition a search for a stationary energy as a function of
q were made, then the corresponding width result for
q2&=1. 14 would be chosen, i.e., I =0.00116 a.u. The
"degree of correctness" for this result can only be judged
within this particular investigation by comparing this re-
sult to that obtained with the flexible wave function. The
flexible wave function yields a stationary resonance ener-

gy for q2~ =1.04, the corresponding width result is
I =0.001 26 a.u. ; at this point it should be noted that the
width from the flexible wave function only increases from
0.00121 to 0.00131 a.u. as q increases from the saddle-
point optimum value q2~=0. 976 to 1.14. The hunt for
the optimum width result via the fixed wave function
would be more gratifying if this width were stationary
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FIG. 1. He 1s3p 3p P resonance energy and saddle-point energy as a function of the nonlinear parameter in the vacancy orbital
q2~. The energy is expressed in atomic units. represents the saddle-point energy, see Eqs. (13)—(16);0 represents the resonance en-
ergy from fixed-type wave function, see Eqs. (20) and (22); 0 represents the resonance energy from fiexible-type wave function, see
Eqs. (21) and (22).
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FIG. 2. He 1s3p3p P width as a function of the nonlinear parameter in the vacancy orbital q2 . The width is expressed in atom-
ic units. I:) represents the width from fixed-type wave function, see Eqs. (20) and (22); 0 represents the width from flexiMe-type wave

function, see Eqs. (21) and (22).

along with the energy for the same q value. Inspection of
Fig. 2 however does not appear to reveal even a point of
inQection for q2 =1.14. The corresponding analysis for
the case of the lithium atom will be made next where a
point of infiection in the width is observed at the q value
for which the fixed wave function achieves minimum en-

ergy.

The 1s3p3p P energies for the lithium atom are plot-
ted as functions of q in Fig. 3. The inner-shell vacancy
state Eq. (13) acquires maximum energy at q2 =1.9885
yielding the saddle-point energy —4.846 703 a.u.
The Aexible and fixed resonance wave functions take
on minimum resonance energies —4.846 713 and
—4.846995 a.u, respectively, for the q values 1.90 and
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FIG. 3. Li 1s3p3p P resonance energy and saddle-point energy as a function of the nonlinear parameter in the vacancy orbital q2p.
The energy is expressed in atomic units. represents the saddle-point energy, see Eqs. (13)—(16); 0 represents the resonance energy
from fixed-type wave function, see Eqs. (20) and (22); Q represents the resonance energy from flexible-type wave function, see Eqs.
(21) and (22).
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2.10. The minimum in the flexible wave function s reso-
nance energy is not detectable at the scale used in Fig. 3;
this energy is essentially constant over the full range of q
values plotted, varying only by 10 a.u. The shift of the
resonance energy from the saddle-point energy 5 is essen-
tially zero for this neutral atomic system, where it was
negative for the negative He ion and positive for the
positive ions as seen in Table I.

The corresponding lithium 1s3p3p I' widths generated
by the two resonance wave functions are plotted in Fig. 4.
The same general features that were observed for the
He system are also present for the case of the lithium
atom; i.e., the flexible width is essentially constant as a
function of q, while the width from the fixed wave func-
tion is a strongly increasing function of q. The width
from the fixed wave function is stationary where it agrees
with the width from the flexible wave function. More
specifically there is a point of inflection for the width near

qz =2.10 where the corresponding resonance energy
takes on its minimum value. If we accept the width re-
sult from the flexible wave function as correct 0.00460
a.u. , then the width from the fixed wave function 0.00461
a.u. (where both the energy and width are stationary with
respect to q} is very good.

The same energy and width analysis was made for
Z =6. The results for the resonance energy and width
from the fixed wave function are found to be more stable
(as compared to the lithium results using the same scale
for energy and q) as a function of q near the minimum in
the energy. The minimum in the resonance energy of the
fixed wave function is also found to occur at a q value
which agrees more closely with that determined by the
saddle-point energies q value, i.e., qz

=5.00 versus

qz~ =5.024. This minimum and therefore optimum reso-

nance energy from the fixed wave function is also closer
to the optimum energy from the flexible wave function.
The conclusion derived from this analysis is that as the
correlation effects become weaker for larger values of the
nuclear charge Z, the saddle-point inner-shell vacancy
state more accurately approximates the closed-channel
component of the full resonance wave function. This sit-
uation is desirable from a practical point of view since it
is much more eScient to optimize q in the context of the
inner-shell vacancy state where the Hamiltonian matrix
to be diagonalized is real symmetric (i.e., Hermitian)
rather than complex symmetric (i.e., non-Hermitian} as is
the case when an open channel is added to the basis via
complex coordinates. Another very important computer
time-saving consideration here is that in the fixed-type
resonance wave function the closed-channel component is
treated as a single basis element, while in the case of the
flexible wave function the closed-channel component
must be represented in terms of a large basis; this cuts
down on the computer time when the complex-symmetric
diagonalization is performed in order to obtain the reso-
nance energy and width.

V. RESULTS AND DISCUSSION-
(1s3s3p)4P STATE

The results for the widths and shifts of the 1s3s3p I"
closed-channel resonances are given in Table II. This
atomic system can autoionize via two distinct open-
channel continua, either [(1s2s) S, ep ] P' or
[( ls2p) P, ss ] P'. For the case of a narrow Feshbach res-
onance with multiple decay channels we assume that the
distinct decay channels can be treated individually in
separate calculations in order to obtain the partial au-
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FIG. 4. Li 1s3p3p P width as a function of the nonlinear parameter in the vacancy orbital q». The width is expressed in atomic
units. represents the width from fixed-type wave function, see Eqs. (20) and (22); 0 represents the width from flexible-type wave
function, see Eqs. (21) and (22).
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toionizing widths. The total width due to autoionization
is then simply the sum of the transition probabilities or
partial widths for the two distinct channels, ' i.e.,

r=I s+rp (24)

I & is the partial width for autoionization via the
[(ls2s) S,sp] P' continuum, while I p is the partial
width for radiationless decay via the [(ls2p) P, es] P'
continuum.

Also generated in the complex diagonalization are par-
tial shifts from the saddle-point energy: hs from the
[(ls2s) S,ep] P' continuum and b,~ from the
[(ls2p) P, es] P' continuum. The Auger energies of the
ejected electrons in Table II are then computed by

s=E„„,+bs+b~ E(1s2s—S),
et=E~ aOi+b'p+hs E(1s2p P') .

(25)

(26)

The relativistic target state energies for the 1s2s S and
ls2P 3P states are from Accad, Pekeris, and Schiff' and
are given in Tables III and IV, respectively. The shifts
employed in these equations were computed via the flexi-
ble wave functions. These Auger energies are quoted in
electron volts in Table II. The conversion from atomic
energy units for a system with nuclear mass At is

1 a.u. =2%„
+m (27)

VI. SUMMARY OF METHOD AND RESULTS

The resonance energies and widths of the 1s3s3p P'
and 1s3p3p P Feshbach resonances were calculated via
the saddle-point complex-rotation method. The atomic
systems investigated were the negative He ion (Z =2),
neutral atomic lithium (Z =3), and the positive ions
Be tt, B rn, and C rv (Z =4, 5, 6).

The 1s3p3p P state undergoes Coulombic autoioniza-

where m is the electronic mass and %„ is the infinite
mass Rydberg 13.605698 eV. ' The Auger energies for
the ls3p3p ~P states were computed according to Eq. (26)
(with b,z =0).

The agreement between the widths computed from the
flexible and fixed wave functions is very good (less than a
l%%uo difference), except for the case of autoionization to
the [(ls2p) P', es] P' continuum of He . Since there is
good agreement between the widths calculated for au-
toionization to the [(1s2s) S,ep] P' continuum of He
it appears that an open channel based on the 1s2p P' tar-
get system is effective in perturbing the closed-channel
component for cases of small Z and an open channel
based on the 1s2s S target system is not. It would be in-
teresting to check these ideas out by performing an
analysis of the 1s3s3p P' energy and widths as a func-
tion of the vacancy orbitals as was done for the 1s3p3p P
system, ' however, the computer time involved in such an
analysis prohibits it. The projections involved in the
1s3s3p P' system are more numerous and dif5cult as
compared to the 1s3p3p P system.

tion through the [(ls2p) P, ep] P continuum. The transi-
tion rate to this continuum or equivalently the width was
obtained by computing the complex eigenvalue
E i—(I /2) The closed-channel component of this reso-
nance wave function was considered at two difFerent lev-
els of approximation: first, it was taken to be the corre-
sponding inner-shell vacancy state computed by the
saddle-point method, while in the second case the closed
channel was expanded in terms of a large optimum basis
set determined by the saddle-point method. The second
case has the advantage that the open-channel component
can influence the structure of the closed-channel com-
ponent during the diagonalization of the non-Hermitian
Hamiltonian matrix. We found that the 1s3p3p P width
results obtained by these two methods difFer substantially
from each other for Z &4. This discrepancy was attri-
buted to correlation efFects in the small-Z systems, where
the presence of the open-channel component perturbed
the closed-channel component from the form it has as an
isolated inner-shell vacancy state (i.e., with no continuum
present). This conjecture was investigated theoretically
and it was found that the vacancy orbitals were slightly
perturbed by the open channel from the form determined
by the saddle-point optimization procedure.

With respect to assessing the merit of the real-space
saddle-point solution as a candidate for the closed-
channel component of a resonance wave function, the
analysis carried out in this work has shown that it de-
pends on the degree of the interaction between the closed
and open channels and the magnitude of the correlation
effects. The analysis performed here was based on two
mathematical points: the theory of complex coordinates
or complex rotation, and the general variational principle
of stationary energy inherent in quantum theory. These
two guiding principles show that for most of the states
considered here, especially for positive ions, the saddle-
point solution is an excellent approximation to the
closed-channel component of the resonance wave func-
tion. However, in some cases ( ls3p3p P for He and Li,
and Is3s3p P' interacting with [(ls2p) P, cs] P' for
He ) the closed-channel component is perturbed from
the form supplied by the saddle-point method. The
analysis implemented here showed that the autoioniza-
tion width is a strong function of the closed-channel wave
function. Therefore, in the cases where the closed chan-
nel is perturbed from the saddle-point solution, a width
computation with the flexible-type wave function [see Eq.
(21)] is in order, or a search for a stationary energy
should be made with a wave function of the fixed type
[see Eq. (20)]. Even when the fixed-type wave function is
used in a complex-coordinate computation, the open-
channel component is calculated via the full resonance
wave function allowing for correlations to afFect it. It
should be pointed out that a "golden-rule approach" to
the computation of the width should yield a poor result
in these cases where correlation effects are important; this
is because the initial and final states are computed sepa-
rately with no mechanism to allow for correlations be-
tween these states.

The 1s3s 3p P' system autoionizes via both the
[(ls2s) S,ep] P and [(1s2p) P', Es] P open-channel
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continua. For this atomic system, we compute the partial
widths due to autoionization to the two continua sepa-
rately, then the total autoionization width is obtained by
adding the partial widths. The transition rate to the
[(1s2p) P,cs] P' continuum 0.0013 a.u. is five times
larger as compared to the transition rate to the
[( ls2s) S,sp] P' continuum for the He ion. This larger
rate is comparable to the Auger rate from the 1s3p 3p P
state to the [(ls2p) P, ep] P continuum for He . The
ls3s3p P' Auger rate to [(ls2p) P', ss] P' increases
monotonically as a function of Z to 0.0016 a.u. for Z =6,
while the rate to [( ls2s) S,sp] P' increases from 0.00026
a.u. for He to 0.00098 a.u. for Li then it increases less
rapidly to 0.0014 a.u. for Z=6. Therefore the decay
rates to these two channels is much more equitable for
larger Z.

In 1973, Oberoi and Nesbet' did an electron-helium
scattering calculation. They found a P' Feshbach reso-
nance located 0.18 eV below their computed ls3s S
threshold of 22.69 eV. The width was found to be 0.05
eV. In this work, the 1s3s3p P'state of He is 0.192 eV
below the experimental ls3s S threshold (22.718 eV)
with a width of 0.042 eV. It appears that the P' reso-
nance seen by Oberoi and Nesbet should be this
1s3s3p P' resonance. Our energy is substantially lower
mainly because of the extra correlations included in our
wave function.

The major decay mode for these states is autoioniza-
tion. Radiative transitions rates to the lower quartet
states are small because of the small energy difference be-
tween these states and those of the lower quartets such as
1s2s3p P', 1s2p3p P, and 1s2s3s S. The radiative
electric-dipole transition rate T in terms of the energy
difference b.E and the oscillator strength f is given in
atomic units by

T =2a (bE) f . (28)

f is constructed from the dipole matrix element, and a is
the fine-structure constant. These radiative transition
rates increase along an isoelectronic sequence' like Z,
while the oscillator strength in the first approximation is
independent of Z. As an example, we consider the C Iv
ion where the radiative rates are largest, and in order to
obtain an upper bound for these transition rates, we as-
sume f =1. The estimated upper bounds for the radia-
tive rates for

and

1s3s3p P'~1s2p3p P, 1s3s3p P'~1s2s3s S,

where I is the autionization width in atomic units and ~

1s3p3p P —+1s2s3p P

are 0.000001 9, 0.000002 8, and 0.000002 8 a.u. , respec-
tively (1 a.u. corresponds to 4. 134X10' sec '). This es-
timate clearly shows that the radiative rates are
significantly smaller than the autoionization rates. The
lifetimes ~ of these resonances are therefore to a good ap-
proxirnation given by

r=(2.419X 10 ' )/I (29)

is the lifetime in seconds. The lifetimes of these states
therefore vary from 4X10 ' to 2X10 ' sec.

The identification of these autoionizing states has not
been made experimentally to our knowledge. The recent
advances in the experimental detection of low-energy
Auger electrons via ion-atom and ion-foil collisions' and
zero degree spectroscopy techniques make possible the
discovery of these core-excited quartet states. We hope
that this is achieved soon, and that other theoretical tech-
niques are applied to the computation of these resonances
so that comparisons with this work can be made.

VII. BYLICKI'S CRITICISM
AND THE SADDLE-POINT METHOD

Recently Bylicki ' remarked that in some situations
variational breakdown may occur in a saddle-point calcu-
lation. In a following paper he derived, based on the
Feshbach projection-operator approach, an operator for
triply excited three-electron systems. It takes the same
form as that of the saddle-point method. The energy
from Bylicki's method is always lower than or equal to
that of the saddle-point method. Therefore, for systems
where Bylicki s method is applicable, it guarantees that
variational breakdown will never occur in a saddle-point
calculation. More discussion on this point is given in a
comparison of Bylicki s method with the saddle-point
technique.

The situations Bylicki is concerned about are those res-
onances which lie between an open channel and a closed
channel where the individual electrons in the target states
of these two channels have exactly the same principal and
orbital quantum numbers but different spin symmetry.
For example, the 1s2s2p P' state of He lies between the
1s2s S and 1s2s 'S states of helium. In this case, the 2s
vacancy is not a vacancy of the entire system. If one only
built 5 1s vacancy in the saddle-point wave function, then
the inclusion of a partial wave of the symmetry
[(lsns) S,mp] will likely cause a variational breakdown
in the (real-space) variational calculation. For the sys-
tems of interest in this work, the open channels are
1s2s S and 1s2s P, whereas the closed channels are
1s3s S and 1s3p P. Here the 2s and 2p vacancies are
present in the entire closed-channel wave function, hence
Bylicki's concern does not apply. Furthermore, varia-
tional breakdown can only occur in a (real-space) varia-
tional calculation when open channels are inadvertently
present. It is no longer an issue when open channels are
explicitly included to carry out a complex-coordinate cal-
culation such as we have done in this work.

The criticism of Bylicki came as a total surprise, be-
cause the saddle-point method does not forbid the build-
ing of a certain vacancy in a segment of the total wave
function in order to remove an open channel. The open
channel can usually be removed in a number of ways.
This is obvious to anyone who uses the saddle-point
method. An example is the recent work of Jaskolska and
Woznicki on Li[( ls2s)'S, nd] D resonances. It appears
that they were aware of the generalized saddle-point
method of Bylicki's prior to its publication but they still
preferred to use the saddle-point method. It should be
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evident that if the saddle-point method is properly used,
then it will not suffer from variational breakdown.

While our method does not suffer from variational
breakdown for the systems mentioned by Bylicki, the cor-
responding saddle-point energies, however, may not be an
excellent approximation for these resonances. (The
saddle-point complex-rotation method does not suffer
from this weakness. ) This is because in these systems the
open and closed channels differ by only one electron's or-
bital. The corresponding shift to the resonance position
could be much larger than those systems where the open
and closed channels differ by two electron orbitals. For
this reason, we have investigated very few systems of this
kind using the saddle-point method. For the few systems

we have applied it to, we never claimed high precision.
Nevertheless, it was the application of the saddle-point
method to the 1s2s2p P' state of He that first revealed
the Feshbach resonance nature of this state. Bylicki
claimed that we had left out a partial wave which con-
tributes about 2 meV to the correlation energy of the P
state of He, and therefore was not negligible. The
neglected shift for this state is about 200 MeV.
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