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Feynman path-integral representation of field operators
and memory superoperators in a Liouville space
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The Feynman path-integral representation for memory superoperators is investigated. A physical
interpretation of evolution superoperators in a Liouville space is given and shown to be closely re-

lated to the Feynman representation of quantum mechanics. From a general Huygens-like principle
it is possible to obtain the Feynman path-integral representation for field operators. An application
of the present formalism to a noninteracting many-boson system is provided.

I. INTRODUCTION

In recent years Feynman's path-integral formulation of
quantum mechanics, ' statistical mechanics, and quan-
tum field theory has proven to be a surprisingly powerful
method in a large variety of problems ranging through
nuclear physics, atomic and molecular physics,
solid-state physics, ' polymer physics, ' ' stochastic
processes, ' and quantum gravity. ' However, no at-
tempts have been made to extend the Feynman path-
integral approach to the operator space in which useful
information on the time development of field operators
for both fermionic and bosonic systems could be extract-
ed. This dynamical behavior was clearly analyzed (within
the nonrelativistic theory) for the density matrix by
means of memory superoperators. An extension of this
treatment to fermionic field operators allowed us to get a
compact expression for the Green's function in a Liou-
ville space within the regime of the interaction picture. '

More recently a U-matrix theory in quantum mechanics
has been developed into a workable approach based on
Dyson's formulation in which the wave function is writ-
ten in terms of the U matrix within the regime of the in-
teraction picture. It was claimed that under the special

case where the unperturbed Hamiltonian and the La-
grangian commute, the wave function can be reduced to
the form identical to that obtained from the path-integral
method and a comparison of the path-integral theory and
this U-matrix theory was presented.

The purpose of this article is to establish a link between
memory superoperators and the quantum analog of clas-
sical action in operator space of a many-particle interact-
ing system. This will allow us to generate a Feynman su-

perpropagator in a Liouvillian space. Because one needs
to specify essentially the action, this formalism will be
potentially powerful in handling those physical situations
where the Hamiltonian or Lagrangian cannot be written
down explicitly. Such a situation arises, for example, in a
reduced description of a many-particle system and is
reflected through a memory term in the reduced action.

II. THEORETICAL BACKGROUND

We consider a many-particle interacting system de-
scribed by a second-quantized Hamiltonian written as
H =Hp+H where Hp is a one-particle operator and H'
contains the many-body efFects, i.e.,

Ho = f d gfd g'f+ ( g, t )%o(g l
g' )P( g', t ), (la)

H'=
, fd(i —fd(2f djI f dgp0+ 0i, 0+ g2, i 4|jplggp 0 g2, p g,

1
(lb)

Here g denotes the full set of coordinates (space and spin)
of a particle; &p(pig') &i(gigplg(2), . . . are the kernels
of the one-, two-, . . . many-particle Schrodinger opera-
tors Ho, H', , . . . , respectively, and P+(g, t) and P(g, t)
are the time-dependent field operators in the Heisenberg-
picture representation satisfying the proper commutation
relations, i.e.,

le(0 r»e(r r))+=le+(k r»0+(r r)i+

=(0 (k r) 4(k ~)i+
—5(g —g') =0 .

Associated with these operators are the correspondin~
commutation superoperators 80= [Ho ]
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= [H', ],whose suin, 8=80+8'= [H, ],is the gen-

erator of motion for the field operators g+(g, t ),g(g, t ). '

As seen, 80, 8', and 8 are Liouville-type superoperators,
i.e., (linear Hermitian} operators that work in the Hilbert
space of operators rather than the space of states. In this
Liouvillian superoperators space the equation of motion
of the interaction-picture field operator is given by '

(fi= 1)

i p—,(f, t)= 6(—t)g, (g, t ), (3)

where Q(t)=[U(t), ] denotes the evolution super-
operator associated with the interaction-picture Hamil-
tonian operator U(t) =exp( i 80t—)I'.

The superoperator 'M(t) is the generator of the motion
group 9 whose elements

Q(t, t')=Pexp i f ds Q(s) (4)

(defined in terms of the Dyson22 time-ordering or chrono-
logical superoperator 9) exhibit well-known group prop-
erties and propagate the field operator f(g, t) according
to the prescription

f A
Q&( t, s) =SPexp i f d sQ&&(s, )

S

it is found that the solution of the difFerential equation (3)
for the two orthogonal complements of the field operator
gp(g, t ) =PJ'S(g', t } and $6(g, t) =aft'(g, t } can be ex
pressed in the form

g, (g, t)=Q(t, t')p&(g, t') .

By introducing the mutually orthogonal projection su-
peroperators P and 6=1—P and defining the group of
time-dependent superoperators 'Msi&, 'gtt(t, s), in the
manner

6&tt(t)=%fl(t)h', A, S=P,6

where it can be verified that the memory superoperator
JKpap(t, t') inust satisfy the Volterra integral equation
(here written for an arbitrary pair of complementary pro-
jections A and 4')

A
JKttsttt(t, t')=4 f—ds 'lVsst&(t, st')JKttst&(s, t') (9a)

and the Ape(t, t') coefficient of $6(g, t') in Eq. (8) is con-
nected to Al pap( t, t') through the expression

JVpo( t~ t '
) = f ds Spa( t ', s )At @pa(s~ t '

) (9b)

whose kernels

%V&&&(t,s, t')= f ds'Ss&(t, s') %std(t', s)
S

involve superoperators

S&&(t,s ) = Q&(t, s )Qz&(s) Qst(s, t)

(10}

which couple the A and 4 subspaces at the common in-
stant of time t. This coupling proceeds by propagation
through % space backward in time from t to s, a subse-
quent direct coupling between the two subspaces mediat-
ed by Qs~(s} and a final forward propagation through I
space from s to t. The kernel %V&&&(t,s, t') defined by Eq.
(10) couples the 4 and A spaces at time t' through
motions forward to s and back again to t'. The integral
of 9&st(t', s') from s'=s to s'=t then recouples to I
space the dynamic information that has been accumulat-
ed in R space during the interval.

The equations for the memory superoperators (JKs»z
and %~st} can be solved formally by iteration. Thus, us-

ing the Dyson U-matrix theory ' and introducing a
Dyson-like superoperator to order both the limit of in-
tegration and pairs of arguements of the integrand factors
'Nz&& appearing in Eq. (9a), it follows from this equation
and after some rather involved analysis that

Altos(t, t ') =SAc(t, t')S, (1&)

and

yp(g, t ) = Qp(t, t')[Jnpep(t, t')yp(g, t')

+JVpa(t, t')$6(g, t')], wherein

s ~@t,s @~@sf' = t t' (13)

s1 S2 —l

At (t, t')= g ( —1)"f ds, f ds2 f "
dsz„%(t', s, )%(t',s2) S(t',sz„)

n (&0)

=9'cos f ds S(t', )s (14)

and

Sl $2
Af(t, t')= g. ( —1)"fds, f ds2 . . f dsz„+,%(t',s, )S(t', sz) . %(t',sz„+, )

n (~0) f

=Vsin f dsS(t', s)
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in which Jl(t', s ) stands for the Hermitian superoperator

%(t,s ):%—&6(t,s)+$6&(t,s ) .

Without going into rnathernatical details, the result,
relevant to our discussion, is that in the Heisenberg-
picture representations in a Liouville space, quantum
field operators, as given by Eq. (8), evolve in time accord-
ing to the prescription '

g(g, t)=exp(i8 Ot)Q&(t, t')0+(t, t')exp( i8—ot')g(g, t'),
(17)

where Q&(t, t') and Q&(t, t') are the (operator subspaces)
decoupling (2) ) and coupling ( C ) group superopera-
tors ' ' in the Zwanzig-Feshbach projection space tech-
nique ' as follows:

Qz(t, t') = 0„(t,t')+ Qa(t, t')

=Vexp i f ds['M~(s)+'M66(s)]
t'

III. FEYNMAN REPRESENTATION
OF MEMORY SUPEROPERATORS:

PHYSICAL INTERPRETATION

can be written in this operator space in the form

P(g, t)=exp 2i8o(t t') —i f—X(g,g;u)du P(g, t'),

(21)

where 5 is the super-Lagrangian operator in the Liou-
ville space, i.e., X=80—6'—:[L, ],such that

S=f X(g, g;u)du, S=S[I—(t, t')]
t

(22)

The formal solution of the Heisenberg equation of
motion in a Liouville space [see Eq. (3)]

Q~(t, t') =At c(t, t')+iAt s(t, t')

=Pexp i f ds(t', s) (19)

where I stands for the paths in the operator space.
The exponential of the superoperator appearing in Eq.

(21) can be decoupled as follows:

exp 2i80(t t') —i f X—(g, g;u )du =exp[2i8o(t t')]exp— i f—X(g, g;u )du 2(t, r),

where 2(t, r) satisfies the operator equation

(23)

r 2

2(t, r}=exp f g(z)dz + g g (r+ I)! f 'g(z)dz
0 ~=2 &' p=P 0

with g(z) given by

g(z)= —g f '280du, S[r(t, t )]
i v!

and

fl f 2~
P„(r,0), (24)

(25)

I' 2

P„(r,O)= g f '
dz&g(z&) f dzzg(z2) f dz +& f dz[g(z), g(z &)+] P„(z &+, )0.

a=o
(26)

[ A, B]„stands for the iterated commutator,

[~»],=[~ [~ [ [~»]] ]] (27)

T T

~„(1,0)=f dr&g(ri )f 'drzg(rp) ' ' f dr„g(r )
0 p 0

=f dz g(z)~„,(z, O), $', (z, O)=9 (28)
0

where 2 is the identity superoperator.
lt follows from Eqs. (21) and (23) that

i.e., there are v commutator terms in each term of the ex-
pansion (25). In Eq. (26) $'„(r,0} satisfies the recurrence
relation24

where 2(t, r) in Eq. (23) has been written as [2+=(t,r)]
The two terms in Eq. (29) account for the time evolution
of f at the phase-space points g. The first term is closely
related to the usual path-integral wave functions' be-
cause it is seen to be modulated by the superphase
exp( iS); the —second term in Eq. (29) arises from the
noncomrnutability property of the operators Hp and I..
A comparison of Eqs. (17) and (29) allows us to get a
physical interpretation of the product of decoupling and
coupling group superoperators

exp(i 80t )Q&(t, t')g~(t, t')exp( —i 80t')

=exp[2i80(t t')]exp I
—iS[I (t, t—')] j [J+=(t, r)] .

p(g, t ) =e p[2xi6 (t 0t'}]exp[ —iS[1 (t, t')]j—
X [9+=(t, r)]P(g, t'), (29)

(30)

This expression may be considered the Feynman super-
phase representation of memory supe rop erato rs. It
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should be noted that Eq. (29} is not a standard Feynman
path-integral representation. In fact, we are dealing with
time evolution only, i.e., no space propagation is in-
volved. Ths implies that the superaction S as defined in

Eq. (22} must not be interpreted as classical paths but
rather as an action superoperator from which a Feynman
path integral in operator space could be constructed. An
action as a path in the operator space may be character-
ized as a way of implementing this kind of evolution
scheme, and will be discussed elsewhere in a rigorous
manner.

IV. FEYNMAN PATH-INTEGRAL REPRESENTATION
OF FIELD OPERATORS

f(g, t)= —f exp i f 8du P(g', t')d g' (32}

and using the same procedure as that followed to express
the time evolution of f in the operator space we get

t(te(t, t )= —f exp[2iit)e(t —t )]ex'p[ —ice]

X[++=(t,r)]P(g', t')d'g' .

like principle.
The solution of Eq. (31}is arbitrary and hence, for the

present purpose, is a useful way of expressing the field
operator. Thus, introduction of the formal solution of
Heisenberg's equation of motion (20) into Eq. (31) leads
to

To get the counterpart of the Feynman path-integral
formulation for quantum field operators as a quantum-
mechanical analog of the state function, we write the field
operator as a second-species inhomogeneous Fredholm
integral equation

AC t }= ff(-C'. t }d'0'
~ (31}

where P(g', t } inay be considered the phase-space contri-
bution for the field operator P(g, t }, namely, a Huygens-

As long as ayarticular choice of 1 is necessary for the
evaluation of S, gr(g, t) can be considered as the field

operator on the I' path in operator space. In the time
evolution equation for f [Eq. (21)] only one path is need-
ed to describe it; in fact, no propagatian in space coordi-
nates is required. So Pi- may be interpreted as a projec-
tion on the possible paths between t and t', and therefore
the quantum field aperator may be considered as sums
over all those projections, i.e.,

g(g, t)=g g&(g, t)= —f exp[2i8O(t —t')]g exp( ieV&J[9+ —(t, r)"]g(j,t')d~f .
IrI Irj

(34)

From this equation the Feynman path integral is recog-
nized as

V. APPLICATION TO A NONINTERACTING
MANY-BOSON SYSTEM

g expI

iver)

[S+=(—t, r)] .
IrI

(35}

Thus the field operator f(g, t } satisfies the integral equa-
tion

P(g, t)= f% (gt~g't')P(g', t')d'g' . (36)

Equation (36) represents the Feynman path-integral
formulation for quantum field operators, with R being
the Feynman superpropagator, defined as

%'( (t ('t ') = —exp[2i 8[](t —t ') ]

X g exp I
—i S„I[J+"(t,r)] .

I rj
(37)

i +8+2 %'(g—t~[gt')=5(g —P)exp i f 8du-
at

(38)

This equation again takes into account the noncommuta-
bility of the operators Mo and L by means of "(t,~).

On introducing Eq. (36) into the Heisenberg equation
of motion [Eq. (20)] it is easily verified that the
differential equation for the superpropagator is

In this section we shall develop functional integrals,
within the formalism of superoperators for second-
quantized Hamiltonians with Bose operators. For the
purpose of develaping our functional integrals we consid-
er a many-bosan system and use the discrete form of Ho.
It follows from Eq. (la) that it reads

HO=X skukuk
k

(39)

where the sk's are the one-particle energies and ak and ak
are the creation and annihilation bosonlike operators.

In order to proceed we need the superpropagator rep-
resentation [Eq. (37)] in the original form as given by Eq.
(32). Thus we write

r

% (gt ~ ft') =exp i f 8odu (40)

This equation may be written in terms of the short-time
approach as

%'(gt ~('t') =%'=exp(i805t] )

Xexp(i 805tz ) exp(i 8O5tN ), (41)

where 5t; =5t=t /N (i =1—, . . . , N) with N being the
short-time partition.
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g= tak, /2/+, k, 1=1, . . . , ~ I . (42)

For obtaining expressions that could be handled in an
easy way we introduce an operator space that will be the
carrier space for the superoperator object. In the limit of
no interaction this space is chosen to be

with the associated binary product operation

(x~v)=[v, x']

Thus the carrier space is metrized by

(44)

This set spans the one-particle operator space and sup-
ports the closure relation

9=+ ~a )(a

[~ ~kl — ~k (45}

and the matrix elements for R in the short-time approach
becomes

(a;g'ak)=g g(a, [exp(igo5t)a; )(a; (exp(i(r]05t)a, ) (a; ~exp(i8O5t)ak),
l) N

(46)

it=— (48)

so as to realize the adequate analytic continuation into
the Feynman superpropagator % [Eq. (40)], straightfor-
wardly yields the thermodynamic matrix elements

where the closure relation (43) has been introduced be-
tween each exponential function in Eq. (41). This pro-
cedure is analogous to that implicit in the summation
over paths [Eq. (37}].

Realizing that each a/ is an eigenelement of 80 with ei-
genvalues n/s/ (where n/ is the corresponding occupation
number associated with the 1th energy level}, and allow-
ing N to tend toward infinity to get the exact propagator,
yields

(a; ~JY/2k ) =exP(ink skt }5;k . (47)

Note that R is diagonal in the operator basis set 8.
Physically the matrix element (47) is the projection of the
R superoperator onto the one-particle operator space.

Performing the Wick rotation s (P is the inverse of the
absolute temperature and t is imaginary time)

~k =&k&k

and its associated superoperator

~k=[~k' ]-

(52)

(53)

allows us to evaluate the mean occupation number for the
kth level as

&~k &=—Tr(p]~k)=//k = y y (u;lp]u/)(u/Isa;)

(54a)

or equivalently

00

g g exp( —P/];s;)(~/1~k/];)~;/
n,.

——0 I Z, I

g exp( Pn;s—;)
n,. =0

(54b}

Defining the number operator in the kth energy level in
the usual form

(u; l&uk) =exP( —P/]k~k +;k (49)
Thus, using

(///l~k// )=/]k// ~ k~/ (55}

Tr(p] ) = g (a, ~ p]a, )(/] }
= g exp( Pn; s; )—,

I R, I n,. =0
(50)

which are the unnormalized one-particle density-matrix
elements. Thus, normalizing Eq. (49) and noting that
R=P] (one-particle density-matrix superoperator) leads
to

we get immediately

nkexp(Pnksk)
nk =0

g exp( —Pnkc, k)
n =0

k

(56)

which is recognized to be the bosonic partition function
for the one-state distribution. tR; } stands for the acces-
sible one-particle configurations that are compatible with
the ith energy level.

We finally get, for the density superoperator matrix
elements, the expression

which after a little algebra leads to

1

exp(Pc. k ) —1
(57}

which is the expected formula of the Planck distribution
law. "

(//; IP]ak ) =
exP( —Pnk Ek )5;k

exp( Pnkok )—
rrk =0

(51) VI. FINAL REMARKS

Quantum time evolution for field operators is useful for
describing not only equilibrium processes but also non-
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equilibrium evolutions. In fact, there exists a close rela-
tion with Green's functions expressed as propagators in
operator space ' and the reduced density functions that
are the essential tools for evaluation of such properties.
The Feynman path formulation for field operators leads
us to state some interesting conclusions. As we have
shown, the Feynman path representation of memory
superoperators shows that the evolution depends on the
whole history of the process, i.e., the evolution is nonin-
stantaneous; in fact, the Feynman path-integral represen-
tation includes the history of the process by means of the
action superoperator.

The superpropagator contains all the information
about the system, it being a sum of contributions from all
paths; thus the quantum superposition is already manifest
in the present formulation. Finally, it should be stressed

that since in an imaginary-time formalism the Feynman
path intetral is mathematically equivalent to a partition
function, ' ' the present formalism should appear as a
practical tool for the evaluation of magnetic and thermo-
dynamic properties of many-body systems.
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