
PHYSICAL REVIEW A VOLUME 41, NUMBER 11 1 JUNE 1990

Quadratic Zeeman effect for hydrogen: A method
for rigorous bound-state error estimates

G. Fonte and P. Falsaperla
Dipartimento di Fisica, UniUersita di Catania, Corso Italia 57, I-95129 Catania, Italy

G. Schiffrer
Dipartimento di Fisica, UniUersita di Ferrara, Uia Paradiso 12, I-44100, Ferrara, Italy

D. Stanzial
Istituto Cemoter Consiglio Nazionale delle Ricerche, Uia Canalbianco 28, I-44044 Cassana, Ferrara, Italy

(Received 22 August 1989; revised manuscript received 15 January 1990)

We present a variational method, based on direct minimization of energy, for the calculation of
eigenvalues and eigenfunctions of a hydrogen atom in a strong uniform magnetic field in the frame-

work of the nonrelativistic theory (quadratic Zeeman effect). Using semiparabolic coordinates and a
harmonic-oscillator basis, we show that it is possible to give rigorous error estimates for both eigen-

values and eigenfunctions by applying some results of Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)].
The method can be applied in this simple form only to the lowest level of given angular momentum

and parity, but it is also possible to apply it to any excited state by using the standard Rayleigh-Ritz
diagonalization method. However, due to the particular basis, the method is expected to be more
effective, the weaker the field and the smaller the excitation energy, while the results of Kato we

have employed lead to good estimates only when the level spacing is not too small. We present a
numerical application to the m =0+ ground state and the lowest m =1 excited state, giving re-

sults that are among the most accurate in the literature for magnetic fields up to about 10' G.

I. INTRODUCTION

In the last 20 years, the progress in Rydberg spectros-
copy and, above all, the discovery in astrophysics of mag-
netic fields of intensity up to 10' G have renewed the in-
terest in the problem of quadratic Zeeman effect for the
hydrogen atom, placed in a uniform magnetic field. An
increasing number of both theoretical and experimental
investigations have thus appeared on this subject and, in
particular, a great computational effort has taken place
(for a review, see Refs. 1-4) for the determination of the
discrete spectrum of the Hamiltonian

H = ,'6 r'+ —,'y—I,—+—,
—'y (x +y ),

which is known to be a widely applicable nonrelativistic
approximation for our system. In Eq. (1), we have used
atomic units m, =Pi= e = 1, the magnetic field is given by
(0,0,y) in units (el%) m, c =2.35X10 G, and l, is the z
component of the orbital angular momentum.

As a result of such a work, we have today a fairly com-
plete knowledge of the spectrum of operator (1). Never-
theless, there is an aspect of the problem, which, in our
opinion, deserves further attention, namely the rigorous
error estimation for both eigenvalues and eigenfunctions.
In fact, although there are in the literature highly accu-
rate calculations, such as those of Ref. 2, a precise error
estimation is given only in Refs. 1 and 4, but only for the
ground-state energy. Here we would like to remind that
a rigorous error determination has, first of a11, a general
motivation: the quadratic Zeeman effect in the hydrogen
atom is, namely, one of the very few quantum-mechanical

problems which is both physically meaningful and rela-
tively simple and represents, therefore, a very interesting
test for the application of classical results on error estima-
tion. ' We also remark that in our case a determination
of the energy levels with an accurate error estimation can
be useful, in view of the remarkable discrepancies of the
results in the literature (see Tables I and II and Ref. 4)
and that an estimate of the eigenfunction errors allows a
reliable evaluation of quantities of direct physical in-
terest, such as transition probabilities.

In the present paper we show that, making use of the
so-called semiparabolic coordinates and introducing a
harmonic-oscillator basis, ' it is possible to formulate a
variational method, exploiting Kato's results: this leads
to a determination of the discrete spectrum, giving, to-
gether with an upper bound to the eigenvalues, also a
lower bound by means of Temple's formula and an eigen-
function error estimate by means of Kato's formula. Our
method, however, has two limitations: the first one
derives from the fact that we have used Kato's theory in
its simplest form for nondegenerate levels, which, al-
though valid for any self-adjoint operator whose spec-
trum satisfies certain conditions, is in practice the more
effective, the larger the level spacing. The second limita-
tion is related to our particular approach. We treat the
quadratic magnetic term as a perturbation, in the sense
that the basis functions of our variational method do not
depend on the magnetic field strength y; now, the effect
of such a perturbation depends not only on y, but also on
properties of the unperturbed level. In fact, it is possible
to evaluate an effective coupling constant, given roughly
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TABLE I. Energies of the 0+ ground state in units —'m, e"/A' (Rydberg units), as functions of magnetic field y [in units

(e/A)'m, c], calculated by other authors.

0.001
0.1

0.6
1

2

3
10
20

200
2000

Ref. 16'

—0.995 05

—0.662 33
—0.04442

0.670 95

Ref. 21'

—0.995 04
—0.834 66
—0.551 01

Ref. 22'

—0.779 84
—0.808 75
—0.633 08

0.31943
0.68402

Ref. 23'

—0.9950
—0.8348
—0.6620
—0.0439

6.5063

Ref. 5'

—0.655'
—0.041'

15.5697
190.546

1981.392

Ref. 24b

—0.028 64

15.571 08
190.541 92

1981.4519

0.001
0.1

0.6
1

3

10

20

Ref. 25d

—0.995 052 96

—0.661 233 72

1981.838 94

Ref. 1'

—0.662 337 792(10)

—0.044 427 8(12)

0.670 932(10)
6.5044(4)

15.5694(22)

190.55(5)

1981.4600(22)

Ref. 2'

—0.999999
—0.995 053
—0.854925
—0.662 338

—0.044428

0.670934
6.504406

15.569 203

190.5469

1981.39104

Ref. 26~

0.051

0.8422
7.1784

16.8222

196.14

1996.1

Ref. 4"

—0.044 427 6'
—0.044 428 4'

15.569 35'
15.56913

190.58'

190.52'

'Variational methods.
Perturbation theory and finite difference technique.

'These are the values actually calculated. The author gives also better values, but obtained by extrapolation.
4Semiclassical perturbation theory.
'Perturbation theory and summation method. The authors give also a value with 20 exact figures.
'Numerical integration.
~Variationa1 functionals.
"Moment method.
'Upper bound.
'Lower bound.

TABLE II. Energies of the lowest 1 state calculated by other authors. Symbols and units are defined in Table I.

0.001
0.1

0.6
1

2
3

10
20

200
2000

Ref. 16'

—0.201 69

1.086 82
2.800 83
4.592 97

Ref. 22'

—0.1723

1.0928
2.8046
4.597

Ref. 23'

0.4512
1.0874
2.8022

17.7519

Ref. 24b

2.801 44

37.069 08
393.3057

3986.0964

Ref. 25'

—0.201 691 298

1.085 765 3

Ref. 2d

—0.249 9940
—0.201 691 3

0.450 752 5

1.086 805 9
2.800 774
4.592 907

17.749 155
37.069 05

393.305 745
3986.096 06

'Variational methods.
Perturbation theory and finite difference technique.

'Semiclassical perturbation theory.
Numerical integration.
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by z=y n, where n is the principal quantum number of
the unperturbed level.

In conclusion, our method is expected to give the more
accurate results, the smaller ~ and the larger the level

spacing. In this first work, where our aim is to introduce
the method, we present a numerical application, limited
to the ground state and to the lowest excited state of an-

gular momentum 1 and parity —,obtaining results which
are among the best in the literature when sc does not
exceed a few hundred.

II. DESCRIPTION OF THE METHOD

A. The variational problem

In Ref. 10 it has been shown that the use of the so-
called semiparabolic coordinates

x =uv cosy, y =uv siny, z =
—,'(u —v ),

u, v ~0, O~y~2m,

dx dy dz =(u +u )uu du du dy,

in the problem of quadratic Zeeman effect is a very con-
venient method to introduce in an optimal way a basis of
Sturmian type. Such bases are the more effective the
smaller a is and are very advantageous in order to esti-
mate the error by the method presented in this work.

Remembering expression (I), the Schrodinger equation
in coordinates (u, u) has the form

1

2(u z+ vz)

m' a' la+ +a)u + — —— + +catv
Buz u ~u u2 v Bu

—4+(u'+v')( —,'y'u'u —co) f (u, u)=Ef (u, u), (2)

B 'Af(u, v)=EQ(u, u),

where

(3)

B =2(u +v ),
A =0„+0„4+(u +u —)( —,'y u u —~),

0„=— +(m —
—,) +eau

a'
Bu u

and 0„ is obtained from 0„, substituting u by v. Here,

where we denote by m the magnetic quantum number
and omit, as usual, the constant energy —,'ym; a term
co(u +u ) has been added and subtracted, in order to
produce the two operators in large parentheses, each
representing the radial part of a plane harmonic-
oscillator Hamiltonian with frequency &co and angular
momentum I, =m and acting, respectively, in the spaces
L (R+, u du} and L (I+,v du} [here, L (Wds} will
denote the space of all functions on 8', square integrable
with respect to the measure s]. In Refs. 3 and 8, problem
(2) has been solved by expanding f in a basis of harmonic
oscillators of the mentioned type. Now, let us elucidate a
basic point concerning the completeness of the basis: this
will give us the occasion to justify some properties ex-
ploited in this work. Strictly speaking, problem (2) is for-
mulated in the space L {)R++,(u +u )uu du dv), with
la++ =I+ X la+, while the above harmonic-oscillator
basis" is known to be complete in the space
L (I++,uvdu dv}, as can be shown by well-known
methods. ' To prove that this is not a real diSculty, we
first eliminate the term uv in both measures by means of
the unitary transformation (uu)' f(u, u)=P(u, v): in this
way, Eq. (2) can be written in the space
X=L (IR++, ( +uu )du du) as

I

O„and 0, represent the two harmonic oscillators of Eq.
(2) in spaces L (II+,du) and L ()R+,dv). The operator
B A is self-adjoint in the space X, because it has been
obtained form the operator (I), self-adjoint' in

L (R 'dx dy dz), by means of transformations which do
not change this property. Also, the self-adjointness of
8 ' A implies that its domain D contains only functions
which are regular as u, v~0. Remembering that the
asymptotic behavior of functions belonging to space X is
more restrictive than that required in the space
'Y=L (lR++, du du), we deduce that

DcXAP .

Denoting by ( l ) and ll ll the scalar product and norm of
the space X and by ( l ) the scalar product of 5', we

have

(ylB '~q)= '(yl &y&, (ply-)=-,'(ylB~»O~D .

Relations (4} and (5) show that we can solve problem (3),
given in the space X, in the more convenient topology of
the space 'P, expanding f(u, u) in terms of a complete
basis in the latter space, in particular„ in terms of eigen-
functions of O„and 0, .

In this paper we have preferred to apply an algorithm
of direct minimization, instead of using the more usual
Rayleigh-Ritz diagonalization, for the reasons explained
below, in Sec. II C. In view of the use of this procedure,
we prove now the equivalence of problem (3) to a
minimum problem in P. The operator B A in Eq. (3)
is self-adjoint in X and bounded from below. ' Then, a
well-known minimum principle holds for this eigenvalue
problem. Denoting by Eo,E„.. . (Eo (E, ( . ) the
eigenvalues of the operator 8 'A, here assumed to be



5810 G. FONTE, P. FALSAPERLA, G. SCHIE'I'KER, AND D. STANZIAL

nondegenerate, and by $0,g„.. . the corresponding
eigenfunctions, we have

Ek =min, k =0, 1,2, . . .
(OIB-'Ag}

fE Dk

'AAN}= ,'(-Pari Ale &=EN

'A —Eav)Cavil'

=
—,'((A E;—B}Q;~IB '(A E—;~B}yav&

where DO=D and Q2 (10)

Dk=[QED:(QIQ;)=0, i =0, 1, . . . , k —lj,
1 p 2y ~ ~ ~ ~

Concerning our assumed nondegeneracy of the spec-
trum, we remind here that this is rigorously true' of Eo
for all values of y, but we do not know comparable re-
sults for the other eigenvalues; nevertheless, there is a
considerable numerical evidence (see Refs. 2 and 16} that
at least a large part of the spectrum is nondegenerate, ex-
cept some special values of y (level-crossing points). In
any case, the nondegeneracy of the spectrum is neither
strictly necessary for the minimum principle to hold, nor
for the evaluation of error estimates, but it only enables
us to use Kato's theory in its simplest form.

Remembering Eq. (5), we can also write Fitv —= 1
I (t/iuv I tP; }I (12)

Thus, introducing in the first inequality (8)

g =E;z, and c=5, we get for each eigenvalue E;

Q2

ilv

which is the well-known Temple formula. In the case of
the lowest state we can choose a= —00 and P such that
Eo &p-Ei.

Concerning the estimate of the eigenfunction error, we
observe that in the present paper we calculate only the
lowest states of given m and p; in this case the bound in
the right-hand side of (9) can be replaced by the more
precise one, s [(P—q) +s ] '. Defining

EI, = min E(g), k =0, 1,2, . . .
PG D~

where

(6) the inequality (9) becomes

F.
Q2

(p EN) +b, — (13)

(ylAq)

which concludes our proof. Notice that the minimum
problem (6) gives the whole discrete spectrum of given m.
In this paper, we will select the domains Dk by working
in subspaces of fixed m and parity p. We will also denote
by P„N the solution of (6) in a subspace spanned by the
first N basis vectors, normalized as —,

' ( PkN I
BgkN ) = 1,

and by Ek~ =E(f„N ), the corresponding energy

B. Error estimates

Let H be a self-adjoint opertor in a Hilbert space %,
with scalar product and norm denoted by ( I ) and II II; if
H has nondegenerate discrete spectrum, such that
Hg; =A, ;g;, Kato proved the following bounds for any

2 2

(8)
g —a

where rl=(@IHQ}, a=ll(H —rl)@ll, @ED(H), II@II=1,
and (a,P) is an open interval, such that
s & (g —a)(P—rl), containing the only spectral point A,
Kato also proved the inequality

1 —l(PIP;) I' [(p —
—,'(~+P))'+E'][-,'(P—o. )] ', (9)

where II@;II=1.
In view of the fact that the operator B 'A is self-

adjoint in the space X and we can assume it has a nonde-
generate discrete spectrum, Kato's results can be applied
very simply to problem (3} setting &=X, H=B 'A,
and A,; =E; From Eq. (5) we. find Il@,NII =1,

which is Kato's formula. A meaningful expression for
FN is easily found to be FN=IIQ;~ —g, ll

—
—,'llg, ~ —g, ll

.
The quantity o;z is a convenient estimate of the eigen-
function error; 0.;N=O implies an exact eigenfunction;

o;N =1 implies 13=E,~, so that formula (11)becomes use-
less and from (12) and (13) we see that a calculated eigen-
function orthogonal to the exact one cannot be ruled out.
It is worthwhile remarking that when the levels E; and

E, +& are almost degenerate, o,.~ is very close to 1, since
E; & P & E, + &, so that the estimates (11)and (13) are rath-
er bad, even if b, is not very large.

C. The algorithm

We conclude this section by describing the structure of
our algorithm. For each state, identified by angular
momentum projection m, parity p, and energy E '~', we
introduce (see also Refs. 3 and 8) as a basis set the sym-
metric or the antisymmetric products of the normalized
eigenfunctions of the two operators O„and 0„,optimiz-
ing numerically the values of the oscillator parameter co

for each choice of the magnetic field y. This basis has
two advantages, which are shared by all other Sturmian
bases described in Ref. 10. The first is that the calcula-
tion of all matrix elements involved can be carried out
analytically: it is straightforward for the operators A
and B and is not particularly diScult for B '. The
second advantage is that the matrices corresponding to A
and B have a band structure, which is essential for our er-
ror estimation, as explained below.

We minimize directly the functional (7) in finite dimen-
sional subspaces by means of a sequence of one-
dimensional minimization steps (iterations) along the so-
called conjugate directions. ' This method has the gen-
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eral limitation that it can be easily applied only to the
lowest level of given m and p, the calculation of higher
levels requiring orthogonality conditions to previously
calculated eigenfunctions; compared with the standard
Rayleigh-Ritz method with the same basis, it has better
numerical precision and stability, is of simpler implemen-
tation in a computer, and, what is most important, saves
storage space and computing time, avoiding complicated
operations with large matrices (see also Ref. 18). On the
other hand, the computation of any excited state is more
manageable by means of the Rayleigh-Ritz method.
Since in this paper we deal only with the two lowest 0+
and 1 levels, the direct minimization method has been
preferred.

We calculate the quantities b„defined in Eq. (10), and
b,~=~~[(B 'A)~ E;~]P—;N~~, where (B 'A)~ is the
N XN matrix, projected from the corresponding opera-
tor. These quantities represent the root-mean-square en-
ergy deviations for the exact and the truncated operators,
so that b, & hN. As we have seen, the knowledge of b, is
important because it determines through Temple's and
Kato's inequalities (11) and (13) our error estimate for
any eigenvalue and eigenfunction. The constant P in
these inequalities must satisfy E;N &P&E;+& and has
been chosen here as the value of E;+, given in Ref. 2. In
general, the calculation of 5 is not so simple, due to the

fact that one should have a good criterion to truncate the
infinite sums involved. In the case of our basis, such a
criterion is automatically provided by the band structure
of the matrix Az, namely, Az, =0 for ~i

—
j~ & c (N)

(i,j = 1, . . .N), where c is an increasing function of N,
and by an analogous structure of the matrix representing
B. It is easily seen that, although B ' has not such prop-
erty, the calculation of 6 becomes exact if we include in
the summation implied by Eq. (10) all index values up to
a certain M (N) & N. As an empirical rule, we have found
M (20)=34, M (40)=60, M(60) =84, M (80)= 108,
M(100)=130, and M(150)=186.

In virtue of the equivalence of the minimum problem
(6) and Eq. (3), the smallness of hN is related to the pre-
cision of the solution of problem (6) in the N-dimensional
subspace: hz =0 means that this solution has been
reached. Therefore, the condition b,~ ~ 10 has been
used to stop our iterations; when the convergence is too
slow, as in the cases y ~ 200, other criteria are needed for
this purpose. An interesting test is given by the evalua-
tion of the positive number 5=5/b, z —1, which tends in
general to infinity as the iteration converges to the solu-
tion: it turns out that the smaller 5 at a given iteration,
the faster the rate of convergence. A small value of 5 at
the beginning indicates a good value of the basis parame-
ter co.

TABLE III. Energies of the 0+ ground state and of the lowest 1 state calculated in the present paper. Upper bounds are calcu-
lated by the variational method described in the text; lower bounds by Temple s formula. Eigenfunction error estimate o [Eq. (13)] is

also given.

Magnetic
field

y

0.001

(r [Eq. (13)]

—0.999999 500 000 552
—0.999999 500 000 553

2.73X10 '

Lowest 0+ state (ground state)
Upper bound
Lower bound

Lowest 1 state
Upper bound
Lower bound

—0.249 994000 231 967
—0.249 994000 231 968

0 [Eq. (13)]

7.03 X 10
—s

0.1

0.6

10

20

2000'

—0.995 052 960 802 18
—0.995 052 960 802 20

—0.854 924 557 551 0
—0.854924 557 553 5

—0.662 337 793 3
—0.662 337 794 5

—0.044 427 815
—0.044 427 820

0.670 934 02
0.670 933 86

6.504405
6.504 388

15.569 209
15.568 175

190.57
185.12

1985.35
1681.06

1.74x 10-'

4.60x 10-'

2.90x 10-'

5.77 x 10-'

2.84x 10-'

2.35 x10-'

1.61x 10-'

0.624

0.983

—0.201 691 344 745 7
—0.201 691 344 749 2

0.450 752 454 4
0.450 752 451 8

1.086 805 88
1.086 805 79

2.800 774
2.800767

4.592 906 90
4.592 902 27

17.749 17
17.74747

37.069 21
37.037 32

393.46
389.05

3993.33
—6480

3.84 X 10

7.04x 10-'

3.75 x 10

2.69x10-'

2.05 X 10

2.99x 10

1.11x10-'

0.666

0.99997

'Upper and lower bounds are calculated for different wave functions. o corresponds to the lower bound.
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III. NUMERICAL RESULTS

TABLE IV. The same as in Table III, for the ground state,
fixed y =2, as functions of the subspace dimension N.

20

80

150

Upper bound
Lower bound

—0.044 185 8
—0.058 406 1

—0.044 426 6
—0.044 455 4

—0.044 427 78
—0.044 428 57

—0.044 427 813
—0.044 427 934

—0.044 427 815 2
—0.044 427 820 8

—0.044 427 815 328
—0.044 427 815 424

&x [Eq (1»1

9.12x 10-'

4.12x 10-'

6.80x 10-'

2.67 x 10-'

5.77 x 10-'

7.50 x 10-'

In Table III we report our results for the ground state
(m =0, p =1) and for the lowest ~m~ =1, p = —1 state:
for each value of the magnetic field y we give the varia-
tional upper bound and Temple's lower bound to the en-

ergy, as well as Kato's upper bound to eigenfunctions er-
ror, given by 0;N, Eq. (13). The dimension of the em-

ployed subspace has been increased with y, from N =20
up to N =150.

In Table IV we give for the ground state the same
quantities as in Table III, for a fixed magnetic field

(y =2), as functions of the subspace dimension N.
Our results are very satisfactory in the weak field and

low excitation region, namely for values of the effective
coupling constant ~ up to values of a few hundred (here,
n = 1 for the 0+ state, n =2 for 1 ). A comparison of
our data in Tables III and IV with those of other authors
in Tables I and II shows that our energies are the best, in
the range y 20 for the ground state and y 3 for the 1

state, except one case, not reported in the tables. The ex-
ception is a result of Ref. 1, where the ground-state ener-

gy for y =0.2 is given with 20 exact figures, which should

compare with 13 exact figures obtained by us, with
N =40; we believe, however, that this difference in per-
formance is due essentially to the precision used in our
actual calculation. Of course, in the same cases, also our
eigenfunctions are expected to be the best ones, although
no direct comparison is possible. However, for the
reasons mentioned in the Introduction, it is evident that
our precision deteriorates with increasing a. For
y=0.001=2.35X10 6 the relative errors in energy,
computed from our upper and lower bounds, are of the
order of 10 ' for both levels, while the eigenfunction er-
ror estimates 0;z, of the order 10, show a different be-
havior for the two levels. For y=20=4. 7X10' 0, the
analogous errors are 6X10 and 8X10 for the two
energies, 0.016 and 0.11 for the wave functions. For
y =2000=4.7X10' 6 the energy values are still reason-
ably good, since our upper bounds, compared with the

more precise values of Ref. 2, have a discrepancy of
about 0.2%; on the other hand, the quantity o;z is al-
most equal to 1, which means that the calculated wave
functions and Temple's lower bounds are bad, and this is
especially true of the 1 state.

IV. CONCLUSIONS

By applying the classical results of Ref. 6, we have
shown that for the nonrelativistic problem of the hydro-
gen atom in a strong uniform magnetic field a calculation
is possible with a rigorous error estimate of both eigen-
values and eigenfunctions. The essential difficulty in
computing such estimates is the exact evaluation of the
quantity 6 [Eq. (10)] appearing in Temple's and Kato's
formulas, or at least of an upper bound to it. We were
able to perform an exact evaluation of this quantity by
exploiting the band structure of the involved operators,
resulting from the use of semiparabolic coordinates and
harmonic-oscillator basis.

We note that to the above advantage of our method,
there corresponds the limitation that it is less effective the
larger the effective coupling constant ~: this means larger
magnetic field and excitation energy. The precision of
the lower bounds is also affected by the level spacing in
the chosen (m, p) subspace, since we have used Kato's
theory for nondegenerate levels. Our application to the
lowest 0+ and 1 levels indicates that the method is
highly efficient up to ~ values of the order of a few hun-
dred. The application to all excited states of a given
(m, p) subspace, within the mentioned limits, is still possi-
ble, but in this case the Rayleigh-Ritz diagonalization
should be preferred to our algorithm of direct minirniza-
tion. Apart from an obvious recourse to a larger dimen-
sion, extensions of our method to larger values of ~ can,
possibly, be found in modifications of our variational ap-
proach; on the other hand, in the case of a too-small level
spacing, the exploitation of the more general form of
Kato's estimates, valid for degenerate or almost-
degenerate levels, should be advantageous. Concerning
the modifications of the variational approach, we can
suggest a more sophisticated determination of co (for in-
stance, of the type discussed in Ref. 19) and the use of a
y-dependent basis, allowing for the increase of ~. In this
respect, one might be tempted to consider the variational
approach of Ref. 5, where the use of cylindrical coordi-
nates makes it possible to consider the Coulomb interac-
tion as a perturbation. Although such an approach is
complementary to ours, in the sense that the best results
are obtained for the largest magnetic fields, nevertheless
it makes the calculation of 5 more difficult. In this case,
indeed, the matrices of the operators A and B, whose ele-
ments should be computed numerically, no longer have a
band structure. Concerning the theory of Kato in the
case of degenerate or almost degenerate levels, we remark
that Ref. 6 gives only expressions of lower bounds to en-
ergy levels; however it is not difficult to obtain in this
case formulas analogous to (9) or (13) for eigenfunctions
errors.

Finally, one should keep in mind the physical limita-
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tion of our work, remembering that the relativistic
corrections become increasingly important as a grows
and, for the highest values we have considered, where the
energy of the levels amounts to about one tenth of the
electron rest energy, they may be comparable with the
numerical uncertainties.
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