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Internal trace for detector variables and the quantum theory of measurement
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The wave-packet reduction in quantum measurements is investigated for quantum-mechanical
treatments except for the macroscopic limit in the final step. We show that the internal trace
represented by the integrations over the internal variables of detectors, which are independent of
the measured physical quantity, leads to the disappearance of the interference in the density matrix
and then a reduction of the wave packet. Through the evaluations of two simple examples we clari-

fy the role of the internal trace in quantum measurements and point out the difference between our
idea and the other.

I. INTRODUCTION

The theory of measurement is still one of the most con-
troversial problems in quantum mechanics. We have
many fundamental problems, that is, not only theoretical
analyses of quantum-measurement processes but serious
questions about the Copenhagen interpretation as well.
Restricting ourselves to the theoretical analyses, some in-
teresting approaches have been proposed in recent years.
Machida and Namiki tried solving the problem by tak-
ing an account of the macroscopic nature of the measure-
ment apparatus (say detector) in terms of a continuous
direct sum of many Hilbert spaces, which is called the
continuous-superselection-rule space as was discussed by
Araki. Another interesting model was proposed by
Fukuda, ' who tried to interpret the problem by the sep-
aration of Hilbert spaces describing the detectors into
different orthogonal spaces in the limit where the number
of constituent particles in the detector goes to infinity
(say the limit N~ ~ }. These approaches play a very im-
portant role showing that the quantum-measurement pro-
cess is a calculable problem as a physical process.

In this paper we would like to propose an idea to solve
the quantum-measurement problem through the investi-
gation of two examples which are completely describable
and calculable as quantum-mechanical processes. We
shall show that the so-called wave-packet reduction by
the measurement can be derived from the trace with
respect to the internal variables of the detector in the lim-
it N ~~. Following the ordinary treatment of quantum
mechanics, we describe the measurement process in terms
of the transition from the initial state (4r) for the total
system including the quantum object and the detector to
the final state (@F)as

er =yeso= y c„u„e—q o

~4F = g c„u„csi+„, (1.1)
n

where tb=g„c„u„denotes the superposition of the state
for the quantum object system in terms of the eigenfunc-
tions of the measured physical quantity and %' stands for
the detector state. The wave-packet reduction is

represented by the change of the density matrix, that is,

I F
—=

I @F& & ~ F I

= g g c.c '
I u. & & u

I I +.& & +
I

io—:g Ic„l lu„&&u„i@I+„&&0„l.

(1.2}

It is noted that in (1.2) the wave-packet reduction is ex-
pressed as the disappearance of the interference terms
among the states with different eigenvalues. In this for-
malism for the wave-packet reduction our fundamental
idea is represented as follows. Taking into account that
most of the variables describing the internal state of the
detector do not directly couple to the measured quantity
and are deliberately ignored in the measurement process,
those variables should be traced in the density matrix.
That is, the state of the detector (I+„&}may be described
by the direct product of the state for the variables cou-
pling to the measured quantity (IV„&) and that for the
variables not coupling to it (IV„&). Then the density ma-
trix in the measurement should be expressed as

p, —=@le,&&a, l

= y yc„c'lu„&&u l&e„&&+ l+le„'&&+'I,

(1.3)

where g denotes the trace over all the variables describ-

ing IV„&. We call this trace "the internal trace. " In the
off-diagonal terms (the interference terms) the states for
those variables may be slightly different in each other for
the detailed reaction triggered inside the detector. The
trace over one of them, therefore, produces a factor (say
Q} which is smaller than l. (Image the overlapping in-
tegral between two slightly different normalized wave
functions. ) A macroscopic accumulation (proportional to
N) of such a small difference can, however, induce a large
difference as IQ I

« 1. Actually, the interference terms
vanish by the effect in the macroscopic limit N~ ~. We
may summarize the above considerations in two points.

(i) The interference terms of a density matrix partially
traced over all variables not coupling to the measured
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quantity (the internal trace) become a zero operator in
the macroscopic limit N ~ ao.

(ii) The state vector of a quantum system coupled to a
detector having macroscopic degrees of freedom is col-
lapsed by taking the internal trace and then going to the
macroscopic limit.

In Sec. II we present a model where a measurement
process with a detector described by a stable internal
state and having a strong electric external field is studied
and the idea of the internal trace on the density matrix is
proposed. The wave-packet reduction is led by the
change of the internal state of the detector induced by the
interaction of ionized atoms in the detector with the elec-
tric external field. A measurement by a detector with a
quasistable internal state like the Wilson cloud chamber
is proposed in Sec. III, where the observed quantity is the
energy emitted from the detector. The wave-packet
reduction is also realized by the internal trace corre-
sponding to the change of the internal state of the detec-
tor. In Sec. IV we clarify the role of the internal trace
through the discussions about the difference of our model
from the others. ' We summarize our idea for the
quantum-measurement process with the internal trace
and give the criteria for a good detector in Sec. V. In this
paper we shall deal with the measurement on the quan-
tum object with only two different eigenvalues like the
Stern-Gerlach experiment and also describe the internal
state of the detector in terms of harmonic oscillators.

II. MEASURKMKNT BY DETECTORS
WITH STABLE INTERNAL STATES (MODEL I)

When a detector has a stable internal state, a micro-
scopic quantum object can not give any macroscopic and
measurable change to the detector. In order to induce a
macroscopic effect after the interaction of the object with
the detector, an enhancement process is required. A sim-
ple example is presented by Fukuda, where the center of
mass of the detector is moved in a measurable order by
the external electric field after many atoms in the detec-
tor are ionized by the interaction. We shall deal with this
model here. In order to see the difference between
Fukuda s consideration and ours, it is very instructive to
study the measurement problem in the same process.

The following measurement process is provided. The
quantum object has two different eigenvalues similar to
the spin-up and spin-down of an electron, which is writ-
ten in terms of the wave function

where (t)'" and P' ', respectively, stand for two states with
the different eigenvalues and the normalization
coefficients for P are included in P'" and P' '. We also
provide two detectors, which, respectively, detect only
one of the states P") (detector I) and P

' (detector II).
The quantum states of the two detectors are described in
terms of the wave functions po(r), . . . , rN ,'t) and

1

)tp(s),). . . , SN, t}, where r; and s, , respectively, denote2'
the positions of the constituent particles of detectors I
and II which are constructed by N, and N2 particles with

where R stands for N, +N2 coordinate variables corre-
sponding to r,. and s;. Hereafter we put N, =%2 =N for
simplicity.

The total wave function including the object and the
detectors is represented with the direct product of )I) and
4'p as

Following the ordinary quantum-mechanical treatment,
we describe the change of the wave function during the
interaction of the object with the detectors as

0 I = (t)(I' tp ) 0 p(R tp )

~C'F=p "(r,tF)% F'(R, IF)

+p '( r, tF ) O''F '( R, tF ) . (2.1)

Now we represent the interaction of the object with the
detectors in terms of the ionization process of the constit-
uent atoms in the detectors which are electrically neutral
before the interaction. After the ionization takes place,
the state of the detector changes by means of the interac-
tion with the external electric field E. When n, atoms in
detector I and n2 in detector II are ionized, the Hamil-
tonian is expressed as

(nl, n2)
"2

H ' ' = g (p„+p, )+e g r; E+e g s; E,
i=1 i=1 i=1

(2.2)

where p„(p, ) stands for the conjugate momentum of r,
l l

(s;}. Since the electric field is required to be strong
enough to produce the macroscopic movement of the
detector system, we postulate that E has a macroscopic
order proportional to N, as was done by Fukuda.

After the interaction of the detectors with the object at
t =tF, the wave function of the detectors can be written
in terms of a superposition of the states with the different
number of ionized atoms, i.e.,

N
O'F"(R,tF) g c t() (I'1 ' ' rN F}

n=0

II8 lt)p ( S)). . . , SN, tF ) )

(2.3)

N

8 g C f (Sl, . . . , SN tF)'
n=0

In (2.3) the coefficients c„should be determined in the
quantum-mechanical process for the ionization and in the
large-N limit they may be normalized as g„o~c„~ = l.
Since the value of c„ is not important in the following dis-
cussions, the derivation of c„ is not discussed here. The
detection is carried out by catching the movement of the

the same mass m. Then the wave function 4'o for two
detectors is written by the direct product of fp and Po as

)pp(R, t) =g()(r„. . . , rN, t)QI)'(s„. . . , sN ', t),
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pF = fT@F@F (2.4)
I

ionized system, that is, the movement of the center of
mass of the detector. For this measurement process we
may write the density matrix as

where the integration g should be carried out for all the
internal relative coordinates for the two detectors, which
are independent of the measured quantity, i.e., the
motion of the center of mass. We call this integration
"the internal trace. " Explicitly it is written down as

p~= f g dr;5( ' G, ——y r, f g ds 5' ' G„——y s [(()'"y""N)(11'")p""+(I)'2'(I)' "(e(p( ))p( "
i =1 i =1 j=l j=1

+(y(1)y(2)e@)p(1))p(2)e+c c )] (2.5)

where 6& and 6», respectively, stand for the center-of-
mass coordinates of the two detectors.

In order to evaluate (2.5) exactly, we give a simple
model for the detector. The internal structure of the
detector is postulated to be represented by the ground
state of the harmonic oscillator system with the following
Hamiltonian before the ionization takes place:

I

w'ave function for the detector is described by

$0(Z t) =g()(ZG t)g (ozt) (2.7)

where Z stands for the ¹oordinate variables, P(ZG, t)
denotes the wave function of the center of mass coordi-
nate (ZG), and the internal wave function for the relative
coordinates (t)0(z) with z = (z2, . . . , z(v } is evaluated as

D 1
N k N N—1r",+ rr ~; — ~'

i =1 j)1=1

N
Nmpz+ ~ 1 2+1k z

2m» 2»1=2
(2.6)

' 1/4

(0z, t}=e
7T

Q
exp ——zl

with Eo= ,'(N —1)&—k/m, (2.&)

where PG and p& are, respectively, the conjugate momen-
ta of 6 and pl de6ned by

l —1

p&=&(1 —1)/1 r( — g r;

Hereafter we always put Pi= 1 and eE=N(0, 0,g). Now
we may write the process as a one-dimensional problem
in the z direction. From now on we neglect the unin-
teresting two dimensions (x,y) in our discussions. The

I

where a =&mk and z( is the z component of p(.
Since the total structure of the detector should not be

broken by the interaction with the object, we require that
the harmonic oscillator is strong enough to keep the
ground state even after the ionization of n atoms. The
wave function with the n-ionized atoms is also separable
into that of the center-of-mass variable (t„(ZG, T) and
that of the internal variables P„(zz, . . . , z)v; T) as
(t1 „(Z,T) =(1)„(ZG,T)g„(z2, . . . , z(v', T). From (2.2) the
interaction of the detector with the external electric 6eld
including the harmonic oscillators is given by the follow-
ing Hamiltonian for the internal variables:

N N

H "(z2, . . . , zN)= g (p(+mkz( ) Nng g — z,
2m ( z ( „+, 1(1—1)

n N Nngg (p, +mkz()+ g p(+mk z(—
2

(Nng)
2kl (I —1)

(2.9)

The ground state of H " is evaluated as

lEpT l8 T
P„(z2, . . . , z(v;T)=e ' e

1=2

' 1/4 —(a/2)z
e

l=n+1

' 1/4
( —a/2)(- —Nng /k ')/ l (I —1))

e 1 (2.10)

where

(Nng) 1

2k ( +) l(l 1)
(2.11)

and T stands for the time interval for the interaction of the ionized detector with the electric field. As was noted in (2.4)
and (2.5), in the measurement of the ZG movement all the internal variables independent of the ZG motion must be in-

tegrated and the density matrix with the internal trace should be defined as

N N

p = g f dz' g fdz" ~())"'(NV(')(Z, T)+p( ))p( '(Z, T)~' (2.12)
1=2 m =2
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where Z stands for the 2X variable for the two detectors. Then pF is reduced to

y(1)y(1 j»@ A +y(2)y(2)»@ A +y(1)y(2)»@ A ~y(2)y(1)»@ APF

where

N

A„= g g c c„"g' (ZG, T)p'„'(ZG, T)
m=0 n=O

N

X g f dz&'p' (z' T)f "(z' T)efn(z" T)f"'(Z" T) p f dzl"/on(z", T)$0"(z",T),
1=2 l=2

A 2z
= A ) ) ( I~II),

N

i2 g ~p ( G, )$0'( G, T)
m=0

N
X g fd,'P' ( ', T)g "( ', T) g „'f"(Z",T)g'„"(Z",T) g fd,"f"( ', T)g'„'( ",T),

1=2 n =0 1=2

A2)=A)2,

(2.13)

(2.14)

where I+ II in A» indicates that terms with I and II are
to be interchanged. The integrations over the internal
variables are performed as follows for n ~ m

N
I „—:g fdzg (z, T}g„(z,T)

1=2

macroscopic phase factor (8 —8„)T in (2.15) has no
essential role to derive (2.16). In the limit we have

y Ic I'ly'„(ZG, T)l' l1(o'(Z,",T)l',
m=0

i (8 —8„)T=e " exp
a(Ng) 2

"
14k', =.+, &(I —1)

N
+ (rn n)—

I=n+t

(2.15)

A22= lgo(ZG, T) I' g Ic. I'I@."(z,, T) I'
n=0

A ~2
= A z~

=
I co I I Po(ZG T)

I I 1(on(ZG', T) I

where

A, .:—lim A," .
N~ ce

(2.17)

We immediately see that in the macroscopic limit N ~~ The density matrix is written down in the limit as

lim I „=5
N~ ao

(2.16)
pF

——lim pF=y"'y""A]/+y' 'y' "A
N —+ oo

It should be stressed that the internal trace described by
the integrations over all the internal coordinates pro-
duces the nonoverlapping property among the states with
the different number of ionized atoms. Note also that the

I

+ ( y(1)y(z)» +y(2)y(1)» ) A (2 1g)

Finally the trace with respect to the center of mass gives
the density matrix only for the quantum object, that is,

pF =TrgpF = ZG ZGpF

—y( 1 )y(1)» +y(2)y(2)» + (y(1)y(2)» +y(2)y(1)» ) Ic I2

(1 Ic I
)(y( )y(»»+y( )y( )» )+ Ic I

(y( )+y( ))(y( )»+y( )»
) (2.19)

where g„"=Olc„l =1 is used. In (2.19) pF still has the in-
terference term proportional to lcol . Then we may say
that lcol is the inefficiency of the detector as was men-
tioned by Fukuda. The existence of the interference
term is quite natural because the elastic forward scatter-
ing represented by the lcol term does not change the
detector state at all and then the measurement is not
carried out. For the complete measurement the
limN „I co I

~0 is also required.

Here we briefly comment on the nonoverlapping prop-
erty derived in (2.16). The disappearance of the integra-
tion given in (2.15) can generally be proved in the case
where the integrant of (2.15) includes any polynomial
functions of z„.. . , zi. This property can be generalized
for all the eigenfunctions of H" given in (2.9). This fact
means that the Hilbert spaces labeled with the number of
ionized atoms n become orthogonal with each other in
the marcoscopic limit N~ oo.
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Our idea for the disappearance of the interference
terms is quite different from Fukuda's idea presented in
Secs. 2 —4 of Ref. 3, where he tried to interpret it in terms
of decreasing property of the overlapping of the
wave functions for the center-of-mass variable
[1( (ZG, T)po(ZG, T) in (2.14)]. Before going to the de-
tails of the discussion about the difference which will be
carried out in Sec. IV, we would like to present the next
model in order to make our idea clearer.

Note that in the above argument we do not need two
detectors I and II in order to vanish the interference. Ac-
tually the disappearance of the interference terms except
the ~co~ term can easily be shown even if one of them is
taken off from our measurement system. Then it is trivial
that our model leads the wave-packet reduction in the
so-called negative-result measurement.

Q a Xo X

FIG. 1. Potential with two minima represented by two har-
monic oscillators.

III. MEASUREMENT BY DETECTORS
WITH QUASISTABLE INTERNAL STATES (MODEL II)

In this section we study the case where detectors are
set up to be in a quasistable state before the interaction
with the quantum object like the Wilson chamber or the
bubble chamber. In such detectors the interaction of the
detector with the quantum object plays the role of a
trigger for inducing the macroscopic physical quantity of
the detector.

As a simple example we provide the following detector
in one dimension (say x). The detector is constructed by
N atoms with the same mass m, which are bounded by a
harmonic oscillator potential with two minima as shown
in Fig. 1. We approximate the potential for all atoms as

at x =0, that is, the wave function of the detector before
the interaction with the object is written approximately
as

' N/4
a

$0(x), . . . , xq,'t)
7T

Q 2 l'EotN

exp ——g x, e
2 ' ]

aa &)1

(3.2)

where EO=N( Vo+ —,'cok ) with cok =&k Im and
a =&mk. In order that the detector is stable in a certain
time scale before the measurement, the condition

—kx +V forx&a1 2

2 0

V(x)= '

—K(x —Xo) for x )a,1
(3.1)

where

Vo= —,'K(a —Xo) —
—,'ka )0

is required and the interaction among the atoms are
neglected. The relation

V0» —,'ka'

is postulated in the following discussions. As an ideal ex-
ample all atoms are set up to be in the ground state of the
potential —,'kx + V0 corresponding to the local minimum

I

should be satisfied.
The measurement process is figured out as follows. By

the interaction with the object a certain number of the
atoms are excited. Some of them, which are given ener-
gies enough to overcome the potential barrier —,'ka, tran-
sit to excited states of the potential —,'K(x —Xo) for the
real minimum at x =X0. They again transit themselves
to the ground state of the potential ,'K(x —Xo), lo—sing

the energy —V0, that is, partially giving the energy to the
other atoms and partially emitting the energy to the out-
side of the detector. Such interactions and transitions
successively take place like a snowslide phenomena, until
a new stable state is realized in the detector. In the new
stable state a certain large number of atoms (say n) is in
the ground state for the real minimum. The detector in
the state is described as

—iE„t
$„(x), . . . , x~, t) =e

1/4 —(P/2)(x —X )
e 0

j=n+1

1/4
lX —(a/2)x.

e I (3.3)

where E„=(N—n)( Vo+ ,'cok )+ ,'n—co~ —with
co+ =&Klm and P=&mK. The total energy emitted in
the above process is estimated by

n -qN with 0&q 1, (3.5)

Vo+-,'(~k —~s. ) = Vo

Provided that the detector is set up to have a property

E, = n ( Vo+ —,'cok —
—,
' co~ ),

where we may put

(3.4)
the above energy E, becomes a macroscopic energy in the
limit N ~~ and can play a role for the physical quantity
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to be measured in this process.
We put the above detector into the measurement of the

same quantum object p presented in Sec. II. In this mod-
el the wave functions of the detector are, respectively,
represented by $0 in Eq. (3.2) before the interaction and

by

tion for & n & and 0 in (3.9) must be required to produce
the macroscopic energy emission proportional to N and
also to guarantee that the fluctuation of the energy AE, is
of the order of ~N. For the large-N limit the sutnmation
over I and n in (3.7) may be replaced by the integrations
and we obtain

N

PF = g c„p„(x„.. . , XIv; t )
n =0

(3.6)
IB(t)l =( A +4(0 )/4A

with (3.10)

after the interaction, where 1(t„ is given in (3.3) and c„are
the coeScients determined in the quantum-mechanical
process. It is noticed that the normalization g„lc„I

=1
given in model I of Sec. II should not be imposed here,
because not all states with different n become orthogonal
even in the limit N~ ~ as will be seen later in this sec-
tion. The normalization for gF is evaluated as follows:

N

g f dx, lyFI2
t =1

co=t00+ [Vo + —,
' (cok —to+ )]t =F00+ Vo t .

In (3.10) we see that, since A %0, the value of co is not im-
portant, that is, the following discussion does not change
at all, even if we put co =0. This fact that the phase fac-
tor does not play any important role, even if it is a macro-
scopic number, is the same as the situation for the phase
8„Tnoted in model I.

Now we evaluate the density matrix corresponding to
(2.4) by

where

N N

cI c„e ( A /2 ) )„ II
t (EI —E„)t

e
1=0 n =0

(3.7) N) N~.—.= II f "*,' IIf
~

1
Qo ~

1
00

(3.1 1)

;()n B (t) ((I4a —)(n —(n })
I /2

( 2na)

where c„ is normalized as f"„dnlc„ I

= IBI

& n & =qN with 0(q + 1 [q-O(1)],
(7=ooN with ao=const-o(1),

O„=coon with coo=const,

(3.8)

(3.9)

and B is the normalization coefficient for fF. The rela-

A = "P' +l."+P'
2+p2 2ap

Since the evaluation of c„,which is basically calculable, is
not the main theme of this paper, we postulate the follow-
ing form for c„ for simplicity:

where the internal trace is represented by the integrations
over all internal variables. We immediately see that the
integrations for 4' "%""* and 4' '4' " are the same as
that of the normalization, where

N
)p("(x',x")= g c„g'„(x') g"(x")

n =0

and

N
)p(2)( I XII)=yI(XI) y C„yII(XII)

n =0
L

with x'=(x'I, . . . , xz) and x"—= (XI, , X&). The in-
tegrations for the interference terms with )p"))p( ' and

can be performed as follows in the limit
N1 =N2 =N ~large:

N N N Nf f dx;Idx!I)I)F )pF & Ic)e
i =1 j=1 1 =0 0

—( A /2)(2q —A o 0)NNe ' for Ao0~q
—{q /2o 0)N—e fOr A cr0) qN

(3.12)

where the summations over I and n are carried out after
the replacement with the integrations. In both cases the
integration goes to zero in the limit N ~ ao, that is, the
interference vanishes in the macroscopic limit N ~~ .

The above argument is not enough to show the disap-
pearance of the interference terms, because the observed
quantity is the mean value of n. In the large-N limit we
can easily derive the expectation value of n (say « n »)
and the ffuctuation of n (say b,n) as follows:

~.—= [« (.—«.» )' » ]'"= (T = p (3.14)

The observed energy in the measurement is expected to
be

E,„p
=—« n » V()khn V() = & n & V() ko Vo, (3.15)

where +dn Vo =+cr VO is the experimental error. As far
as the on-off measurement discussed here is concerned,
the relation

« n »:— lim g f f dx, dx! g g nc„c(P„.g(
N ~large .

1
—4X)

1 =0 =0
lim b,nV /«n»V =0

N —+ oo
(3.16)

= &n & =qN, (3.13) is enough to detect the object. We shall discuss the cri-
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In the limit N~00, however, those contribution does
vanish in the summations over 1 and n in the interference
terms given in (3.12). This situation in model II is quite
different from that of model I, where all different wave
functions become orthogonal with each other in the limit
N~ ao and therefore we do not require any constraints
for c„.

IV. COMPARISON WITH THE OTHER MODELS

Our basic idea is similar to Fukuda's, that is, in the
macroscopic limit N~00 where the observed quantity
becomes a macroscopic variable, the interference van-
ishes. His idea for the disappearance of the interference
is, however, quite different from ours. The difference is
clearly seen in model I. Following his discussion given in
Secs. 2-4 of Ref. 3, the disappearance is interpreted in
terms of the decreasing property of the overlapping be-
tween the wave packets for the center-of-mass variable of
the detector. That is, when the wave packet for the
center-of-mass variable ZG is given by

' 1/2
ZG

2Q

1

V'n.a
(4.1)|!'o(Zo}= exp

before the interaction with the quantum object, the over-
lap function for the wave packets with the different num-
ber of the ionized atoms after the interaction, i.e., the fac-
tors P'(Z'" T)g"(Z"', T) and f"(Z' ', T)P"'(Z' ', T)
of A, 2 in (2.14), is evaluated as follows:

1 1

1+T /(a Nm) +ma

1/2

exp
EZG2

(4.2)
4a (1+p)

where T, N, and m have the same meanings as those in
our case, p = ( T /aNm ), and

~z, = "g z'.
2m

(4.3)

In his argument, therefore, the ideal limit to vanish the
interference is represented by

N~~, bZ&/a~~ (then T~oo) (4.4)

terion for the good detector in the measurement of the
energy value in Sec. V. For the interference terms we can
easily prove that the expectation values for any polyno-
mials of n vanish in the limit N~ oo because of the ex-
ponentially dumping property for N as was given in
(3.12).

Here we comment on the interesting difference between
the models I and II. As was seen in (3.10}, ~B~ %1 even
in the case k =E and coo=0. This fact indicates that
even in the limit N ~ 00 the wave functions with different
numbers of n are not always orthogonal with each other.
We can actually show

N

lim I„&=—lim g f dx, P„'P&
1 =

lim e '"~ '~" '~%0 for [n —l~-O(1} .
Q —+ co

(3.17)

as was given in Eq. (2.53) of his paper. He needs not
only the limit N~ ~ but also the limit T~ 00, that is, a
macroscopic time scale, while such a time scale is not re-
quired in our model. The difference arises from the fact
that the contribution of the variables of the detector ex-
cept the center-of-mass variable are completely neglected
in his argument for the disappearance of the interference,
whereas those variables play an essential role for vanish-
ing the interference in our model. His idea, that is, the
wave functions of the detector labeled with n(g„) belong
to the different Hilbert spaces which are orthogonal with
each other in the limit N ~~, is right. The orthogonali-
ty among the Hilbert spaces is, however, realized by the
internal trace of the detector defined in (2.5} of Sec. II,
not by the decreasing property of the overlap function be-
tween the wave packets for the center-of-mass variable of
the detector. We can never understand the separation of
the detector wave functions into different Hilbert spaces
in the limit N~~ alone unless the internal trace is
correctly introduced.

The Machida-Namiki theory has a quite different idea
from ours, that is, in their theory the Hilbert space
describing the detector is represented by a continuous
direct sum of Hilbert spaces such as

Jdl w(lpga(!), (4.5)

where w(!) denotes a weight function normalized as
Jd!w(l)=1 and %(1} is the Hilbert space of systems

with sharp size !. The density matrix for the detector
space is given by

CT = N 1p (4.6)

where p (!)stands for the density matrix of a local sys-
tem with size !. After the interaction with the quantum
object the integration over !vanishes the interference.
We can not say whether their idea for the direct sum of
Hilbert spaces is really understandable in a certain limit
of the quantum theory. The difference of our model from
their theory is, however, very clear, because no quantity
and no process not well describable and not calculable in
quantum mechanics are introduced in our model except
for the macroscopic limit N~ 00 in the final step, while
the sum over macroscopic variable! is introduced ad hoc
in their theory. That is to say, the internal trace in our
model is exactly defined within quantum mechanics,
while the sum over 1 in their model is introduced as the
superselection rule. An interesting difference is also seen
in the mechanism for the disappearance of the interfer-
ence, that is, phases proportional to the macroscopic
variable I due to the interaction of the object with the
detector is important to realize the disappearance in their
theory, whereas such phases do not play any essential
role in our models though the phase proportional to the
macroscopic variable N does appear in our evaluations
[see (2.15) and (3.8)].

We cannot refer all models for the quantum measure-
ment here. We do, however, want to stress that the ad-
vantage of our models is the fact that all processes and
states relating to the measurement, such as spectral
decomposition of the quantum object, interaction of the
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object with detectors, change of quantum states of the
detector after the interaction with the object, etc. can be
defined and described in terms of the words of the ordi-
nary quantum mechanics before taking the macroscopic
limit N~~ which is always carried out after all the
evaluations are finished according to the quantum-
mechanical treatment.

V. REMARKS ON DETECTORS
AND THE INTERNAL TRACE

As was noted in Sec. IV our model for the quantum
measurement is completely definable and calculable in the
ordinary quantum mechanics. Therefore we can funda-
mentally estimate whether a certain process plays a role
of a good detector or not. Such criteria for the good
detector may be summarized as the following two points.

1. Criterion A. We have shown that a macroscopic
change in the detector, whose effect is taken in as the
internal trace in the density matrix, induces the wave-

packet reduction. Then the first criterion is that a mea-
surement apparatus must have a mechanism for inducing
a macroscopic change described as the internal trace in
the density matrix.

We should, however, pay attention to the important
difference between the internal traces given in the two
models I and II. In model I the macroscopic change is
induced by the external field, while such a change is ini-
tially provided in the detector itself in model II. The
difference is clearly seen in the comparison of (2.16) and
(3.17), which are given by lim~ „I „=5 „ in Eq.
(2.16), and limz „I„&AO for ~n

—
l~ -0(1) in Eq. (3.17).

Namely, (2.16) for model I tells us that the wave-packet
reduction is realized even in the case where only one
atom is ionized in the detector. (Such a situation is de-
scribed by c„=5„,.) On the other hand the wave-packet
reduction does not take place, unless a macroscopic num-
ber of constituent particles expressed as (n ) 0-N in (3.8)
and (3.9) change their states in the detector in model II.
That is, the detector must be set up so that the contribu-
tion arising from the region with nonzero limits for Io &

to the interference terms may vanish in the macroscopic
limit. (This is realized by the choice of c„given in (3.8) in
model II.)

We may understand that detectors should be grouped
into the following two types. One of them is character-
ized by the feature that the macroscopic change in the
detector is due to the external force in the enhancement
mechanism (the model I type). Another type is charac-
terized by the change of the macroscopic number of con-
stituent particles in the detector (the model II type).
Then the model II type detector must be set up to be in a
quasistable internal state before the measurement.

2. Criterion 8. Though criterion A is enough to real-
ize the wave-packet reduction, it is not enough to say
whether the detector is good ar not. In the case of the
model I type detectors no more constraint is required for
the wave-packet reduction except the inefficiency arising
from the elastic forward scattering [see (2.19)]. For the
good detector, therefore, one more constraint, that is,

limz „~co~ ~0, is required. This may be realized in the
case where the number of constituent particles of the
detector which change their states during the interaction
with the quantum object becomes a macroscopic number
in the limit N ~ 00.

For the model II type detectors we need a little more
precise treatment for the coef6cients c„. As was men-
tioned in (3.16), experiments have no meaning if the er-
ror, i.e., the fluctuation of the observed quantity, has the
same order of magnitude for N as the experimental value.
We can not provide any accurate experiment. A simple
example of a bad detector for model II is described by the
case with c„=B/~N, which guarantees the normaliza-
tion of gz and the disappearance of the interference. In
such a choice, however, we obtain

((n)) ~N, bn ~N,

which are defined in (3.13) and (3.14). It means that the
ratio given in (3.16) does not vanish even in the limit
N~~ and we can not make the experimental error
small enough in comparison with the experimental value.
In order to make a good detector of the model II type, we
must design the detector so as to have a process inducing
the macroscopic change which produces the coefficient c„
having the following property: c„has a narrow peak at
n =(n ) proportional to N so as to satisfy the relation
hn l((n ))~0 in the limit N~ ~. This is the criterion
for a good detector of the model II type.

Here we would like to comment on the description of
the internal states in terms of harmonic oscillators which
is used in both models. It is easily seen that the expres-
sion by harmonic oscillators is not important. The im-
portant point is that each change of the states for the
constituent particles in the detector brings a coefficient
(say Q) evaluated as the overlap integral whose modulus
is always smaller than 1 because of the normalization of
the wave functions. In model I the interaction of the ion-
ized atoms with the electric external field is proportional
to N as Ngg,",z, . For simplicity let us discuss the case
where only one atom in the detector is ionized, whose
coordinate is denoted by z. The original potential Vo(z)
before the ionization has a minimum at a finite position
of z, which corresponds to the peak of the wave function
with no ionized atom ($0). On the other hand the
minimum of the potential with one ionized atom given by
Vo(z)+Ngz inoves with N and its position goes to infinity
in the limit N~ ~. This indicates that the peak of the
wave function with one ionized atom (g, ) also becomes
infinite with N ~~ [as an example, see (2.10)]. Now it is
trivial that the internal trace described by the overlap in-
tegral for $0 and f, vanishes in the limit N —+ao [see
lim~ „Io,=0 in (2.16)]. We may say that the harmonic
oscillator expression is not important for the derivation
of the wave-packet reduction in model I.

In the case of model II the situation is a little different
from that of model I, as it was seen that the overlap in-
tegral Q in model II whose modulus is evaluated as
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Tr [(p ) ]=g lc„l (1—lc„l )Iu„&&u„I+6(N)

—A/2( 1

does not vanish in the limit N ~ ao. This situation is gen-
eral in the model II type, because Q describes the change
of only one particle, i.e., a microscopic transition of one
particle, and does not include any macroscopic change
like that induced by the macroscopic external field in
model I. A macroscopic number (say n) of such changes
in the detector, that is, n =qN with q-0(1), produces
the factor IQI"=e '" (a )0) induced by the internal
trace in the interference terms, which vanishes in the
macroscopic limit N~ao as limz „IQI ~0 and brings
the disappearance of the interference terms. In the model
II type detectors it is clear that the fact that the macro-
scopic number of the constituent particles in the detector
change their states is essential to derive the wave-packet
reduction, but the harmonic oscillator expression is not
important. Now we may conclude that the harmonic os-
cillator expression is not important in both models.

Finally we comment on an interesting role of the inter-
nal trace. The density matrix pF given in (1.2) can be
decomposed into the diagonal term pFD and the off-
diagonal term pF QD as pF =pF D+pF QD where

pF D
= g I c„ I Iu„& & u„ I I 4„&& e„I,

p~oD= +pc c„'lu„&&u„lele &&@„l .
m n
mAn

In order to vanish the interference terms, the trace of pF
for the detector variables

does not vanish in the limit N ~ 00. It is clear that pF QD
is not a zero operator. In our idea the density matrix
should be defined by the form having the internal trace
pF given in Eq. (1.3). That is, it is written as

p„= g gc c„'lu &&u„Isle &&@„lA „,
where 4IG is the wave function for the variables relating
to the observed quantity [g„(ZG,T) in model I] and A

is the coeScient induced by the internal trace. The
coeScient A n has always the property

because of the normalization of the wave functions. The
difference of pF from pF is the presence of the factor
A „. Considering that the disappearance of pF QD is de-
rived from the fact that

lim A „=5
N~ ao

we can easily show

lim Tr@[(phoo) )=0 for arbitrary integer m .
N~ oo

We may say that pF oD is a zero operator in the macro-
scopic limit. We would like again to insist that the quan-
tum measurement should be defined by our form pF, not
by pF. Taking into account that only a measured quanti-
ty should be left in a measurement, the integrations over
the other variables independent of the measured quantity
should be included in the description of the quantum
theory of measurement.

TrepF, OD «»
is required in the limit N ~ 00. We, however, see that the
trace of (pF oo)

ACKNOWLEDGMENTS

We would like to express our gratitude to Professor S.
Kamefuchi for valuable discussions and comments.

'S. Machida and M. Namiki, Prog. Theor. Phys. 63, 1457
(1980); 63, 1833 (1980); M. Namiki, Found. Phys. 18, 29
(1988).

2H. Araki, Prog. Theor. Phys. 64, 719 (1980).
R. Fukuda (unpublished).

4R. Fukuda, Phys. Rev. A 35, 8 (1987);36, 3023 (1987).


