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The formalism of bilocal field theory was applied to the calculation of the ground-state energy
and the effective mass of the large polaron. This calculation illustrates the bilocal field method us-

ing a relatively realistic model of a physical system. In bilocal theory the fermion field is dependent
on two spatial points (nonrelativistically). Fermi particles can then be described in terms of a center
of mass and internal wave function, and field operators can be expanded in functions related to the
exact one-fermion Green s function, thereby eliminating self-energy terms from the S matrix and re-
lated operators. Similarities and differences between calculated large-polaron properties using the
bilocal treatment and the customary local treatment are discussed. In particular, it is found that,
within the approximations made, the bilocal and local methods give the same leading term in

powers of the coupling constant for the ground-state energy and effective mass in the strong-
coupling limit. For weak coupling, the bilocal energy is larger (more positive) and the effective mass
smaller than in the local case due to an additional kinetic energy of internal motion.

I. INTRODUCTION

The large-polaron problem' has been of importance
both for its intrinsic interest and as a testing ground for
new field-theoretic formalisms. In the present paper, our
primary purpose will be to display the technique of bilo-
cal field theory using the comparatively transparent pola-
ron problem as a vehicle. In this respect, the paper
should be regarded as a possible step toward the develop-
ment of a finite relativistic field theory whose content is
equivalent to that of local theory. Though useful here for
its simplicity, the polaron problem is not ideally suited to
the objective of illustrating this theory for several
reasons. It is nonrelativistic and does not require renor-
malization or regularization procedures for dealing with
divergences. More important, unlike "fundamental" field
theories such as quantum electrodynamics, the "bare"
polaron, i.e., the physical electron, exists as a valid entity
independent of the physical polaron with its attendant
phonon cloud. However, a suitable relativistic problem
would be many times more complicated without adding
to the understanding of the procedure. Because the bilo-
cal formalism does not permit the existence of bare Fermi
particles, our picture of the polaron will be somewhat
different from the standard (within the order of approxi-
mation used), particularly for weak coupling. The pro-

cedures that will be described are straightforward, explic-
itly momentum conserving at every step, and intrinsically
divergence free. While they lend themselves easily to the
study of excited states, the inclusion of electromagnetic
effects, and similar matters, only the ground-state energy
and polaron effective mass will be considered here.

Much of the formalism that will be used has been de-
scribed previously both in general terms and by the de-
tailed example of a bilocal Lee model. Briefly, in the
present formulation the Bose fields are taken as local, but
Fermi fields are assumed to depend on two space-time
points; they are bilocal. The qualitative picture of the
physical Fermi particle is the conventional one of a bare
Fermi particle, described by one of the two coordinates,
surrounded by its self-generated virtual boson cloud.
Here, this cloud is assumed to have mass and to behave
like a point particle, described by the second coordinate,
with which the bare fermion interacts. These two com-
ponents are assumed to be inseparable, so only bound
states can exist permanently, and there are no bare Fermi
particles in the usual sense. Before general calculations
can be made in this theory, it is necessary to at least ap-
proximately solve the one-fermion problem. This can be
done by relating the interaction between the bare fermion
and its boson cloud to the irreducible self-energy com-
ponents of the fermion. The result is a system of non-
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linear Hartree-like equations for the internal motion of
the physical Fermi particle. In accordance with the con-
struction, the Green's function for these equations is
identical to the one-fermion Green's function of the exact
bilocal field theory. Using the solutions of these equa-
tions to expand the bilocal field operator, the S matrix
will no longer contain any explicit fermion self-energy
components but will now contain form factors related to
the solutions of the one-fermion equations. These form
factors will render S-matrix perturbation integrals finite
for Yukawa and other simple polynominal interactions.

The mass of the virtual boson cloud associated with the
physical fermion can be defined in a consistent way in
terms of the expectation value of the boson portion of the
total momentum operator with respect to the physical
one-fermion state function. An equivalent kinetic energy
increment will appear in the ground-state energy of the
physical fermion and must be subtracted out to prevent
double counting.

In Sec. II, the procedures outlined above will be ap-
plied to the Frohlich-Feynman polaron problem and
equations derived for the ground-state energy and
effective mass. The treatment will be in the Schrodinger
picture as a matter of convenience. Superficially, the
present work has similarities to the Green s function ap-
proach to the polaron problem of Matz and Burkey, and
some procedures used by these authors and earlier by
Gross will be used again here. However, the ideas on
which the present work is based are fundamentally
different from simply an application of Green s-function
techniques to a local field theory, and similarities stem
from the fact that the bilocal formalism can be viewed as
a transformation of a Green's function usage into a con-
sistent field theory in its own right.

The large and small electron-phonon coupling limits of
the ground-state polaron equations obtained in $ec. II are
discussed in the third section of this paper. While
bounds on the ground-state energy and effective mass for
strong coupling are the same here as found in other
works, the weak-coupling limits are different due to a
necessity for bound-state solutions in the present theory.
This will be discussed in greater detail. In addition, nu-
merical results for small to moderate coupling will be
considered. Some summary remarks and a speculative
discussion about further applications of bilocal field
methods to other physical systems and about a number of
as yet unstudied questions will be given in Sec. IV.

II. BILOCAL FORMALISM

In the notation that will be used, the local polaron
Hamiltonian takes the form

0=f d xP (x} — V P(x)+duo f d ka&az
2mp

1/2 1/2

+inca 2m&2
m Oco (2~ }3»

I

d kX f d xg (x)t/r(x) f (atone
'"'"—a&e'"'*) .

e
g =a=

2fia) 2m Oco

' 1/2

E'~ E'p

with eo the static dielectric constant of the medium (our
vacuum) and e„ the high-frequency dielectric constant.
Hereafter, units which make

%=1, mp=1, m=1

will be used.
The corresponding bilocal Hamiltonian is obtained

from Eq. (l) by the replacements

g(x}~F(x,y), fd'x ~fd'x fd'y

and

1 g2
mp

p2+ p2
mp

" M

to give (in the "natural" units)

Here g(x) is the operator for a spinless "electron" field
obeying anticommutation relations

[g(x),gt(x')
J =5(x—x'), [P(x),f(x')] =0,

az is an annihilation operator for a longitudinal optical
phonon of momentum Rk and constant frequency co obey-
ing commutation relations

[az, az ]=5(k—k'), [az, az ]=0,
and g is related to the usual polaron coupling constant a
by

H= f d x f d yFt(x, y) — V„— V» F(x,y
1 2 1

2mp

d k+ fd kazaz+i(2m&2)' f d x f d yF (x,y}F(x,y) f (aze '""—aze'"*),

[F(x,y), F (x', y')J =5(x—x')5(y —y'),

(F(x,y), F(x', y')] =0 .
(3)

where the bilocal field operators obey the anticommuni-
cation relations

The x coordinate is that of the bare electron (fermion)
which is the source of interaction with the phonon (bo-
son) field; coordinate y can be regarded as that of the
center of mass of the virtual phonon cloud surrounding
the bare electron. Again, only the bare electron interacts
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with the phonon Geld here. Transforming to center-of-
mass and relative coordinates in the bilocal variables, and
adding and subtracting a nonlocal potential term to the
Hamiltonian, Eq. (2) can be rewritten in two parts as fol-
lows:

F(R,r)= f d Pge' '

y p(r)b
1

(2m) i

where b p is the annihilation operator for an electron in
state [1/(2~) ]e' y p(r) and satisfies anticommuta-
tion relations

and

R=ax+Py, r=x —y,
a= 1/A, , p=M/JR, JR=1+M,

H =Ho+HI,

(4) Ib p, b, p, I
=5 5(P P—'), Ib p, b p J

=0 . (9)

The index o represents the set of quantum numbers
which characterizes the function y p(r) describing the
motion of the bare electron relative to its virtual phonon
cloud. Similarly, we will expand V(R, r~R', r'} as

where

Ho= fd R f d rF (R, r} — Va — V2 F(R,r)1 2 1

2mr

V(R, r~R', r')= d PgV p(R, r~R', r')e' '"1

2n '"
a

Xg p(r' }b p (10)

+f d kayak

+ f d R fd r f d R' f d r'F (R,r)V(R, r~R', r'),

and where

H =H'"+H' ',I I I

with

To explicitly illustrate the construction of the potentials
V p(R, r~R', r') and the derivation of the equations for
the functions y p(r}, we will develop the perturbation
solution of the one-electron states of the Hamiltonian H
For this purpose, we will write the Hamiltonian as

H =H +aH'"+a'H"'0 I I

where A, = 1 will be used as an ordering parameter. The
interaction HI ' should be regarded as a power series in
A, , but only the zero-power term will be used here.
Proceeding in the standard manner, we write the state
vector of H and its eigenvalue as

H'"=i( n2&2)'
(2~ )3/2

X d R d rFtRrFRr and

%=%0+A,'Pl+A V2+

%31
x (a ke

elk R+iPk r)a&e

E =Eo+AE& +g E~+

The Schrodinger equation H%=E+ then decomposes
into the set of successive approximation equations

and

HI'= —fd Rfd rfd R'

X r'F R, r R, r R', r'

In the present units, the reduced mass
m = rnoM /( nl 0 +M ) ls equal to p, but we will continue
to use the explicit notation m„.

Our objective will be to choose the potential operator
V(R, r~R', r') in such a way that the one electron Green's
function of the "unperturbed" Hamiltonian Hp is the
same as that of the full Hamiltonian H. In terms of
Feynman diagrams, this can be done by taking V so as to
cancel appropriate irreducible self-energy terms generat-
ed by HI", Eq. (6), when a perturbation solution of the
single electron states of H is constructed. We begin by
making an expansion of the operator F(R, r) in terms of
center of mass and internal wave functions of the electron
portion of Hp..

Ho+0 Eo+0

Ho+i+Hi +0 Eo+]+Ei%0

H0% 2+HI 0 &+HI %0=E0%2+E]% ]+E2%2

etc. Restriction to the one-electron problem is accom-
plished by setting

where ~0) is the electron-phonon vacuum state.
The factor V(R, r~R', r) occurring in HI ' will be deter-

mined by the requirement that the zero-order energy be
the exact energy of the one-electron problem:

EO=E, E„=O (n)0) .

This is equivalent to the elimination of self-energy terms.
Using the expansion, Eq. (8), for F(R,r) and Eq. (10), the
zeroth-order equation of the perturbation set can now be
written as
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P2
Hrlv p)= J d xry", r(r) (), y, r(r)(lrr', p)

2m„

iP' R
+f d R f d r f d R' f d r' f d I"g y' p(r)V p(R, rlR, r')

~ (2n. )'

ip R'

X
2~ X,p(r )lcT P ~=E, pl cT, P& .(2~)'" " (12)

Because 4& represents the state vector increment in which the interaction term HI" has acted once, and %'2 that for
which HI" has acted twice, these perturbation increments will take the respective forms

%'i= fd Q g c(cr', Q;o, P)b ~
ql 0) +

2& f d Qg fd kh(cr', Q;k)b &a&l0) (13}

and

2
' 'o';o, pb ~ QO + d kh' 'o' 'kbt. a~k02~'

CT

2

+ f d Qg f d k fd k'f' '(cT', Q;k, k')b ~ &a&~a&~ l0) .
27r 3

I

(14)

Insertion of these expressions into the second and third
equation of the sequence, Eq. (11), results in the following
relations for the as yet unspecified coefficients of +& and
%2. For simplicity, we assume no degeneracies of internal
states, set to zero certain generally vanishing terms when
made indeterminate due to an intermediate energy sum-
ming to zero, and usually suppress the index (cT,P ) of the
eigenstate under consideration. Then (a} the matrix ele-
ment of the first-order perturbation equation with state
lcr, P) gives

Ei =0,
and equating coefficients of the like states in this equation
gives

and

C(cT'', Q;o', P) =0

h( ', Q;k) = —i(2ir&2)'~2
(E q Ep+ fico—}

X —5(Q —P+k)d((r', Q;cT, P;k), (15)
1

where

d(0', Q;cr, P;k)= f d re '+'y' &(r)y p(r);

(b) similarly, from the second-order perturbation equa-
tion we obtain

2 d kE2=
3 f d R f d r fd R'f d r'e ' ' y' p(r) —2ir&2 g f d Q f e' '~+"'y

~ &(r)
2m. '

i' (r—r') —iR' (Q+k)Xe e
1

E ~ q
—E~ p+fuo

—V p(R, rlR', r') e' '"y p(r') (17)

and

C' '(cT', Q;cT, P) =0,
h' '(o' Q k)=0

E ~ o Ep+2fico—
Xg d(cr', Q;cri, Q+k;k)d(cri, Q+k;cT, P;k') .1

E q+ i, Ep+fico—
To make perturbation energy E2 vanish, we set
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V (R,rlR', r'}=—2@v 2 g d Q e' ' +~& ~ (r) e(~.(r—r')ye (r )8 " +sd k
O'P & ~

(2 )$ kz '~ E ~ g E— +%co
I f

(19)
In terms of Feynman diagrams, what has been done is to cancel the second-order self-energy term with a component of
HI' ' thereby defining V p(R, rlR', r') to order g . This is shown diagramatically in Fig. 1. Rules for constructing
higher-order components of V p(R, r, lR', r'} from appropriate irreducible self-energy diagrams are given in the Ap-
pendix.

Inserting the potential, Eq. (19), into Eq. (12) for Ho lcr, P ) and carrying out the fd R and fd R ' integrals gives, to
order g,

Holo, P)= Jd rgb'. p(r)
p2

2At
V. X,p(r)

1 2

2m'
J

2 d3k iPk.(r—r')

(2n} k~ E p g Ep—+

The off-diagonal matrix elements of Ho are

& ~', qlHOI~, P &

XX p z(r )X,p(r') lo', P)=E,plo P~ . (20)

=5(Q—P)Jd'ry,', p(r( V, y p(r)
1

2m'

8 iPk (r —r')dk—2~V'Z g d'r V
(2m) k E p q

—E p+Rco

Xg p g(r)g p g(f )g p(r'), o'%0' (21)

In order that the right-hand side of this relation be zero and be consistent with the diagonal matrix elements as well as
with the orthonormality of the internal wave functions y p(r) required for the original expansion of the field operator
F(R, r), it is necessary that the equation for y p(r) be

V„g p(r) —2n 2
3

d r'g
& g p s(r)p p g(f )p p(r')

2rnr (2~)3 n', p —k a, p

=E pg p(r} (22)

R2, r2, t2

I
I
l
III

/
/

r

R), r), t

i a, P, E~p
FIG. 1. Second-order polaron self-energy diagram used to

obtain the internal state polaron potential considered in this pa-
per. The dashed line represents a virtual longitudinal phonon
and the heavy solid line represents a physical polaron.

Equation (22) represents a doubly infinite system of cou-
pled eigenvalue equations enumerated by the internal
quantum numbers o and the polaron momentum P.
Since only the order g self-energy potential has been
used in Eq. (22), it is the lowest-order equation set and
corresponds to the approximation often employed for the
polaron ground state. To make the equation for internal
wave functions more tractable, the following approxima-
tions will be made: (a} the internal wave functions will be
assumed to be independent of the total momentum,

p(r)~y (r); (23a)

(b) the polaron energy will be assumed to be the sum of
an internal energy and the center-of-mass kinetic energy,

p2
E =E+ (23b)

If we were to now let M go to infinity in the resultant
equation, we would obtain the local Green's-function-
related equation used by Matz and Burkey in their pola-
ron study, except for the units employed. However, with
the approximations of Eqs. (23a) and (23b), it is possible
to carry out the d k integration for a polaron of zero
momentum, P =0, giving
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2 2 2

2m„" (2~), p(E, E—+fico} ~r
—r'~

V2y (r) —2m' 2 f dr'g, (1—expI —p~r —r'~[ZAt(E ~ E—+fico)]'~ I )

Xy (r)y .(r')y (r')=E y (r) . (24)

In terms of Eq. (24}, the Matz and Burkey equation again corresponds to letting M~ ao which replaces P by 1 and
deletes the exponential term within the bold parentheses. Compared to the Matz and Burkey work, Eq. (24) tends to
underestimate the potential and the value of ~E ~, despite the factor of P in the denominator. If only the ground-state
term is retained in the o sum of Eq. (24) and this is assumed to be an s state, so

yo(r) = 1 f(r)
V'4~ r

we obtain a numerically tractible equation for g(r}, which might be expected to apply when g ( 1:

g(r) 2m ~—2 f dr', (r +r') ((r —r' ~—g' ir' (r) -, I
(r')I'

2m, dr (2~) p r o r'

(25}

Before a solution of the equations for yo(r } and Eo can
be found (except in the limiting case M ~ 00), it is neces-
sary to obtain an expression for the mass M of the pho-
non cloud associated with the bare electron. This can be
done by considering the total momentum operator

Pop Pf +P~

Pf ——f d R f d rFt(R, r) . VaF(R, r—) .
l

Pb = QgQg

I

& %(O, P)[Pf [%(O,P) )

=p&0, p(o, p)
2

+ f d Qg f d k(P —k)ih(o', Q, k)~
(2~)'

&%(O,P)~P ~%(O, P))
2

, fd Qz f d k klh(a', Q'k)~l
(2n )

(27)

(2g)

The first term Pf corresponds to the momentum of the
"bare" polaron, and contains no explicit information
about the virtual phonons which form part of the physi-
cal polaron. The term Pb provides the latter information
as well as information about free phonons. Because the
present formalism conserves momentum explicitly, one
has for the bare polaron and the physical polaron, respec-
tively,

and

&q(O, P)lq(O, P) &

2

=&O, P~O, P)+ f d Qg f d k~ h( (r', Q; k)~
(2n. )

(29)

and

&(T, P~Pf ~(T, P)/&O', P~(T, P) =P

&q(((r, P)~P, ~ip((T, P) &/&q(((r, P)lq((o, P)) =P .

where, within the present approximations,

h( ', Q;k) = —i(2~ 2)'
E ~ E(i+k /—ZAt kP /JK+—%co

X —5(Q —P+k) f d r e ''y (r}yo(r} .

In terms of the perturbative expansion of the state func-
tion, the expectation value of the momentum operator is

&(p(CT, P}~P (qi((T, P))
=&q( ((r, p)(p ((11 (cr, p}&

+X'&q, (~,p)~p.,lq, (~,p))+ .

with a similar expansion for & %((r,P)
~
%((r,P ) ) .

Confining the discussion to the ground state o =0, and
making use of the explicit form of (p„Eq. (13), in con-
junction with Eqs. (15) and (16) we have to second order

The velocity v of a freely moving polaron of momentum
P and mass JK is defined by the relation Atv=P The.
portion of the total polaron momentum provided by its
virtual phonon cloud will be the expectation value of the
boson part of the total momentum operator, Eq. (26).
Therefore we will define the mass M by the relation

Mv= lim&%(O, P)~P ~%'(O, P))/&O, P~O, P) .
P~O

(30)

This expectation value can be simplified for small mo-
rnenta P by expanding the energy denominator of
~h(o', Q;k)~ in powers of (k P)/JR. Since there is no
preferred spatial direction for the total momentum, its
magnitude will be independent of direction. Therefore,
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taking the scalar product of Eq. (30) with P and averag-
ing over direction gives, to lowest order in

~
P ~,

3 (2ir) ~ (E, E—p+k /231, +fico)

(31)

where now, in approximation,

d(cr', k )—:d (a', —k;0, 0;k)

=f d re '~'g'(r)gp(r} .

If we let M~ co on the right-hand side of Eq. (31}and

limit the o' sum to the ground-state term o'=0, we ob-
tain

2 2fd'k'"'
3 (2n ) (fico)

which is the polaron mass increment approximation ob-
tained by Gross' and by Bolsterli" and which was used

by Matz and Burkey. If, instead, we carry out the d k
integration in Eq. (31) we get

2 g' m'v 2 1M=—, (2'�)'~z2, Jd~ryo(r)y, .(r)
3 (2m) 2 ~ (E Ep+fico—)

X f d r'y' (r')y p(r') [1 +P~r —r'~[L/K(E ~ Ep+f—ia))]'~ ]

XexpI —P~r —r~[ZAt(E ~ Ep+Ac—o)]'~ j . (32)

As with Eq. (25), if we assume yp(r) to be an s state so yp(r) =(1/&4ir)g(r)lr and keep only the first term o'=0 in the
u' sum, we can carry out the integrations over the angular parts of r and r' giving

M= (2') f dr~&(r)~ f dr'~P(r')~
z24 2 o 2P,13'rr'

X I(2AfP r r'i +3P")/L—Ati)(r r'i+—3)e

—[ZA1P (r +r') +3P&2JR(r +r')+3]e (33)

The equations for the ground-state quantities Ep and yp(r) and for the mass increment M are highly nonlinear both in

the explicit multiplicity of the appearance of yp and indirectly through the mass M. In general, the equations must be
solved numerically by iteration. There is the added complication of the need for knowledge of the entire excitation
spectrum for proper characterization of the ground state.

Returning to the ground-state energy, within the present approximations we have from Eq. (22)

2

Ep p
= d r gp (i ) V„gp(r)z

2@i„
2 d3k e i' (r —r')—2ir&2 der yp(r) d r'yp(r')

2 y, (r)y'(r')
(2ir) k E~ —Ep+k /LAt kP/JK+—%co

(34)

If we expand the energy denominator of Eq. (34) in powers of (k P)/JR and proceed in a manner similar to that leading
to Eq. (31), we obtain an energy increment to lowest order in the momentum of

2 p2 iPk (r —r')
d'r d'r' d'k Xo(r)X .(r)X'.(r')Xp(r') .

(2 ) 3A, (E~ —Ep+k /2JR+Rci))

EP
2A

leads to the identification A=M. However, the total
mass Af =mo+M already includes the phonon mass in-
crement M because the original Hamiltonian was so for-
mulated that the physical or "renormalized" polaron
mass was employed from the beginning. Therefore it is

Referring to Eq. (31), this is just —MP /2' . If this
were added to the term P /2' on the right-hand side of
Eq. (34},and it were assumed that the total kinetic energy
should have the form P /2(At+6, ), then making the for-
mal expansion

p2 p2

2(JR+(5, ) 2'

necessary that the redundant appearance of mass M be
subtracted from the energy to prevent multiple counting
of mass increments and inconsistency with the total
momentum. Here and in the following, these redundant
mass increments will just be ignored. The redundancy
can be eliminated formally by adding a term

H~:P f d R fd r F (R, r)VLF(R—, r) (35)

to the zero-order Hamiltonian, Eq. (5), where P is the no
boson projection operator

P—:e 1 —e — d kai, ai, , e=0+3
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with e(x) the step function

1, x)0e'"'=
o, x(o.

III. DISCUSSION AND RESULTS

A. Small-coupling limit

The present theory does not have a perturbation limit
in the usual sense. If the bilocal polaron problem under
consideration were viewed as a fundamental field theory
rather than as a model for a physical electron in interac-
tion with a polar medium, it would be essential that the
equation for the ground-state internal wave function have
a stable bound solution. Otherwise the virtual boson
cloud surrounding the bare fermion could escape to
infinty. This would not be acceptable physically. If there
were no bound solution, one would have to conclude that
the field particle in question cannot exist freely, and bar-

I

ring the existence of some other stable entity associated
with this field, that the field theory itself would not be
physically valid. It will be shown numerically that Eq.
(25) continues to have bound ground-state solutions for
the polaron ground state as the coupling constant ap-
proaches zero. Therefore the interaction potential corre-
sponding to the self-energy diagram of Fig. 1 will be
iterated an infinite number of times in producing the
ground-state energy of the bilocal polaron. There is also
a non-negligible positive kinetic energy contribution due
to the relative motion of the electron and its virtual pho-
non cloud. Both iteration of the interaction potential and
the kinetic energy affect the spatial extension of the pola-
ron wave function which, in turn, acts to modify the in-
teraction potential.

Despite the qualifications implied above, it is possible
to obtain the leading terms for the expansions of the pola-
ron ground-state interaction energy and effective mass in-
crement in powers of g in the weak-coupling limit. In
Eq. (32}and Eq. (36}below,

Eo= — f d rgo(r)V„yo(r)
1

2mr

2 2772—2m 2 g fd rgo(r)g (r)f d r'y" (r')yo(r')E E,+1- r —r'

X (1—exp I
—Plr —r'

l [ZJK(E ~ ED+ 1)]' } )—, (36)

all powers of the coupling g are present implicitly in the internal wave functions g (r), the energies E, and the mass
ratio p=M/(m(3+M) occurring in the intergrands. If Taylor expansions of the exponentials in these integrands are
made, ignoring the validity of such expansions, one obtains

2 3

(m)3"
3 (2n. )'

and

XX,fd ryr'(r(y, (r)fdrr y,"(r y ((r r[ (p('r(r —'r')rd((E, E+()+r.I—
~ (E ~ Eo+1)—

1
Eo = — d r yo (r }V„yo(r)

2@i„
2 2 2—2~ 2, g f d r yo(r}y (r)f d r'y' (r')yo(r)(2~)', E. E,+1- r —r'

X [Plr —r'1 [~(E.—E,+1)]'"
13'Ir r'I'P, (E —Eo+—1) . . —

Using the orthonormality for the internal wave functions
and the fact that for g (&1JR=1+M—= 1 then gives

2
M= +.

6

and

Eo= — d ry (or V}„y (or
—} (g + . ) .1

Though the leading terms for M and the potetnial part

I

of Ep obtained above have the usual weak-coupling
values' found in the perturbative treatment of the local
theory, what has been done is, in fact, misleading. This is
because the root-mean-square radii r, , =((r )0)' of
the ground-state internal wave functions of the bilocal
theory increase in such a manner that the quantity Pr, ,
remains large and approximately constant as g goes to
zero. Therefore expansion of the exponentials is not per-
missible. This behavior is due to the internal kinetic en-
ergy, absent in the local theory. Only by going to the lo-
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cal field-theoretic limit in which excited internal states
are omitted and the ground-state internal wave function
collapsed to a point at the origin

y0(r)~&5(r)

do we validly obtain the small coupling interaction ener-

gy and mass increment. However, in going to the local
field limit of the bilocal formalism, it is necessary to
disregard an infinite internal kinetic energy that arises.

B. Strong-coupling limit

%e obtain the standard results for the leading term in
powers of g for both the ground-state energy and
efFective mass in the strong-coupling limit. For the sake
of completeness, we will outline this calculation following
procedures employed previously by Gross and by Matz
and Burkey. Here, one makes a variational calculation,
replacing the true internal wave functions y (r), by har-
monic oscillator functions 11(t„(r), 2) = In, l, m I with n the
number of radial modes, I the orbited angular momen-
tum, and m its projection on the z axis, which satisfy the

I

equation

V„g„(r)+-,'m„ro r 11(„(r)=C„Q„(r),
1

2m'

with

@„=rgb(2n+ I+ —,
'

) .

The oscillator frequency 9 will be used as the variational
parameter. Since the polaron effective mass is expected
to become infinitely large as the coupling g goes to
infinity, we will begin by making the approxiations

JR=1+M=M, /=M/(M+1)=1,

m, =M/(M+1) =1,
and setting the kinetic energy terms in the energy denom-
inators of Eqs. (31) and (34) to zero. These approxima-
tions will be justified by consistency with the final results.
The variational equations for the ground-state energy and
effective mass in the strong-coupling limit may then be
written as

2 'k
E0= ,' f—d—r$0(r)V„$0(r)—2m'/2 fd r $0(r)f d r'$0(r') f e'"" "gg„'(r)p„(r')f dre

27r 3 k2 9 9 p

and

2
& a'A= —', 2~3/2 f d r &0r f d r'&0(r') f d k e'"" "g g„(r)p„'(r') f "d—~e

27r 3
Q) 0

—( 4 —Co+ a))~
where the relation (6„—80+co) = J0 d~e " ' has been used. Using the Green's function for the spherical
harmonic oscillator' in the present units

G(r, r'; —ii}=gf„(r)g„'(r')e
7l

3/2

2m sinhco~
exp ——(r+r') tanh +(r —r') coth

4 2 2

and the explicit expressions

)
—(4 )

—1/22 —1/ — /4 —
1 /2)ter g —3 gp

—
2 CO,

all but the d ~ integral may be done easily to give

2
g —I/2 d

—
x( 1

—
aux) —1/2

4 V'~ 0

2- 3/2
JK= — [2+O(ro ')] .

3&7r

Finally, minimizing this last expression for Ep with
respect to co results in

2' '
2g

3&m
and

2
g —3/2 f 2d —x( 1

—Bx)—3/2

3&7r

and so, to leading order,

g ~ 16g
81m.

If it is now assumed that r3~ 00 as g ~~, the terms in
parentheses in the above integrals can be expanded and
the dx integrals performed giving

These final strong-coupling results validate the prior as-
sumptions of large M and S.

and

2 —1/2[1+O( ——1)]
4 v'~

C. Infinite-M and zero-M limits

If the polaron mass increment M were regarded as a
free parameter rather than a quantity to be calculated
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self-consistently within the theory, there are two limits
which are worth considering briefly. The first is the
M= Oo limit which was mentioned earlier in connection
with the Matz and Burkey paper. In this limit, polaron
kinetic energies vanish for finite momenta. The bilocal
coordinates become

R=y, r=x —R,
so the physical picture becomes that of a bare fermion
moving in the potential of an infinite mass virtual boson
cloud. This is not the limit of local field theory despite
the fact that Eq. (22) for the bilocal internal wave func-
tion reduces to a similar equation derived from the
single-particle Green's function for the corresponding lo-
cal field theory. ' The fundamental difference between
the local theory and the M = 00 bilocal limit, which is not
apparent in the ground-state energy and effective mass
calculations, is that S-matrix elements evaluated within
the bilocal theory will, in general, contain internal fer-
mion wave functions explicitly. No similar appearance of
anything corresponding to an internal fermion wave

I

function occurs in standard S-matrix calculations within
local field-theoretic frameworks which center about the
usage of free fermion fields. It might be added that while
it is possible to let M = ~ in the bilocal theory and there-
by obtain the same results for polaron quantities as, say,
Matz and Burkey, doing so would be inherently incon-
sistent with a later calculation of a finite effective mass.

In a sense, the strict M =0 limit may be regarded as
the local field limit of the bilocal theory. The bilocal
coordinates are now

R=x, r=R —y,
so the bare fermion coordinate and the center-of-mass
coordinate coincide. The relative kinetic energy operator
in the Hamiltonian, Eq. (5), becomes infinite, '~ and all ex-
ponential factors of the form exp(iPk r) containing the
relative coordinate become unity. If we ignore the
overall infinite energy shift due to the relative kinetic en-

ergy and insert the expansion for the bilocal field opera-
tor explicitly, then as M approaches zero, the total bilocal
Hamiltonian, Eq. (5) plus (6) and (7), becomes

H= fd R fd r (2m) g fd Py' p(r) bf
p

— V
cr

X (2m) g fd P'y ~ p(r)e'P 'Rb . p.
CT

+~'(2~&2)' ' fd'R fd'r f (2m) g fd Pg» (r)e 'P'Rbtd k
(2~)'" k cr, P cr, P

X(a e '"' —a e'"'") (2n. ) g fd P'y ~ (r)e' '
b ~

) 7

+fd ka&a& .

If we assume, further, that the internal wave functions y p(r) are independent of center-of-mass momentum in the
M=0 limit, then performing the d r integrations and applying the orthonormality of the internal wave functions
reduces the above Hamiltonian to

H=g fd RF (R) V„ F (R)
27tg p

+i(2m&2)' 'f d R f F (R)F (R)(g e '"' —a e'" ) + f d k t2ta
d k

)
3/2 0' 0' k k k k ~

where the operator F (R) is

(R )
—(2 )

—2/2 fd 3P iP.Rb
7

Except for the redundancy in the electron field term of
the Hamiltonian involving the cr index, which can be ig-
nored since excited internal states no longer have relevan-
cy, this is just the local polaron Hamiltonian, Eq. (I),
with which we started.

Finally, it might be noted that if we set M =0 in the
right-hand sides of Eqs. (36) and (32) for the polaron en-
ergy (omitting the kinetic energy) and mass increment,
respectively, we will obtain the weak-coupling values of
Ep ———g and M =g /6

D. Some numerical calculations

Simultaneous numerical solutions of Eqs. (25) and (33)
for the polaron ground-state energy and mass increment
have been obtained for values of g between 0.0 and 3.0.
These should have validity here only for g ~ 1 since
excited-state contributions are not included in these equa-
tions. (The validity of these and other polaron calcula-
tions for g ) 1 can also be questioned if they do not in-
clude contributions from irreducible self-energy terms of
order g and higher. ) In addition, an estimate of the con-
tribution of the first excited state to the ground-state en-
ergy and effective mass has been obtained by approximat-
ing it with the lowest excited state of a spherical harmon-
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ic oscillator and adjusting the oscillator frequency co vari-
ationally to minimize the ground-state energy. Contribu-
tions of additional excited states could be included
straightforwardly in a similar manner, and, in principle,
the entire excited oscillator spectrum could be included
in a like manner to that used in Sec. III B for the strong-
coupling limit, though this would be considerably more
difficult numerically.

To include the contribution of the first excited polaron
state approximately in the ground-state calculation, we
start with Eqs. (24) and (32), taking the lowest internal
wave function, as before, to be

X(r) = 1 d(r)
v'4~ r

and the first excited function to be that of the 1p oscilla-
tor state

1(r)=», (8 P) Ro t(r)

with

Ro, &(r)=

1/2 1/2
——1/2 2 —(1/2)$«co re

7T 3

Y~,o(cia Ni2)

4m.

2l +1

1/2

YI ~(ei, gi)Y('rr (82,$2),
m= —I

all angular integrals can be performed to give

Omitting the higher excited states in Eqs. (24) and (32),
and making use of the spherical harmonic composition
relation

1 d (r) —2m'~2 —P(r) f dr' , It/(r—')I
g2 m 1,1

21tl„dr (2~) p r o r

and

+ U(r)=Eog(r) (37)1

P&2At

2 ~32M= — (2At) f drIP(r)I f dr'Ig(r')I
3 (2~)' 4 0 0

x'
TT

I
r r'I'+—3 3

I
r r'I +—

p&~ ~p'

(r+r') + 3 (r+r')+ 3
e

—PV 2Af( r + r')

p&m 2AP2

where

g' 3n'&2
3 (2n) 4 f dr g'(r)R o(r) f dr'g(r')Ro, (r'), A(r, r'),

(a+1)' o ' o
" rr' (38)

U(r)= 2m+2 —
3

—Ro &(r)f dr'p(r')Ro ~(r')g 3m' 1

(2n) p(@+1) r ' o

X —, (r +r') —Ir —r'I+ (e ')—'"+" '+e '~~" "'~)
T a

1

rr'a p
+r'+ e

—a~(r+ r') r + e
—apl r —r'I

ap a

and

A(r, r')= (r+r') + (r+r')+3, 3

ap a2p2

+,[(r+r') —Ir —r'I3]
3p'p'

e
—aP(r+ r')

rr'a p

(39)

—
~PI » —«'Ie

rr'a p
+ Ir r'I + Ir r'I+- —~ 2 3 ~ 3

a p a'p'1,, 3(r+r') + (r+r') + (r+r')+ e '~'+" '

rr'ap ap a2p2 a3p3

+, I
r r'I'+

I
r ——r'I'+ Ir —r'I+ e -'~~-"-"'~

rr'ap ap a&p& a3p3
(40)
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tion energy of the first excited polaron state relative to
E0. The sudden decrease in the slope of the co versus g
curve for g ~ 2 suggests the necessity for inclusion of the
next level of excited states in the calculation. Finally,
root-mean-square radii for the polaron ground state

r, , =— f dr r ~P(r)~

FIG. 6. Internal ground-state wave functions f(r)=ry(r)
and ground-state potentials for g =1.0 and 3.0 with (solid
curves) and without (dashed curves) first excited-state contribu-
tions. The solid curves are what would constitute the "local"
potentials of Eq. (37) and do not include the nonlocal term
U(r).

tion energy and mass increment in powers of the coupling
(although here this expansion is not legitimate mathemat-
ically), or collapsing the internal wave function to the ori-
gin to recover the local limit, results in the usual leading
term for each as g ~0. In large measure, though not en-
tirely for the polaron example, the bilocal field pro-
cedures discussed here give results equivalent to those of
local field theory.

In the bilocal formalism, nonrelativistic or relativistic,
all Fermion self-energy effects transform into the charac-
teristics of potentials which determine the internal spatial
motion of the composite system consisting of the bare fer-
mion and its virtual boson (etc.) cloud. In terms of Feyn-
man diagrams, single fermion self-energy inclusions no
longer occur in the S matrix, for instance, but the fer-
mion propagator is now altered to take into account vir-
tual transitions to the various internal states' of the spa-
tially extended physical particle. Only pure vertex
corrections, possible boson self-energy terms, and graphs
which couple more than one vertex through virtual boson
emission and reabsorption (related to multiparticle
Green s functions), as in Fig. 7, remain as complications
in the S matrix. Because of the spatially extended nature
of the physical fermion, we expect that all Feynman dia-
gram terms will now be finite, but this has not yet been
proved in general. As a speculation, all of the complica-
tions with ultraviolet divergences may now rest on the
behavior of the fermion internal (i.e., self-energy) poten-
tials at the origin. Extending this speculation, it may be
that bilocal fields with renormalizable local field counter-
parts produce potentials with at most weak singularities
at the origin from all relevant self-energy contributions

are given in Fig. 5, and ground-state wave functions f(r)
and potentials (not including all effects of the first excited
state for the latter) are shown in Fig. 6 as a function of
radius for several values of the coupling constant.

IV. SUMMARY AND SPECULATIONS

In the preceding sections, we have demonstrated the
use of the bilocal field formalism by applying it to the
large-polaron problem. Only the lowest-order approxi-
mation to the self-energy (Fig. I) was used to obtain the
internal state potential which determines the polaron
properties in this theory. Within this framework, it was
shown that the bilocal formalism gives the usual Feyn-
man expressions for the leading term in powers of the
coupling constant for the upper bound of the strong-
coupling ground-state energy and for the polaron
effective mass. In the weak-coupling limit, the theory
gives a higher energy for the polaron ground state than
obtained from local field theory, and a smaller effective
mass. This is due to the kinetic energy of internal motion
in the bilocal theory which leads to bound-state polaron
solutions for all values of the coupling, with internal
wave functions that expand uniformly over all space as g
approaches zero (a stable bound internal state being a
necessity for the bilocal formulation). On the other hand,
making a formal expansion of the ground-state interac-

~ & % % W & % % % % SQHS % % % H & % %

1
l
I
I
I
I
I

~ mmmmm mmm m +mmmm mmmm

r
rrr

FIG. 7. Example of a Feynman diagram in which several ver-
tices are coupled by the emission and reabsorption of a virtual
boson.
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and so could permit bound-state solutions, while for non-
renormalizable local counterparts potentials are too
singular. Here, if the fermion self-energy potentials do
not permit a stable bound internal state solution, the free
physical particle in question does not exist.

With regard to renormalizations, since we expect all
Feynman diagrams to be finite in suitable bilocal theories,
mass renormalization consists of just calculating a mass
increment from a formula similar to Eq. (32) obtained
from the expectation value in the one-fermion state of the
boson contribution to the total momentum operator, and
state function renormalizaton is just ordinary normaliza-
tion. Only finite-coupling-constant renormalizations
remains to be done in a manner similar to that in local
field theory.

Focusing further on purely formal aspects of bilocal
theory, the question arises as to whether this theory is
really distinct from its local counterpart. Though no in-
vestigation of this matter has been made, we suspect that
the answer is no, at least for "fundamental" fields, where
no bare fermion exists independent of its surrounding vir-
tual cloud. If so, what has been done is just a restructur-
ing of the formalism which places initial emphasis on the
characteristics of the physical Fermi particle. If physical
Fermi particles have such an internal bound-state struc-
ture, then at least some of the difficulties that have oc-
curred in local field theories result from attempting to ob-
tain bound solutions by perturbation methods using
plane-wave expansions.

Aside from the speculations discussed above, there are
a large number of technical questions that could be asked
concerning internal consistency and how to develop and
deal with the bilocal formalism mathematically. For ex-
ample, can path-integral techniques be applied here
profitably? However, the primary question is still that of
the applicability of the bilocal formalism to basic physical
problems. Two such problems that may be tractable are
the calculation of the electromagnetic contribution to the

I

mass of the electron and a possible explanation for the
lack of occurrence of free quarks. The electromagnetic
mass problem should involve a fourth-order calculation
of the internal potentials since the second-order potential
is expected to be repulsive, with attractive components
coming from the fourth-order vacuum polarization term.
Unlike the polaron calculations considered in this paper,
the electron problem will require the use of charge renor-
malization since only the renormalized charge is known
while the bare charge is required for the calculation of
the internal potentials. Similarly, the bare mass of the
electron would be a parameter to be determined by the
coupled calculation of the electromagnetic mass, the un-
renormalized coupling constant, and the internal wave
functions. In accordance with bilocal theory, the deter-
mination of the nonexistence of free quarks would result
by showing that a bare quark cannot bind to its accom-
panying virtual gluon cloud. Analogous ideas to those
discussed in this paper may also be applicable to the
study of hadronic structure.

APPENDIX

Use of the interaction picture (here nonrelativistic)
rather than the Schrodinger picture provides a simpler
and more systematic method for calculating potential
terms from irreducible Fermi particle self-energy dia-
grams and for obtaining single fermion state functions. It
is also more appropriate for relativistic calculations.
Derivation of all interaction picture relations follow in
the same manner as in local field theory, and only a list-
ing of some useful equations and rules will be given
below.

In the interaction picture the "unperturbed" bilocal
Hamiltonian and the bilocal interaction Hamiltonian for
the large polaron may be written as

Ho= fd R fd rF (R, r, t) Va — V, F(R, r, t)2'
+cof d ka„at, + f d R f d r fd R'f d3r'f dt'Ft(R, r, t)V(R, r, t~R', r', t')F(R', r', t')

and Ht(t) =Hz"'(t)+Hz' '(t), with

~(t) =t'(2~~/)~~2 g d3R d3r Ft(R r t )F(R r t ) (ate '&'~&+t3~~+'~t —a e'& ~a+ttr~ '~&)d k
I

(2 )3/2 k k

Ht' '(t)= —f d R f d r f d R'f d'r'f dt'Ft(R, r, t)V(R, r, t~R', r', t')F(R', r', t') .

(Al)

(A2)

(A3)

The expansion of the Fermion field function is now

F(R, r, t) =e'F(R,r)e—
=(2m) ~ g fd Py p(r)e b

V( R, r, t
~

R', r', t ') and potentials
specified in Eq. (10) given by

V p(R, r~R', r')

V p(R, r~R', r')

(A4)
The equations which determine the internal wave func-
tions y p(r) are the same as before, Eq. (23) in second
order, with the relation between the potential

=e f dt'V(R, r, t ~R', r', t')e (A5)

We can now use standard S-matrix procedures in con-
junction with Feynman diagrams to obtain the potential
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V(R, r, t
~

R', r', t') and, similarly, calculate the one-
fermion state function by operating on the state

~ o, P ) of
Ho with the time evolution operator U(0, —&n ). In series
form, these operators are

U(0, —ao)= g, f dt, f dt„(
—i)" '

o o

n=0

X T[Ht(t, ) . Ht(t„)], (A7)

and

S=y f dt, f( —&' )" 00

n! OOn=0

X T[HJ(t, ) Ht(t„)] (A6)

where T is the Wick time-ordering operator. In the fol-

lowing, we will use notation similar to that of Schweber's
book' and give rules for writing S-matrix terms from
Feynman diagrams completely in a configuration space
representation, leaving undone the center-of-mass coordi-
nate and time integrals which lead to conservation of
momentum and energy at each diagram vertex. The
propagators for the electron and for the phonon in the
polaron problem are then

SF(R,r, t;R', r', t') = —2(0( T[F(R,r, t)F (R', r', t')]~0)

e ig (R—R') —iE(t —t')

,g fd'Q f d&
Z Z +. X„,q(r)X„',q(r')

(2n. ) E —E q+te
and

EF(x, t; x't' }—=2(0~ T[p(x, t )(()(x', t')] ~0)

4lN 3k ~ &ik (R—R')+iPk (r —r') —ico{t—t')

(2m) k CO N +lb'

where we have defined P(x, t ) to be

(()(x, t) = i d k
(& 1'e —ik.x+icui

& e ik.x —

icosi

}
(2 )3/2 k k k

Using the abbreviations

SF(1,2) —=SF(R„r„t, ; R2, r2, t2 }

and

(A8)

(A9)

EF(1,2) —=bF(x„t, ;x2, t2),
the rules for constructing S-matrix elements for irreducible fermion self-energy diagrams using Hz "(t) are as follows:

Source of factor

nth-order diagram

Coupling factor for each 0'," vertex

Incoming fermion (cr, P) to vertex i

Outgoing fermion (o,P) from vertex j
Internal fermion line from vertex j to i

Internal boson line for vertex j to i

Space and time integrals

at each vertex i

Factor

i (2~&2)'"
(2m )

(2n) 3/2e ( +Pi—
y (r, )

t

—
—,'SF(i,j)

,'b F(i,j)—
fd R;fd r;f dt;

For the contribution of HI '(t), which will be denoted by an "x' on a fermion line, the rightmost coordinates of
V(R, , r, , t; ~R, , r , t )are treated as a. v.ertex end point of an incoming fermion line and the leftmost as a vertex for an
outgoing line for either interior or exterior lines of a Feynman diagram. Therefore, completing the above table, the
contribution from Hz' '(t) on a fermion line will be

fd R;fd r;f dt;fd R/fd r f dt V(R;, r;, t;~R , r/. , t/. ). .

With this prescription, and the requirement that V(R, r, t ~R', r', t') be chosen to cancel the irreducible self-energy terms
of the S matrix for the one-fermion system, all fermion self-energy components are eliminated from the S matrix. As an
example, for the second-order potential
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diagram leads to

S2=G fd R& f d r& f dt& f d3+2

X f d'r2 f dt, (2') ' 'e

Xy' p(r, )[ 2S—p(1, 2)](2n )

iP' R2 . iP'.R2 iEa, P, &2Xe iE—, p, e ' g ~ p.(r2),

and diagram

igg, p

ii&'p'

gives

SI '=( i)f—d R& f d r& f dt& fd R2

—3/2 1 0P 1

Xy' p(r, ) V(R„r,, t) lR2, r2, t2)(2m )

iP' R2 —iE, p,Xe y, p, (r2) .

Requiring that S2+S'& ' =0 leads to the identification

V(R, , r, , t, ~Rz, rz, tz) = V(1~2)= iG [———,'Sp(R„r, , t, ;R2, r2, tz)][—,'b p(R, , r, , t, ;R2, r2, t2)],

where

G =—(2~~2)'"
(2m )

An example of a fourth-order cancellation is as follows:

diagram

~ia, P
t

4
0 P

leads to

S,"'=G4f d 1 f d2 fd3 fd4(2~)

Xe ' ' 'y' p(r, )[——,'Sp(1;2)]

X [—,'Sp(1;3)][——,'S—p(3;4)][—,'bp(1;4)]

X[—,'&p(2;3)](2m) i e ' ~' ' ' (r )

where fd1—= f d R, fd r, f" dt„etc., and

i&@, p S3 '=( i) i G fdl f—d2 f d3 fd4(2~)

diagram gives
X [—

—,'Sp(3;4)][—,
' hp(1;4)] V(2~ 3)(2n. )

iP'-R4 —iE p f4Xe y, p, (r4) .

Inserting the second-order potential V(2~ 3) gives
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S3 '=( —i) i G f d 1 f d2 f d3 fd4(2') ~ e ' ' 'yp(r&)

X [—
—,'SF(1;2)][——,'SF(2;3)][——,'SF(3;4)][—,'bF(1;4)][—,'b F(2;3)]

Therefore

S"'+S"'=0 .4 3
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