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A linear rate equation describes fragmentation with continuous and discrete mass loss typified

by consumption of porous reactive solids and two-phase heterogeneous solids.

For a mass-

dependent fragmentation rate x® and a continuous-mass-loss rate ex?, c=y—a—1 <0 yields a
“recession regime” where small particles lose mass continuously without breaking, o> 0 yields a
“fragmentation regime” where all particles break, and o =0 yields scaling for @ > 0. Shattering
for a <0 and o= 0 is runaway fragmentation producing an infinite number of particles in a finite
time. Exact and asymptotic solutions, exponent relations, and connections with static percolation

are found.

Fragmentation results from a variety of physical pro-
cesses including erosion, polymer degradation,' grinding,
oxidation,** and dissolution. In many of these processes,
mass loss plays a crucial role. The goal of this Rapid
Communication is to develop a theory of fragmentation
with mass loss describing the time evolution of the particle
mass distribution, and to identify universal and scaling be-
haviors in these systems.

The rate equation approach has proved fruitful for frag-
mentation in the absence of mass loss. A linear rate equa-
tion "> describes processes such as polymer degradation in
which noninteracting particles break due to some corro-
sive chemical or electromagnetic agent present in the envi-
ronment. A nonlinear rate equation® describes fragmen-
tation processes involving repeated particle collisions rem-
iniscent of Smoluchowski aggregation. %’

“Continuous” mass loss is essential to fragmentation
during oxidation and dissolution of solid porous objects,
and may play an important role in some polymer degrada-
tion processes. In these linear systems, an external reac-
tion (such as oxidation) consumes solid mass at exposed
particle surfaces, causing these surfaces to recede continu-
ously. Reaction within the pores causes the pores to widen
and fuse. Fragmentation occurs as final bridges between
different parts of the same particle are consumed. Thus,
surface recession is the cause of fragmentation in these
linear systems. Experiments indicate that many such
fragmentation events can occur during the oxidation of a
single coal char particle.*?

We also consider “discrete” mass loss typified by reac-
tions in two-phase heterogeneous solids containing isolat-
ed inclusions of an explosive phase imbedded within a

much slower-reacting phase. Mass loss occurs continu-
J

ously during surface recession of the slower-reacting
phase. When surface recession exposes an explosive in-
clusion, discrete mass loss occurs as the mass in that in-
clusion is consumed instantaneously (compared to the
consumption rate of the slow phase). At the same instant,
fragmentation occurs in the slow-phase regions surround-
ing the explosive inclusion. In this way, discrete mass loss
accounts for any mass loss that occurs during fragmenta-
tion events.

The goal of this paper is to describe fragmentation with
continuous and discrete mass loss using a linear rate equa-
tion approach. To date, knowledge about such fragmenta-
tion has been drawn only from numerical simulations of
specific particle morphologies.>* Our analysis identifies
regimes relevant to a rich spectrum of particle morpholo-
gies and reaction conditions, including a scaling regime
where the fragmentation and surface recession properties
are independent of the particle mass. Furthermore, we
obtain exact and asymptotic solutions including a solution
corresponding with one-dimensional static percolation.

The appropriate linear rate equation
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involves the particle mass distribution n(x,?), a fragmen-
tation rate a(x), a distribution b(x|y) of daughter-
particle masses x spawned by the fragmentation of a
parent particle of mass y, and a continuous-mass-loss rate
c(x), the essential new feature of the theory. Equation
(1) follows from the number of particles entering the mass
range [x,x +dx] during an elapsed time dt,

dn(x,0dx = —aG)dne,0dx+ [ aG)din(y,0dy b (x| y)dx
+n(x +dx,t)dxc(x +dx)dt/dx —n(x,t)dx c(x)dt/dx .

Here, n(x,t)dx is the number of particles in the range at
time ¢, a(x)dt is the fraction of this number that break in
an elapsed time dt, c(x)dt/dx is the fraction of this num-
ber that lose sufficient mass to leave the range in an
elapsed time dt, and b(x |y)dx is the probability that a
daughter spawned by a particle of mass y lies in the range.
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r
Thus, the terms on the right-hand side account for (i)
fragmentation of particles in the range, (ii) fragmentation
producing particles in the range, (iii) continuous mass loss
producing particles in the range, and (iv) continuous mass
loss causing particles to leave the range.

Defining a discrete loss fraction A as the mass fraction
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lost from a parent particle at the instant of fragmentation
requires a A-specific daughter-particle distribution b(a;
x|y) and a distribution ®(1,y) of discrete loss fractions A
resulting from the fragmentation of a parent particle of
mass y, with fJ®(A,y)dL=1. A relation ensuring that
the total mass of daughter particles equals the reduced
parent mass, [§xb(A;x|y)dx=(1—21)y, immediately
yields a normalization condition

J bl prax ==y, o)

where  b(x|y)=f3bO;x|y)®(\,y)dr and Ai(y)
= [JA®(A,y)dAr are averaged quantities. The number of
daughter particles, f§b(h;x|y)dx =N(Q,y), yields an
average

INCIDE R OF 3)

Multiplying Eq. (1) by x and integrating yields the rate of
change of total mass,

M==[TIAa+c@InteNdx. (@)

The familiar equations for mass-conserving fragmenta-
tion'® can be recovered by setting c(x) =0 and ®(1,
y)=28(), which ensure zero continuous and zero
discrete mass loss.

A spatially discrete random bond annihilation process
yields a connection with static percolation. Initially, all
bonds (unit line segments) on a line are deemed as occu-
pied, forming a chain of infinite length. As occupied
bonds are randomly annihilated to form smaller chains,
the appropriate discrete form of Eq. (1) (Ref. 9)

dn,

—d-;—-"xnx+2 -§+|ny (5)
yields the number n, (¢) of chains of length x at time ¢ per
bond, with x restricted to positive integer values. Equa-
tion (5) is similar to a rate equation for infinite-dimen-
sional percolation on the Bethe lattice.!® The random
bond annihilation problem is equivalent to static one-
dimensional bond percolation with a bond occupation
probability p=e ~! Indeed, an exact solution n,(z)
=(1—e ~"")’e "™ to Eq. (5) agrees with the known solu-
tion'' n,=(1—p)?p* for one-dimensional percolation.
This correspondence provides a specific confirmation of
Eq. (1) involving discrete and continuous mass loss, and
shows the power of the rate equation approach for one-
dimensional percolation.

To identify physical regimes implied by the power-law
rates a(x) =x? and c(x) =ex?, we study the time evolu-
tion of a large initial number N of particles each of initial
mass mg subject to surface recession and fragmentation.
Recalling the definitions of ¢(x) and a(x) allows us to
use c(m)=—rr and N=—a(m)N to find the time-
dependent mass m (1) =moll+(y—1)em§ ™ '] 77" of
each unbroken particle and the corresponding number
N(t) =Noexp{—[(m/mo) ~°—11/cem§} of such parti-
cles, where o=y—a—1. Since NNg 'a(m)dt=g(t,
mo)dt is the fraction of unbroken particles that break be-
tween time ¢ and time ¢ +dt,g(t,my) is the distribution of

lifetimes of particles of initial mass m.

It is convenient to introduce a continuous loss fraction
Ac =1—m(t)/my, defined as the fraction of the mass of a
particle lost to surface recession during its lifetime ¢. By
setting g(z,mo)dt =¢.(\.,mo)d\., we obtain the distribu-
tion of continuous loss fractions for particles of initial
mass y which break before losing all their mass,
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Thus, the cumulative distribution F(A.,y) f 0o (e,
y)di. gives the probability that a particle of initial mass y
will have a continuous loss fraction between zero and A..

The total fragmentation probability F(1,y), obtained
by direct integration, finally allows us to identify physical
regimes. In a fragmentation regime with >0 and
F(1,y) =1, particles are guaranteed to break before losing
all their mass to surface recession. In a recession regime
with 0 <0 and F(1,y) =1—exp(—y !°!/| 5| €), particles
with initial masses much smaller than a cutoff mass
ye=(|cle)"!el lose all their mass without fragmenta-
tion. Thus, the recession regime is relevant experimental-
ly when pore sizes have a minimum or when the consump-
tive reaction only partially penetrates the pores.>* In
summary, the power-law rates yield a long-time regime
governed by fragmentation for o > 0 and by surface reces-
sion for 0 <0. The above procedure could easily yield
analogous results for nonpower-law rates, if needed for
comparison with experiments.

By introducing a é function to allow for the possibility
of losing all mass without fragmentation, we obtain a total
continuous loss fraction distribution;

O .(he,y) =0, p)+201 —FO,p)16G. -1, ()

where [{®.(A,y)dr. =1.

A small-A, approximation  ¢.(A.,y) =(ey°) !
xexp(—A./ey°) yields the average value A.(y)=f{A,
X®.(Ac,y)dA.=ecy°. Thus, in the fragmentation regime,
small particles lose small fractions of their mass between
fragmentation events, indicating an abundance of small
pores. In the recession regime, the large particles lose
small mass fractions between fragmentation events, indi-
cating an abundance of large pores. For o =0, the mass-
independent result 4. (y) =¢e(1+¢) ! [from Eq. (6)] indi-
cates a uniform pore-size distribution. Thus, the power-
law rates describe a broad spectrum of physical systems,
with values of o reflecting the pore-size distribution and
the extent of pore penetration.

For 5(x|y) =2/y, a=1, y=0 (and o= —2), an expli-
cit solution n(x,?) =¢ exp( xt —et?/2) to Eq. (1) illus-
trates that continuous-mass loss (proportional to ¢) is
relevant at large ¢ when the particles are small, as expect-
ed for the recession regime.

Scale-invariant “scaling” solutions of partial differ-
ential equations hold great interest because of evidence®!?
that large classes of general solutions tend to scaling solu-
tions after initial transients decay away. Invarlance of Eq.
(1) under the scale transformation x =sx*, r =s**, and
n(x,t) =n(sx*,s**) =s¥n*(x*1*) requ1res b(x|y)
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=h(x/y)y (Ref. 5), o=y—a—1=0, ¢=—aq, and a
form for scaling solutions,

n(x,t) =t°f(xt?) , (8)

with scaling exponents 6= —y/a and z=1/a. Scale-
invariant forms of Eqgs. (1)-(3) involve mass-independent
X, N, and daughter-fraction distribution A (r);

ang,t) - _xa,,(x,;)+L”y““h(x/y)n(y,t)dy
+el[x“+'n(x,t)] , ©
Ox
.I'olrh(r)dr-l _x’ (10)
J nrar=%. an

Hence, all properties of fragmentation and surface reces-
sion become independent of the particle mass for =0,
thus reflecting the essence of scaling.

The scaling form [Eq. (8)] implies that the typical par-
ticle mass scales as ¢ ~. Thus, for @ =1/z > 0, this typical
mass decreases with time as expected. Since this typical
mass increases with time for a <0, scaling is absent for
a <0. For mass-conserving fragmentation with a <0, ru-
naway fragmentation rates for the smallest particles result
in an effectively infinite number of fragmentation events
in a finite time, or “shattering,” > thereby yielding unex-
pected mass loss to a phase of zero-mass particles. For
fragmentation with mass loss and a <0, the recession re-
gime precludes runaway fragmentation since the smallest
particles lose all their mass without breaking. The frag-
mentation and scaling regimes and discrete mass loss al-
low runaway fragmentation for a <0, but might preclude
the unexpected mass loss normally associated with
shattering.’

For a > 0 and o =0, we argue9 that discrete mass loss
allows scaling, whereas continuous-mass loss violates scal-
ing at large values of the scaling variable & =xt*. For the
power-law decay h(r)~r' as r— 0, the small-¢ asymp-
totic form?® f(&)~¢&" is valid for both t}'pes of mass loss,
whereas the large-¢ form f(&)~&R(V) "8 exp(—£2) s
valid only for discrete mass loss (¢ =0).

That the total mass M = [5°xn(x,t)dx =t°~*p, must
decrease with time [with pf'f 0 EXf(E)dE] implies the
scaling-exponent inequality’ 6 <2z. More usefully, Eq.
(4) implies a direct relation with the observable mass loss

parameters A and ¢;
22—8=Q&+e)pi 'pri+1y: (12)

This relation is approximate for finite ¢ (because of the
violation of scaling at large &) and is exact for finite A as
€— 0. In Ref. 5, since Eq. (11) satisfies Eq. (3) only if

©=1/A, Eq. (13) [with @ =(wA) ~"*=1] agrees with our
large-§ asymptotic form when mass is conserved, that is,
when 6 =2z.

Exact solutions,’ easily verified by direct substitution,
can be obtained for an intrinsically discrete loss process
(e=0) with a distribution A (r) = (v+2)(1 —X)r" satisfy-
ing Eq. (10) for v> —2. The scaling solution f(&)
=£Vexp(—£°) with Sda=(v+2)(1—1)—v=<2 agrees
with the asym})totic scaling forms and yields n(x,t)
=y (VD=1 %exp(—x“t). This scaling solution is val-
id for all nonzero ¢, in contrast with scaling solutions for
coagulation problems,G'12 which are often valid only
asymptotically for large ¢. The corresponding general
solution of Eq. (9) for arbitrary initial conditions,

n(x,t) =x"exp( —x"t)j; A(s)( +,/s)(v+2)(| ~)/a

xexp(—sx®)ds ,

agrees with the scaling solution for large ¢ and fixed x.
The average number of fragments from Eq. (11),
N=(v+2)(1 —=%)/(v+1), yields binary fragmentation
only for v=0 and A =0. Fragmentation events yielding
large daughter fractions r > 1 —X require A <A, whereas
A > A is typical otherwise.

We have presented essential elements of a comprehen-
sive theory of linear fragmentation accompanied by
discrete and continuous-mass loss. The nature of solutions
in nonscaling and shattering regimes deserves further
study. Experimental tests of the theory would be helpful.
It would be interesting to extend the theory to growth phe-
nomena such as deposition, where mass gain by particles
(rather than collisions between particles) leads to coales-
cence, and where c¢(x) <0. Whether a useful rate equa-
tion exists for static percolation in finite dimensions
greater than unity is an interesting open question.
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