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Crumpling of fluid vesicles
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Models of athermal self-avoiding fluid and polymerized vesicles have been investigated by
Monte Carlo simulations. There is no evidence for crumpling of polymerized vesicles, and the
squared radius of gyration is proportional to the number of monomers on the surface, R2-N.
Fluid vesicles, on the other hand, exhibit a crumpled shape and R -N . We explain our model

dynamics for fluid surfaces. The time-dependent mean-squared displacement r2(t) of a monomer

on a fluid surface is -tos, whereas r (t)-Jt for polymerized vesicles. The corresponding
configurational correlation times are r-N for fluid and t-lV for polymerized vesicles.

Fluid isotropic membranes'2 and polymerized mem-
branes' have been predicted to exhibit a high-
temperature crumpled phase. In fact, for polymerized
self-avoiding membranes renormalization-group argu-
mentss ' and pioneering Monte Carlo simulations "
seemed to support evidence for a high-temperature crum-
pled phase, whereas subsequent extensive molecular dy-
namics simulations ' and Monte Carlo simulations '3'
have questioned the "crumpling" idea.

In the present Rapid Communication we report on
Monte Carlo studies of a novel model membrane which
has properties like Quid membranes. There the config-
urational arrangement of the constituents of the mem-
brane, called monomers, represent a distorted two-di-
mensional surface in three space dimensions on which the
monomers should be able to diffuse freely among each
other. Most of the membranes known in life sciences are
fluid and hence investigations on related phenomena are
of great importance. However, their predicted configura-
tional properties have not yet been examined by simula-
tions.

Very recently an attempt to simulate fluid membranes
has been reported. ' There the focus was mainly to inves-
tigate the unbinding transition of semirigid fluid mem-
branes rather than the configurational properties of a fluid
membrane at high temperatures. Therefore a discretized
model Hamiltonian with mean local curvature describing
a smooth shape of a membrane has been used. The au-
thors found that macroscopic properties of the membrane
are strongly affected by shape fluctuations on microscopic
length scales. Consequently, simulations of microscopic
model membranes could be elucidating and hence would
be of importance.

The present investigations are concerned with a micro-
scopic model of a fluid self-avoiding membrane suitable
for Monte Carlo and molecular-dynamics simulations and
are concerned with membranes of spherically closed
shape, i.e., vesicles. (The preference for investigations of
fluid vesicles instead of fluid open membrane relies mainly
on initial uncertainties with respect to the boundary
effects of open membranes. Fluid open membranes are
presently under investigation. )

Our intention is to demonstrate the suitability of the

fluid-vesicle model by its high-temperature configura-
tional and dynamical properties in order to provide a
sound basic model for further investigations on the ther-
modynamics of vesicles. ' ' Furthermore, we are able to
show that fluid vesicles exhibit a crumpled phase in con-
trast to polymerized vesicles which is in agreement with
previous results on open polymerized membranes. '2

The initial configuration of a closed tethered membrane
(vesicle) in three space dimensions is constructed on the
surface of a sphere by Delaunay triangulation. ' To in-
sure that most of the points of the two-dimensional net-
work have the same number of neighbors and the bonds
have approximately the same length, one can use an
icosahedron as the original network, and then adding
more new points on each triangle to create larger net-
works. Subsequent rescaling of all bonds to the desired
length is straight forward. Following this procedure one
can generate vesicles consisting of N 10&3k+2 mono-
mers with k 1,2, 3, . . . . In the present simulations we
studied up to k 4. The number of triangles covering the
surface is 2N —4.

A Monte Carlo step for polymerized membranes con-
sists of randomly or sequentially choosing a monomer and
displacing it to a randomly selected nearby position. The
attempt is accepted if the new bonds of length / connect-
ing the neighboring sites are within cr (/ (/, „, where o
represents the diameter of a hard sphere and /, „ the
maximum length of the tether (hard-sphere tether rrtod-
e/). The maximum displacement of a monomer is O. lcr.
For these models it is known that if cr// )Iv 3/4, self-
interpenetration of the surface is prohibited. In the
present simulations we used tr 1, /, „J2.The corre-
sponding polymer model ("bead-necklace chain") have
been used extensively and successfully in Monte Carlo
simulations of polymers. n The actual sampling of con-
figurations is made every N Monte Carlo steps. This
time lapse can be considered approximately as an upper
bound (apart from prefactors) for correlations between
successive configurations. Averages are taken over up to
10 configurations.

So far, this model represents a polymerized vesicle and
corresponding models for open polymerized membranes
have been investigated. " ' In the present hard-sphere-
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tether model the fluidity is introduced by a triangulation
procedure. This procedure consists essentially of deleting
a bond connecting two monomers and creating a new bond
with o & l & l,„between two monomers different from
the previous one under the restriction that the surface is
still well defined and covered by triangles. The simplest
method to achieve this consists of choosing out of the N
monomers on the surface, four monomers (labeled by 1, 2,
3, and 4) which are ring-wise connected by four bonds
representing a quadrangle. Since by construction the sur-
face must always be covered by triangles, two of the
monomers, say 1 and 3, are connected in addition by a
bond. A triangulation attempt consists of removing this
bond and implementing a new one between monomers 2
and 4, which is accepted if e & l &l,„. Thus the surface
still consists of triangles and still preserves its two-
dimensional character in three space dimensions. This
procedure is applied to N randomly selected bonds after
each Monte Carlo step (i.e., N attempts) of monomer dis-
placements. It is clear that this procedure provides a pos-
sibility for a given monomer to escape after several bond
removals from its original neighborhood of monomers,
and hence representing a "fluid" particle.

In fact, this view is supported by the time-dependent
mean-squared displacement of a labeled monomer relative
to the motion of the center of mass, r (t) ([ri, (0)—r,. (0) ri, (t)+r—, (t)j &, w. here ri, (t) and r, (t)
are the position vectors of the kth monomer and the
center of mass at time t, respectively.

According to the data in Fig. 1 for fluid vesicles (open
symbols), the behavior of r2(t) is close to -tos and al-
most independent of the size N of the vesicles. (Averages
have been taken over six different monomer trajectories,
and their deviations are in the order of the size of the sym-
bols in Fig. 1.) This seems to support the idea of a mono-
mer moving freely among others, similar to particles in a
fluid, but here confined to a rough surface in three space
dimensions. Following similar arguments as for the re-
stricted motion of a polymer chain trapped in a random
tube, ' the displacements of a monomer trapped on a ran-
dom surface can be understood and one obtains r (r )-t ",
where v is the correlation length exponent: In a surface-
fixed coordinate system the monomer performs isotropic
linear displacements L2-t, where L -N. Since the sur-
face is R2-L2", where R is the radius of gyration, the
monomer moves in the laboratory system according to
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FIG. 1. Log-log plot of the time-dependent mean-squared
displacements r2(t) of a labeled monomer relative to the
center-of-mass displacements on fiuid vesicles (open symbols)
and on polymerized vesicles (solid symbols) consisting of N
monomers.

r (r)-t" For . times larger than z2 (their estimates are
given in Table I), r'(r) is approximately a constant and
r (~)= 2R -N". One of our main results is that R ex-
hibits properties in agreement with the predicted'2s
crumpled phase, i.e., R-No 4 (Table I). This is support-
ed by estimates of the volumes of the vesicles as weil,
which exhibit V-N' (Table I). Estimates of the long-
est relaxation time z2 seem to exhibit z2-N (Table I) and
are consistent then with the time dependence of the mono-
mer displacement r (t)-ros for r & z2 and r2(r)-Nos
for t & z2. For comparison, we have estimated the con-
figurational correlation time i from the correlation func-
tion of the square radius of gyration R (t ) at time t,

dr(R'(0) R'(r )&
—(R'&')/f(R'& —«'&'j .

u 0

We found almost exponential relaxation and z= z2, indi-
cating that the longest relaxation time of a fluid vesicle is
related to its configurational relaxation.

On the other hand, the time-dependent displacements
of a labeled monomer on a polymerized surface (i.e., net-
work), which is according to Fig. 1 r 2(t)-t 'i2, can be un-
derstood within the well-known framework of polymer dy-

TABLE I. Mean-squared radius of gyration R', average volume V, and longest relaxation time r2 for
/iuid vesicles. 4, A.2, and X3 are the three axes of inertia, where A, 3 is the largest one. The number in
brackets denotes the estimated statistical error for the last digit.

R

V
VX-I 2

t2% 'X10
1//k3

X3

32

3.3(1)
0.206(7)

10.1(2)
0.158(3)

1.2(2)
0.38 (2)
0.60(3)

7.8(2)
0.209(6)

40(2)
0.176(9)

1.3(1)
0.37(3)
0.66(6)

272

18(1)
0.203 (9)
150(10)

0.180(12)
1.3(2)

0.33 (4)
0.57 (5)

812

44(2)
0.207(9)
590(60)
0.19(2)

1.3(2)
0.37(4)

0.6(1)
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TABLE II. Same quantities as in Table I, but here for polymerized vesicles. i is the con6gurational
correlation time.

R2
R2N - I o

V
VN-"

rN
r2

k|/A 3

32

2.85(3)
0.089(1)

15.1(2)
0.084(1)

2.2(2) x10'
0.21(2)

6(1)x 10'
0.78(1)
0.89(1)

92

7.30(5)
0.079(1)

73.8(6)
0.084(1}

1.2(2)»0'
0.14(2)

3(1)x106
0.81(1)
0.90(1)

272

20.7(2)
0.076(1}

372(3)
0.083(1)

1.1(3)x 104

0.15(4)
~ ~ ~

0.85(1)
0.92(1)

812

61.2(8)
0.075(1)
1920(13)
0.083(1)

8(2) x10
0.12(3)

~ ~ ~

0.87(1)
0.95(1)

namics and has been shown" to be related to the Rouse
model where r2(t)-t'/'+', r-N"+', and r (t)-R
-N" for r ~ r Since. in the case of polymerized vesicles
v= 1, according to R and V in Table II, the dynamical
and the static data are consistent and support previous ob-
servations' ' that polymerized membranes are most
likely not to be crumpled. A direct estimate of the longest
relaxation time r2 for polymerized vesicles from the data
depicted in Fig. 1 is possible only for smaller vesicles,
N 32 and 92. It is interesting to note that the corre-
sponding times r2 for fluid vesicles (cf. Fig. 1) are shorter
by an order of magnitude; this is also of practical impor-
tance. Estimates of configurational correlation times r,
which are presented in Table II, show that for polymer-
ized vesicles r2» r, which indicates that the longest relax-
ation time r2 is probably not related to the configurational
correlation time r, at least not as defined by the correla-
tion function of the radius of gyration as given above.

Since the Monte Carlo runs for N 272 and 812 were
not long enough in order to observe r (t) const for
t & r2, there is still an uncertainty in these cases about the
equilibration and to what extent the static quantities are
affected thereby. Therefore comparison has been made to
the smaller vesicles, which show that time averages of R
and V do not change significantly their value as long as
t»r, even if t ( r2 Monte Ca.rlo runs up to t ) r2 for the
larger polymerized vesicles are presently out of'our capa-
bilities. Applications of sublattice techniques as used in

previous calculations' would considerably improve the
simulations, but would not provide reasonable informa-
tions about r (t) and r2. However, this and related prob-

lems to polymerized membranes are not within the main
scope of the present paper and do not affect our basic con-
clusions about fluid vesicles.

It should be noted that for fluid as well as for polymer-
ized vesicles the center-of-mass diffusion is approximately
given by r,'m (t)=1.1 x10 I N 't. Ratios of the axes
of inertia are given in Tables I and II, where Eland }3are
the smallest and the largest axis, respectively. The ratios
for polymerized vesicles suggested shapes close to spheri-
city, whereas fluid vesicles seem to have marked ellip-
soidal shapes.

Finally, it should be emphasized that exponents given in
the present paper for various static and dynamic quanti-
ties are not to be considered as almost exact (of course,
this is left to more rigorous analytical calculations), rather
the intention was to provide evidence for the different
physical concepts propounded in the literature by distin-
guishing clearly between "flat" phases (v= 1 ) and crum-
pled phases (v=0.8). Therefore we have renounced to
present "best fitted" exponents in Table I and II. The
question how accurate the Flory exponent~ v 0.8 de-
scribes fluid membranes, must be left to further investiga-
tions.
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