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Convection in 3He-superlluid-4He mixtures: Measurement of the superfluid effects
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Dilute superfluid mixtures bridge the Prandtl-number range between liquid metals and water:
0.04 & JVp, & 2. The convective equations of motion for superfluid mixtures are the equations for
Rayleigh-Benard convection in a normal single-component fluid plus additional superfluid terms.
We have measured the latter through their eN'ect on the critical Rayleigh number R,. The
corrections can be only a few percent for 1.0 (T & 2.0 K, implying an accessible Prandtl-number

range near onset of at least 0.04 & JVp, & 1.5.

Rayleigh-Benard convection (RBC) has been the sub-
ject of much recent study. ' An interesting variation is
convection in 'He-superfluid- He mixtures. Of interest
here is the fact that the equations of motion for superfluid
mixture convection (SMC) resemble those for ordinary
RBC but with additional terms representing superfluid
corrections. To the extent that the latter are small, SMC
should behave like standard RBC but with a remarkable
Prandtl-number range (Ãp„defined below), one which is
unattainable with any other fluid: 0.04 & Xp, & 2. The
instabilities of the convective state, which strongly affect
the transition to turbulence, change significantly over this
Prandtl-number range. 2 SMC has the potential to be an
extremely valuable tool for understanding convective
flows, but the extent of the superfluid corrections must be
determined first.

Previously, the size of the superfluid corrections was not
well known; we have made the first direct determination.
The experiments were carried out on a mixture of He
molar concentration X 0.014 (mass concentration
c 0.011) and over a temperature range 1.0 & T & 1.9 K.

Experiments on SMC were pioneered by Wheatley and
co-workers, and have been pursued more recently by
Mainieri, Sullivan, and Ecke. Theoretical work has been
carried out by Steinberg, Fetter, and Steinberg and
Brand. '

The primary dimensionless parameters for SMC are the
Rayleigh number R

~ a~ „,~
gd'd T/vg, tt and the Prandtl

number Xp, v„/g, a; Here, hT is the temperature
difference across a fluid layer of height d. The fluid pa-
rameters, a~ „„g,n, and v are, respectively, the expansion
coefficient at constant pressure and He chemical poten-
tial p4, an eff'ective thermal diffusivity, and the kinematic
viscosity; g is the acceleration of gravity. Also, v„(p/
p„)v, where p and p„are, respectively, the total and nor-
mal fluid densities.

The superfluid corrections can be obtained in terms of
three parameters, e~, e2, and ei in Fetter's notation. The
first two are proportional to hT, which, in turn, at the on-
set of convection is proportional to 1/d (see the definition
of R). The third parameter is proportional to d, indepen-
dent of hT, and a function of several thermohydrodynam-
ic quantities, including the normal viscosity and the
second viscosities.

In this paper, we will focus on the effect which these

corrections have on the onset of convection. Fetter has
shown for a horizontally infinite layer that up to second
order in the e;, the critical Rayleigh number has the form

Rz R~p+ 24.6e]e2+ 10.2(e] e2)

—19.9e2(eip/p, —eq),

where R, is the Rayleigh number at the onset of convec-
tion and R,p 1707. . . is the critical Rayleigh number for
classical RBC.

Equation (I) implies that R, R,p as d 0; thus,
the correction terms can be determined by measuring the
variation of R, with d. From this viewpoint, R, is ob-
tained as a series in inverse powers of d:

R, -R,p+A(kp/d)'+B(kp/d)'+O(d ') .

The first term comes from Eq. (1), as calculated by Fetter
(specifically from the product e2e&). An extension of
Fetter's perturbation analysis to include terms in (e2ei)
shows the O(d ) perturbation to be negligible. The
sixth-order term includes products of the e; of the form e~',

e2, and e~e2, as well as (e2E'i) . The constants A and 8 of
Eq. (2) are numerical (specifically, A 19.9. . .); howev-

er, Xp is a function of c and T:

P,g,a(g) pgi) (8c/—8T)t, ,„,
~0 (3)

c I ar, .(~u4/~c) T,p I

where P, —(I/p)8p/Bc. Both the effective thermal
diffusion coefficient g,a and the second viscosity coef-
ficients (; are poorly determined in the superfluid phase.
Particularly the latter are poorly characterized, since they
are measured by first- and second-sound attenuation
where they appear only in combination with other consid-
erably uncertain coefficients.

We have carried out extensive measurements to deter-
mine R, (d) using an apparatus which allowed the in situ
variation of d. The horizontal geometry of the layer was
rectangular with a length of 2.28 cm and a width of 1.01
cm. A similar arrangement was used by Gao and co-
workers'i to study convection in normal liquid He. The
present apparatus diff'ers from that used by Gao et al.
since the present experiment requires the use of a He re-
frigerator, and since with SMC the expansion coefficient

a~ „,is negative (i.e., convection is driven by heating from
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above), necessitating additional complexity in the design
of a variable height apparatus.

The experiments were made by fixing the temperature
at the bottom boundary of the fluid layer and applying a
succession of closely spaced steady heat currents Q to the
top plate fluid boundary. We then determined the steady

state AT for each Q. For each bottom plate temperature,
we carried out measurements on Q and AT for a number
of heights. Temperatures were measured using bridge cir-
cuits and germanium resistance thermometry with a tem-
perature resolution of 0.3 pK. The height of the layer was
determined by a capacitative technique' and indepen-
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FIG. 1. Data for N —1 vs r (R —R, )/R, for five tempera-
tures spanning most of the temperature range covered by the
present experiments. These data were obtained for essentially
the same height (d 0.1633 cm, within 0.0083 cm).

C. ~cm
FIG. 2. Data for R,/R, o vs d 2, the inverse square of the lay-

er height. The mean temperature and Prandtl number of each
data set is indicated.
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FIG. 3. Data for ko vs temperature, as obtained from the
slope of the data in Fig. 2

FIG. 4. Values of the critical temperature diN'erences for
each of the temperatures represented in Fig. 1.

dently by measuring the thermal conductance of the layer.
The experimental data for a given temperature and

height are conveniently summarized by plots of the
Nusselt number N vs r (r=R/R, —1), and several exam-
ples are shown in Fig. 1. N is defined as the total heat flux
across the layer normalized by the effective conductive
heat flux; thus, N 1 in the preconvective state (R & R,)
and rises rapidly above 1 when convection begins. '

(Note that the preconvecting state of a superfluid layer
has nonzero vertical velocity due to the one-dimensional
counterflow. )

Several corrections must be made to the directly mea-
sured quantities in order to obtain a good measure of d
and the combination d'dT, . (Here, dT, is the value of
d T at R, .) These corrections arise from the self-heating
of the top plate resistance thermometer by the bridge driv-
ing voltage and from the fact that at onset the average
temperature across the layer, T Tb««m+ —,

'
d T„ in-

creases somewhat as AT, increases. All corrections have
been determined by direct precise measurement, and in no
case is the resulting correction to d hT, more than 10%.

In Fig. 2 we present data for R, vs d for six values of
the average temperature. We show the data in a normal-
ized form, R, (d)/R, o. The normalization is made by
fitting the data for d hT, at each temperature to a poly-
nomial in d

d hT, A*(T)+B*(T)d +C*(T)d +

The zeroth-order term of the fit A * is then used as a divi-
sor for the original data for d BT„in order to experimen-
tally obtain R,/R, o. This procedure was chosen because,
of the elements comprising R„only d and hT, are well
known; the fluid properties, such as v, are not so well
known. But with this normalization, the effect of uncer-
tainties in the thermohydrodynamic parameters is re-

moved. The solid lines in Fig. 2 are fits using only up to
the 0(d 2) term of Eq. (4). The quality of the fits is
generally good. Fits including higher-order terms of Eq.
(2) were not significantly better. For the lowest tempera-
ture, there is a significant increase in R,/R, o as d be-
comes small, which we attribute to a small aspect ratio
effect. '

From the above fits we obtain Ao as (B /AA )'~,
which is shown versus T in Fig. 3. It is this quantity in
particular which has not been well characterized in the
past. Note that A.o actually decreases slightly with in-
creasing temperature. This result is surprising, since it
was anticipated that the superfluid corrections would be-
come more important as T was increased towards Ti,.
However, it is noteworthy that although A, o decreases with
increasing T, the values of hT, (at fixed d) decrease very
rapidly as T increases. This is borne out by Fig. 4, which
shows, for the five temperatures of Fig. 1, the correspond-
ing values of hT, . From the experimental point of view,
we see that it becomes rapidly more difficult to resolve the
temperature differences near the onset as Ti, is ap-
proached without compensating by making d very small.
Nevertheless, the data imply that with the highest-
resolution thermometry now available, ' it would be possi-
ble to work in a regime much closer to T~ without incur-
ring significant superfluid effects. Prandtl numbers in the
range 0.04 & JV p, & 1.5 are accessible with minimal
corrections, although at present, this conclusion applies
only to the regime close to the onset of convection. Addi-
tional experimental and theoretical work is required to un-
derstand the eff'ect of the superfluid correction terms on
the convective flows well above R, .
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