PHYSICAL REVIEW A

VOLUME 41, NUMBER 10

RAPID COMMUNICATIONS

15 MAY 1990

Solving the sign problem in quantum Monte Carlo dynamics

C. H. Mak and David Chandler
Department of Chemistry, University of California, Berkeley, California 94720
(Received 27 November 1989)

A method of solving the sign problem in the Monte Carlo path-integral simulations of quantum
dynamics is presented. Our method is based on the distortion of integration contours in conjunc-
tion with a stationary-phase filtering method. Using this importance sampling, correlation func-
tions for the spin-boson model have been computed for real times much longer than gh.

The equilibrium properties of many quantum systems in
condensed phase have been studied using Monte Carlo
(MC) methods.'? Calculations of quantum dynamics by
this approach, however, have seemed intractable. The
major difficulties in dynamical simulations arise from the
appearance of complex exponentials in real-time path in-
tegrals. This difficulty inherent in quantum dynamical
MC simulations is often referred to as the “alternating-
weight” or “sign” problem. An analogous difficulty arises
in treating fermionic systems.> Earlier attempts to avoid
the alternating-weight problem in quantum dynamics (or
for fermionic systems) have relied on the self-consistent-
field approximation (the analog of Hartree-Fock*) or else
these attempts were limited to short times>® (which would
be analogous to infrequent fermionic exchange’).

In this Rapid Communication, we report a method we
have discovered for solving the alternating-weight prob-
lem as it appears in quantum dynamics. Primary ele-
ments of our method are found in earlier works on quan-
tum MC.*% 712 To illustrate our method, we consider the
spin-boson model: A two-level system (TLS) coupled to
an infinite set of harmonic oscillators. The Hamiltonian is

2 2,2
Pj +mjwjxj

H=—Ko+
o+ 2m, 2

J

+¢o. , (1)

where 2K is the tunnel splitting of the TLS, o, and o, are
the Pauli spin matrices, and m;,w; are the mass and fre-
quency of the jth oscillator. The local field is 9 =3 ¢;x;,
where c¢; is the strength of the coupling to the jth oscilla-
tor. The spectral density of the bath is

J(@)=(1/2) X (c}/m;w;) 8w — ;) =no/(1+20?) .
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This somewhat arbitrary choice of J(@) ensures a well-
defined classical friction n, and bath correlation decays
exponentially with a time 7.'> The spin-boson model is
often used to describe self-trapping of molecular pola-

ron,'* spin-phonon relaxation,'> macroscopic tunneling,
7
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chemical dynamics. '’

Although in the case ¢ =0 the two subsystems can each
be solved, the coupled system is a nonlinear many-body
system which evolves through tunneling processes. The
system exhibits a broken symmetry for sufficiently large
coupling.'® In the adiabatic limit, this localization transi-
tion occurs when the localization parameter L=7n/21K
reaches a critical value of unity.'® Exact solutions of the
spin-boson model are not known, except for some special
cases such as the adiabatic limit. Further, the model is in-
tractable by basis set techniques except for the nondissipa-
tive case of a few oscillators. Although dynamical quan-
tum MC simulations have been attempted in the past,
they have been limited to short time.> In the future, we
will use our MC procedure to carry out an extensive ex-
amination of the spin-boson model and the approximate
theories used to treat it. In the present context, however,
this model serves as a nontrivial illustration of the dynam-
ical algorithm we will discuss.

The relevant correlation function is

(hA (O)h,q (t)) =Tre —ﬁHhAei'H/hh,qe ‘i'H/h/Z N

where hy=(1+0.)/2 and Z=Tre "?". For the uncou-
pled TLS, <h4(0)h,(¢)) oscillates in a sinusoidal fashion
reflecting perfect quantum coherence. In the presence of
dissipation, however, the rate of tunneling diminishes, ac-
companied by a loss of coherence.'® By the fluctuation-
dilsgsipation theorem, the rate of change of the population
is

k(t)= Im[A, QA ()N], (2)

—1
Bhlhy)
which exhibits a plateau at long times if the relaxation is
exponential. In that case, the tunneling rate constant is
the plateau value® of k ().

Correlation functions such as (4(0)4_4(¢)) may be rep-
resented by a discretized path integral>?'
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in the coordinate representation |r)=|o,{x;}) where o is the position of the TLS. O, the statistical object that governs
the dynamics in real time, is depicted in Fig. 1. The forward (reverse) real-time path has a total length of i7(—iT) with
Q subsegments, and ¢ < T'; the imaginary-time path has a length of B4 and P subsegments. Due to the real-time paths,
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O is an oscillatory function of {r;}.

The statistical object was considered before us by
Wolynes and co-workers.’® Its advantages are twofold:
(1) From a single Monte Carlo trajectory, one obtains the
correlation function for all real-time points ¢, less than 7.
Separate calculations for each different ¢ are not required.
(2) Simultaneously, one accounts for all possible con-
structive and destructive interferences, and quantum|
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coherence is exposed, rather than hidden by complex time.
Alternative formulations®*®68® focusing on separate
probability amplitudes and/or different forms of correla-
tion functions do not have these advantages.

Since the bath is harmonic and its coupling to the TLS
is linear, an integration over the bath degrees of freedom
reduces Eq. (3) to sum over spin paths

(h,q (O)h,q (t)) -Zexp [E O’iijO'j/z]hA (O’)hA (O") /Zcxp [Z O','M,'jO'j/Z] s (4)
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where X, ;0:M;;jo;/2=St1slol+1[5].° Here, STLs is the action for the free TLS and I[o] =2, ; 0:l;;0; is the influence

functional containing nonlocal complex-valued couplings
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and At;; EZ,{:} Ax. For technical reasons that will be apparent shortly, we rewrite Eq. (4) in continuum form by making

use of the Hubbard-Stratonovich transformation 22
P+2

where
Wls] =exp [ Y siM+A4 )ij ls,~/2+Z In(2 coshs;) ] ,

i i
h4(s)=e ~*/2coshs, and A is an arbitrary diagonal ma-
trix with elements a, ... ,ap+29. This transformation is
valid as long as Re(M + A4) is positive definite. This can

be ensured by letting a, =a,=, ..., =ao and choosing ag
such that ag+min; Re(x;) >0, where 1; are the eigenval-
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FIG. 1. O, the statistical object that governs the dynamics in
real time. S(ri,...,rp+1;8h) is the discretized action for the
imaginary-time path with a total length of A and P subseg-
ments. S(rp+1,...,rp+0+16T) and S(rp4g+1,...,ri;—iT)
are the actions for the forward and reverse real-time paths, each
with total length iT and Q subsegments. The correlation func-
tion (h,4(0)h4(¢)) is computed by sampling h4(r)h.(r') for
every pair of points » and r' (denoted by the open circles)
separated by ir.
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ues of M. So the basic task appears in Eq. (7).

Integration over oscillatory functions such as those in
Eq. (7) are encountered in all quantum dynamics simula-
tions. The complex-valued exponent of W renders classi-
cal MC methods useless. A primitive way to deal with the
non-positive-definite nature of W is to rewrite Wls] as
plslexp(ifls]), where pls] is positive definite and f[s] is
real. Then pls] can be used as a weight function. But a
straightforward implementation of this idea fails because
it is inefficient. Indeed, for long enough real time, due
to rapid phase cancellations, the accuracy is lost in the
roundoff errors on the computer. We refer to this as the
primitive approach.

A better idea is based on the observation that the most
significant contributions to the integral come from regions
of configuration space where the phase fIs] is nearly sta-
tionary. A successful scheme to perform the integration
in Eq. (7) must concentrate sampling near these
stationary-phase regions. This is the idea behind the
stationary-phase Monte Carlo (SPMC) method.® In par-
ticular, to focus sampling near stationary-phase regions,
one may incorporate a filtering function D into the in-
tegrand,

D[S]Efpﬁgdykply] M eif[S—y]"if[s] (8)
k=1 pls] ’

where Plyl =Nexp(—X;y?/2¢}) and N is a normaliza-
tion constant. In general, the exact analytical form of
Dls] is unknown, so it is approximated by its first-order
approximant  Dols] =exp[—X; €7(8f/ds;)?/2].  The
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widths {e;} are chosen according to €; =¢oA;, where A, is
the characteristic width?? of pls] in the variable s;. ¢ is
chosen to maximize damping while at the same time mini-
mize the error introduced by the approximation Do.2* A
correction to Do can be estimated by computing AD
=D — D, by the Monte Carlo as proposed by Doll. A
small value of ¢ results in a small correction AD, but it
also produces little filtering of the integrand so the sign
problem overwhelms the calculation. On the other hand,
a large €y produces heavy filtering, so the integrand ap-
pears highly smoothed, but the correction AD becomes
large and the Monte Carlo estimation of AD now suffers
from the same alternating weight. We have merely shift-
ed the sign problem to another part of the calculation.
Therefore we must aim for a compromise between these
two extremes. The correction AD may be used as a guide
for searching for this compromise. In a successful appli-
cation of SPMC, the difference between the uncorrected
results and the corrected ones must be small.

We have tried to apply the SPMC method to evaluate
Eq. (7), and we find no acceptable compromise for ¢o.
The reason is that the dynamics of the spin-boson model is
dominated by tunneling. For such nonclassical processes,
there are no real-time stationary paths in real-
configuration space. Indeed, we can easily observe from
Eq. (7) that the true stationary point where pls] is max-
imum and f[s] is stationary does not lic on the real axis.
Hence, we have been led to modify the SPMC to allow for
distortion of integration contours. If the distorted integra-
tion contour goes into the complex plane and passes near
the stationary point, the efficiency of the MC sampling
can be enhanced. In principle, the best distorted contour
is the steepest-descent trajectory emanating from the sta-
tionary point. However, such a contour seems difficult to
parametrize. Instead, we perform a simple rotation of the
integration contour. Rotations like this were considered
before,'? but the reasoning and applications are signifi-
cantly different. In the cases that we have studied, such a
simple distortion already produces significant improve-
ment over the unrotated contour. The exact location of
the stationary point is unimportant, as long as the rotated
contour passes through the vicinity of it. The approxi-
mate location of the stationary point can be found by
simulated annealing®® with minimal work. In general,
there may be more than one such point; therefore, ideally
one might wish to sample near each of them. But in our
studies of the spin-boson model with large L, we find that
the stationary point that has the largest weight dominates
the results. Through the calculations with AD, the accu-
racy of the procedure is checked a priori. The uncorrect-
ed results differ from the corrected ones by only a small
factor, typically 5%.

Thus the method we have discovered is a two-step pro-
cedure: approximate annealing followed by filtering. Fig-
ure 2(a) illustrates the quality of the results we obtain.
The function k() plotted there is a particularly demand-
ing quantity as it is the time derivative of the population
correlation function. We have performed the calculations
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FIG. 2. (a) k(¢) for L =5 and 7, both with r=pA/2, comput-
ed using a combination of integration contour distortion and
SPMC filtering. (b) Corresponding results for L =5 without
contour distortion—note the change in the vertical scale. In
both (a) and (b), vertical bars indicate one standard deviation.

out to times much larger than A, times so long that we
can observe the plateau behavior in k(¢). No other tech-
niques are available to obtain results of this quality for
this length of time. Figure 2(a) shows that for L =5 and
t=Bh/2, the relaxation is nonexponential, indicated by
the absence of a plateau. For L=7 and t=8h/2, k(1)
begins to exhibit a well-defined plateau giving the tunnel-
ing rate constant. The statistical uncertainties are largest
at the end point t— T, since the number of equivalent
pairs is reduced to one (see Fig. 1).

As a basis for comparison, the corresponding results for
L =5 without contour distortion using the same number
of passes are shown in Fig. 2(b). We see that if only
SPMC filtering but no contour distortion is used, the sta-
tistical uncertainty arising from the oscillating signs
makes the results obtained in this way meaningless. The
primitive approach lacking any form of importance sam-
pling for the alternating signs is necessarily worse, indeed
useless even for times comparable to Sh.

For some systems, the complex action may possess an
enormous multitude of comparably important stationary
paths. These cases can be troublesome in much the same
way as glassy behavior is difficult to treat in classical
simulations.?° Nevertheless, our results demonstrate the
exact numerical solution of the spin-boson model and the
wide class of natural systems for which the spin-boson
model is a caricature. These systems are unapproachable
by any other technique.
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