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By coupling a kicked quantum system to a bath of harmonic oscillators we derive a logistic map

with quantum corrections.

We find a period-doubling route to the classical behavior as a dissipa-

tion parameter is increased, and other interesting features at intermediate values of this parame-

ter.

A subject of much current interest is the effect of exter-
nal noise on nonlinear dynamical systems. It has been
found, for instance, that the addition of external random
noise destroys localization' and increases irreversibility>
in the quantum standard map. On the other hand, the ad-
dition of quantum fluctuations to the Lorenz equations?
suppresses the chaos in that system. *

A number of authors have introduced noise into quan-
tum systems by including dissipation.’”'" The general
approach has been to solve a master equation for the den-
sity matrix of the system of interest coupled to a bath of
oscillators, and then to calculate the quantities of interest
from the density matrix. Graham and co-workers have
shown that, in certain limits, maps of dissipative quantum
systems can be written as classical maps with random-
noise terms.> In this paper we describe a dissipative map
in which quantum corrections effectively add noise, the
dynamics become more classical as the dissipation is in-
creased, and there is a period doubling in the transition to
the classical behavior. We suggest that this behavior is
generic.

Our approach is to derive equations of motion for a
kicked quantum system coupled to a bath of oscillators,
introduce a quasicontinuum model to describe the dissipa-
tion from the bath, and then take an expectation value
and study the resulting expectation-value map. In order
to study the effects of quantum correlations we write
a=(a)+8ad, where 84 represents a quantum fluctuation
about (4) and obviously has the property (@) =0. In this
way we study what effects correlations of the form {5dda),
(8a'84), etc., have as the coupling to the bath is varied.

We start w1th the Hamiltonian

f}- h;(wk —wo)l;k*l;k+hC2k:(é*bk +l;1:r&)
+hV(a,a“)Za(t—nT), (1)

where d (@) is the boson annihilation (creation) opcrator
of the system of interest with frequency wy, by (b)) are
the boson annihilation (creation) operators of the bath, C
is the couplmg constant of the bath to the system, and
v(d,a") will be specified later. The boson operators obey
the usual equal-time commutation relations: [4,d 1 =1,
[bk,,bh] Sk ks [bx,d]l =0, etc. The Heisenberg equa-
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tions of motion are then

é(:)——,-c);ék(z)—i(a,V(a,a*)lza(:—nr), (2a)

bi(6) = —iAeby (1) —iCa(r) (2b)
where Ay =y —wo. Substitution of the formal solution
of (2b) into (2a) yields a single equation for 4(z),

Q@)= —:c}k;ék(o)exp(—iAk:)

-c? j;'dz'a(z'))’;exp[iAk(t—z')l

—ila,v&,a"H1X 6Gt—nT). (3)
n

By introducing a quasicontinuum model'? with Ay =kA,

k=0,%+1,%2,..., such that 22C?/A— 2T as A,C— 0,

the second term on the right-hand side of (3) becomes

—Ta(t) and we are left with

a(t) = —iC;,I;k(O)exp(—iAkl)

-Ta()+f@&,a"HYXs(t—nT), ()]

where f(4,a") = —il4,V(a,a")]. It is worth mentioning
that if we ignore the potential term in Eq. (4) and in-
tegrate the resulting oscillator equation, the commutation
relation [4(¢),a(¢)]1 =1 is preserved. The quasicontinu-
um model gives us, then, a consistent description of dissi-
pation. In other words, the quantum Langevin noise term
defined by the first term on the right-hand side of (4) is
consistent with the dissipative second term. This is simply
a reflection of the general fluctuation-dissipation theorem.

Integration of (4) from t=nT—¢ to t=(n+1)T—¢
gives us the following operator map:

G+ =dne P+Gu+f(Gn,81)e P, (5)
where
Gn.= —iczk‘,ék(o)exp[—mk(n+1)7‘]
x[1 —expia, T—B)1/ (T —iAy)
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and B=TT. We now take the expectation value of (5), as-
suming (b (0)) =0 for all k, resulting in

(Gn+1) =G +{f (Gn,a))]e 2. (6)

Because we want to compare our quantum results to the
familiar logistic map'? we choose the “force”

f(Gn,a) = = 8y +€Pr(G, —ddn) @)
where r is an adjustable parameter. Equation (6) then be-
comes

(Gp+1) =r((@,) —(3]4,)) , 8)

which is similar to the classical logistic map.

In order to study the effect of the quantum correlations
inherent in the last term of (8) we now write 4=(a)+48a
as discussed earlier, so that Eq. (8) becomes

(Gn+1) =r((Gn) — |(8,) |?) — (8, 64, . 9

We can derive an equation for (84, 64,) from the Heisen-
berg equation of motion for 6. This gives us an equation
in which third-order quantum corrections appear. The
following set of equations results when higher-order corre-
lations than (8d84), (8a'6a), and their Hermitian conju-
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gates are neglected:

Xn+1=rOcn = | %0 |) —ryn, (102)

Vat1=—yne  Pte PrlQ2—x,—x¥)yn —xpz¥ —x¥z,1,
(10b)

Znt1™=—zne P4e Pr2(1 —xF)zy — 2%Xnyn — x4l ,
(10c)

where x =(a), y =(54'6a), and z =(5364). In what fol-
lows we iterate the map (10) with xo, yo, and z, real, so
that x,, y,, and z, are real for all n. We take yo=z¢=0,
as is the case if the oscillator is initially in a coherent
state.

Equations (10) reduce to the classical, one-dimensional
logistic map when the quantum corrections y,,z,— 0.
This occurs when the limit A— 0 is taken, although A
does not appear explicitly in (10) because we have found
it more convenient to work with 4 and 4' (satlsfymg
[4,a'1=1) than with the coordinate and momentum vari-
ables § and p (satisfying [§,p] =ih). To see quite gen-
erally that the quantum corrections vanish in the limit
h — 0, consider the commutator [F(§,5),G(§,p)], where
F and G are arbitrary functions of § and p. From Taylor
series expansions of F and G about (§),{p), and the com-
mutator [87,5p] =ih, one readily obtains

9%F 392G 3%F 3%G |, cncny cncn 9%F 8°G _ 9°G 9*F a2
G.p G.p)l =i +1i - (8G6p +8p6G) + - (862
[F(§,p),G(§,p))1=in{F,G}+ 1 ih 522 op?  op” 0q Gop +6p6g 52 3q0p  9q 9q0p q
9%F 8°G _ 8°G d%F a2
- - (6p2) |+ an
[ap2 3q3p op? 8qop | T

where {F,G}=1{F(q,p),G(¢q,p)} is the usual Poisson
bracket of F and G with respect to g=(g) and p=(p).
Now if G(§,p) is the Hamiltonian H(§,p), then (11)
gives the time variation of F via the Heisenberg equation
of motion F(§,p) =(1/ik)[F(§,p), H(q,p)). The classi-
cal limit is deﬁned by the Hamnltoman equation of motion
FU@,p)=Q/ik) ""HF({g),{p)),H({g),{p))}, and this
limit is obtained only if a// quantum corrections, including
the lowest-order corrections (6%, (6p%), and
(646p+8p8g) in (11), vanish in the limit A— 0. It fol-
lows in particular that the quantum corrections appearing
in (10) must vanish in the classical limit A — 0.

Equations (10) include only the very lowest-order quan-
tum corrections. If we include third- and higher-order
corrections, then (10) is replaced by a larger set of equa-
tions. Indeed the full quantum mechanics of the problem
involves an infinite number of coupled equations. Howev-
er, one can show quite generally that the contribution of a
higher quantum correction in our model goes as
exp(—mpB), where m is the order of the correction.'*
That is, the classical limit in our model can also be ob-
tained by taking f— oo, since in this limit all quantum
corrections are negligible after a few iterations and (10)
reduces to the classical logistic map.

Equation (10a) has the same form as the logistic map
with additive noise.'*~!7 The similarity is not exact in

f
that the “noise” represented by the last term in (10a) is
derived from and coupled to the dynamics of the system
and is not a random external perturbation as in previous
work. In fact the noise here is a measure of the strength
of the quantum correlations. By increasing the dissipa-
tion parameter B in the system we reduce the strength of
the quantum correlations. We can observe the effect of
the increase in dissipation by plotting a p-bifurcation dia-
gram of x, as in Fig. 1 for r =3.8. For small values of g
we see stable behavior; the map is on a fixed point. As B is
increased, however, we see a period-doubling transition to
chaos. This period doubling should not be confused with
the period-doubling transition with increasing r in the
classical logistic map. !> ~17

Since the strong dissipation limit f— oo of the “quan-
tum logistic map” (10) gives the classical map, we should
not be surprised that the high-dissipation orbits seen in
Fig. 1 are chaotic, given the value of  for that figure. In
Fig. 2 we present a B-bifurcation diagram for r=3.5, cor-
responding to a period-four orbit in the classical map. We
see a period doubling to the period-four behavior of the
classical map. More generally we see a period-doubling
transition to the classical behavior as the dissipation pa-
rameter is varied.

This is clearly illustrated in Fig. 3, which shows a g-
bifurcation diagram for a value of r where the classical
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FIG. 1. g-bifurcation diagram for x with r =3.8.

limit is a period-five orbit embedded in the chaotic region.
The period doubling to chaos, with increasing B, is fol-
lowed by an abrupt transition to the classically predicted
period-five orbit. In this case there exists an intermediate
regime of dissipation in which the quantum correlations
destabilize, rather than stabilize, the map. This pattern is
generic to periodic orbits embedded in the chaotic regime
of the classical map. Figures 1-3 present a variety of be-
havior that may be understood in terms of the following
arguments.

It is clear from the equations (10) governing the map
with lowest-order quantum corrections that, for suffi-
ciently large B, the period doubling to chaos follows that
of the classical map. For intermediate values of 8, howev-
er, there are important differences. For such intermediate
values of B the values of r where successive bifurcations
occur are larger in the quantum map than in the classical
map. This may be regarded as a manifestation of the
enhanced stability accompanying the quantization of clas-
sically chaotic systems. In other words, the bifurcation di-
agram with respect to r is shifted towards r=4.0. A

06 _/ _
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R
FIG. 2. Asin Fig. 1 except that r =3.5.
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FIG. 3. Asin Fig. 1 except that r =3.74.

consequence of this shift is that we see a period-doubling
transition as a function of r to the highest-period orbit al-
lowed for that particular value of B. In addition, the
chaotic orbits span a smaller portion of the unit interval at
these intermediate values of the dissipation parameter.
This last result implies greater stability for intermediate
dissipation than for large dissipation, which would appear
to contradict what is observed in Fig. 3 for periodic orbits
embedded in the chaotic regime of the classical map. The
resolution lies in the shift of the critical values of r. The
value of r corresponding, say, to the period-five orbit at in-
termediate B values is larger than that for the classical
limit. With reference to the classical map, this shifts the
dynamics, for intermediate B, from the narrow window of
stability associated with the period-five orbit to the chaot-
ic regime lying outside (corresponding to larger values of
r). With increasing dissipation, the shift in the critical r
values goes to zero and the dynamics of the classical map

log,q [P(x)]

-6 1 1 1 1
0 0.2 0.4 0.6 0.8 1
X

FIG. 4. Invariant probability distribution P(x) calculated by
dividing the x axis into 20000 bins and counting the number of

occurrences of an x value in each bin during 107 iterations of the
map with §=5.0 and r =3.8.
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are recovered.

We wish to emphasize that the map (10), where the
noise is self-consistently generated, is essentially different
from the logistic map with additive random noise. This is
clearly illustrated in Fig. 4, where we show a typical in-
variant probability distribution P(x), obtained at fixed
values of r and B. The similarity of the peak structure to
that obtained for the classical map is striking. It is also
clear that P(x) does not exhibit the broadening of peaks
seen in the case of the logistic map with external additive
noise.'>~!7 (Compare Fig. 4 with Figs. 11 and 12 of Ref.
16).

It should also be emphasized that our approach involves
no factorization approximations.*'® Successively higher-
order quantum corrections are included by increasing the
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dimensionality of the map, as discussed earlier. Although
it is not as general as the approach of Graham,? for in-
stance, it does enjoy great simplicity, and is easily general-
ized to continuous flows and conservative systems.

In summary, we have presented a straightforward tech-
nique for studying the effects of quantum correlations on a
dissipative system. By doing this for the example of the
logistic-map system we have found a period-doubling
transition to the classical behavior as the dissipation pa-
rameter is varied.
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Theoretical Chemistry and Molecular Physics Group (T-
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