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Superintegrable Hamiltonians in three degrees of freedom possess more than three functionally
independent globally defined and single-valued integrals of motion. Some familiar examples, such
as the Kepler problem and the harmonic oscillator, have been known since the time of Laplace.
Here, a classification theorem is given for superintegrable potentials with invariants that are quad-
ratic polynomials in the canonical momenta. Such systems must possess separable solutions to the
Hamilton-Jacobi equation in more than one coordinate system. There are 11 coordinate systems for
which the Hamilton-Jacobi equation separates in I . One coordinate system may be arbitrarily ro-
tated or translated with respect to the other, yielding 66 distinct cases. In each case, the di6'erential

equations for separability in the two coordinates are integrated to give a complete list of all superin-

tegrable potentials with four or five quadratic integrals. The tables —which may be consulted in-

dependently of the main body of the paper —list the distinct superintegrable potentials, the separat-
ing coordinates, and the isolating integrals of the motion. If there exist five isolating integrals, then
all finite classical trajectories are closed; if only four, then the trajectories are restricted to a two-

dimensional surface. An extraordinary consequence of the work is the discovery of perturbations to
both the Kepler problem and the harmonic oscillator that do not destroy the fragile degeneracy.
The perturbed systems still have five isolating integrals of the motion.

I. INTRODUCTION

The Kepler problem and harmonic oscillator possess
properties that have special interest about them —for ex-

ample, all finite classical trajectories are closed and all
quantum eigenenergies are multiply degenerate. This is
because the potentials admit separable solutions to the
Hamilton-Jacobi equation' in more than one coordinate
system, which manifests itself in the existence of addi-
tional isolating integrals of the motion. For example, it
has long been known 6 that the Kepler problem
possesses five functionally independent isolating integrals.
These are generated by separating the Hamilton-Jacobi
equation in spherical polar and rotational parabolic coor-
dinates.

The conditions for separability of the Hamilton-Jacobi
equation in orthogonal coordinates were first published
by Stackel and are repeated in Goldstein. Robertson'
showed that the Schrodinger equation possesses a separ-
able solution if the Hamilton-Jacobi equation does, pro-
vided the Ricci tensor diagonalizes. For three-
dimensional flat space, the 11 possible coordinate systems
in which separation may take place were deduced in a pa-
per by Eisenhart" and are listed in Morse and Fesh-
bach. ' Some —such as rectangular Cartesian or spheri-
cal polar —are very familiar, others —such as rotational
parabolic or elliptic cylindrica1 —much less so. They are
all obtainable as degenerations of the confocal ellipsoidal
coordinates. ' For each of the coordinates, Eisenhart'
determined the form of the potential that permits separa-
tion of variables.

These potentials, designated Stackel or separable po-
tentials, played a crucial role in Hamiltonian mechanics

before the development of more qualitative geometric
methods for differential equations. For example, Jacobi's
study of the geodesics of a triaxial ellipsoid'5'6 or
Neumann's investigation of a particle moving on a sphere
under the action of a linear force' ' exploited the separ-
ability of the Hamilton-Jacobi equation to solve the equa-
tions of motion by quadratures. Stackel potentials are
still widely used in many branches of physics —for exam-
ple, in the calculation of an intermediary drag-free orbit
of an artificial satellite orbiting an oblate planet, ' ' in
the elucidation of the structure and dynamics of elliptical
galaxies ' and in the determination of the wave func-
tions of the hydrogen atom and molecule.

Arnold Sommerfeld in his classic Atomic Structure
and Spectral Lines seems to have been the first to note
that if a potential is separable in more than one coordi-
nate system, it possesses additional isolating functionally
independent integrals, i.e., is superintegrable. The first
systematic inquiry into this problem was begun by Win-
ternitz and co-workers. They ' found every potential
in two degrees of freedom that is separable in more than
one way. They isolated the dynamical symmetry group
by identifying the degeneracy of the energy levels of the
quantum system with the dimensions of all irreducible
representations of a Lie group. Subsequently, they ex-
tended this to three degrees of freedom by finding every
potential separable in spherical polars and at least one ad-
ditional system. The remaining possibilities do not ap-
pear to have been investigated and are given here.

In Sec. II it is shown that a superintegrable Hamiltoni-
an in three degrees of freedom with invariants quadratic
in the canonical momenta must admit a separable solu-
tion to the Hamilton-Jacobi equation in at least two coor-
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TABLE I. A Hamiltonian system in three degrees of freedom is maximally superintegrable if it admits five globally defined and
single-valued integrals of the motion. The table gives a complete list of all maximally superintegrable natural Hamiltonians in a
three-dimensional Aat space with integrals that are quadratic polynomials in the canonical momenta. Such systems must admit se-
parable solutions to the Hamilton-Jacobi equation in at lead two coordinate systems. Rotational parabolic coordinates (g, r), P) are
defined in (3.8), spherical polars (r, B,Q) in (3.18), and parabolic cylindricals (g, rl'z) in (3.19). Note that P is the linear momentum, L
is the angular momentum, and the components (P &, P2, P3) and (L &, L2,L3) always refer to the Cartesian frame.

Potential Separating coordinates Isolating integrals

ki k2 k,k(x +y+z )+ + +
z

Rectangular Cartesian,

spherical polar,

cylindrical polar,

elliptic cylindrical,
confocal ellipsoidal,

conical,
oblate spheroidal

prolate spheroidal

E =
2 ~P '+k(x'+y +z')+ + +ki k2 k,

y z2

klI, = 2P)+kx +

I2= 2P2+ky +

I, =-,'ir.i'+, , +, , +
k) k2 k3

sin'8 cos'P sin'8 sin'P cos'8 '

k) k2I4= 2L3+ 2
+

cos'(t sin'P

k, k,——+ +
f x 2

y
2 Rotational parabolic,

conical,

spherical polar

2 k k) k,E =-,'lpl' ——+, +
x y

2

k, k,
sin'8 cos'P sin'8 sin'P

k, k,
I2 —2L cos'P sin P

ki cos20
I3= 2L2+ sin'8 cos'(t
I, =L~P, P, L, +(g—r))—

k i +
k k

g+ g grl cos'P g3) sin'P

kix k2 k,+ +
y2(x2+y2)l /2y2z2 Spherical polar,

parabolic cylindrical

k, x k2 k3
3 3 3 in+ 2+ 3'y(x+y) y z

k, cosP+k, k3I, =
—,'L + . 3 . 2

+
sin'8 sin'(t cos'8

k, cosP+k,
I2 ——'L3+

sin'P

2I3 =
—,P3+

(k, +k, )g' +(k, —k, )t)'
I4=L3P, + 0'a'(0'+ a')

k)x k2+ +k3z
y 2( x 2 +y 2

)
1 /2

y
2 Rotational parabolic,

parabolic cylindrical

kix k2

y2(x2+y2)1 /2y2

k3(7) (g —r))(k, cosP+kz)I) =L)P2 —P)L2 — +
2 gq sin P

k, cosP+k,
I2 =—'L3+

sin P
I3= 2P3+k3z,

(k, +k, )g'+(k, k,)r)'—
I4 =L3P2+ 0'n'(0'+ n')
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TABLE I. (Continued).

Potential Separating coordinates Isolating integrals

k, k2
k(x +y )+4kz + +

X2 y2
Rectangular Cartesian,

rotational parabolic,
elliptic cylindrical

k, k,
E =

—,
' IPl'+k(x'+y')+4kz' +, +

I, =—'P)+kx +
2

I2 —2P2+ky +
k,

I3 = —'L3+
cos'P

k,
X

k2

k2+
sin~/

k, k2
I4=L)P2 P, L2——(g—g) k(g-

gr) cos'(( gg sin'P

dinate systems. There are 11 such coordinate systems,
which may be arbitrarily translated or rotated. The most
general result is obtained when the symmetry of the
separating coordinates is maximized by taking the origin
and axes of the Euclidean frames to coincide. Addition-
ally, a potential may separate in the same coordinate sys-
tern rotated or translated with respect to itself. In each
of the 66 (i.e., "C2+11) cases, the differential equations

for separability in the two coordinates are integrated.
Very often, as the symmetry of the separating coordinates
is diminished, the result is a special case of a more gen-
eral superintegrable potential and so the 66 cases yield
only 12 distinct superintegrable potentials. Details of
some of the calculations are given in Sec. III and the re-
sults are collected in the tables. This finishes the pro-
gram of %internitz and generates a complete list, up to

TABLE II. A Hamiltonian system in three degrees of freedom is minimally superintegrable if it admits four globally defined and
single-valued integrals of the motion. The table gives a complete list of all minimally superintegrable natural Hamiltonians in a
three-dimensional Hat space with integrals that are quadratic polynomials in the canonical momenta. Such systems must admit se-

parable solutions to the Hamilton-Jacobi equation in at least two coordinate systems. Rotational parabolic coordinates (g, r), P) are
defined in (3.8), spherical polars (r, 8, P) in (3.18), cylindrical polars (R, P,z) in (3.45), and parabolic cylindricals (g', r)', z) and (k', p, ', z) in

(3.19) and (3.51), respectively. Note that P is the linear momentum, L is the angular momentum, and the components (P&,P2, P3) and
(L „Lz,L3) always refer to the Cartesian frame. Fdenotes an arbitrary function of the indicated argument.

Potential

k) k2 k3F(r)+, +, +
x y z

Separating coordinates

Spherical polar,

conical

Isolating integrals

E =-,'IPI'+F(r)+, +, +ki k2 k3
2

y
2 z 2

k, cos'8 k, sin'P sin'8
I) —2L)+ 2 2

+
sin 8 sin'P cos 8

k, cos28 k, cos2$ sin28
I2 —2L2+ . 2 2

+
sin'8 cos'P cos'8

k, k2I3= 2L3+ 2
+

cos'P sin'P

2 2 k, k2
k(x +y )+ + +F(z)

2
y

2

k2
4kx +ky +

2 +F(z)

Rectangular Cartesian,

cylindrical polar,

elliptic cylindrical

Rectangular Cartesian,
parabolic cylindrical,

I2=

I3=

21 P21+ kx2+
2X

+ky +
y

k, k,
—,'L'+ ' +

cos'P sin'4)

k2E =
—,
' lPl'+4kx'+ky'+, +F(z),

I, = —'P, +4kx,

E =
—,
' lPl'+k(x'+y )+ + +F(z),

ki k2

I2= —'P2+ky +
k, (g' —g')

I3 =L,P, —kg'r)'(g' —r)')+
'Yl'
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TABLE II, (Continued).

Potential

k, k, x+ + +F(z)
(x 2 +y

2
)

1 / 2
y

2
y

2
( x 2 +y

2
)

1 / 2

Separating coordinates

Cylindrical polar,

parabolic cylindrical

Isolating integrals

1 2 k k,
zIpI +

2 2 &a+(x+y ) y
k, x

2 2 2 1/2y(x+y)
k, cosP+ kz

I1 ——'L3+
sin'P

I2= 2P3+F(z),
1

I3 =L3P, + + 7J

g'{k1 —k2) 2'(k1+ k2 )
X k((' —g')+ +"

7l'

2 2 2 3 F(y/x)k

Z2 X2
Spherical polar,

cylindrical polar,

prolate spheroidal,
oblate spheroidal

g = ' IpI'+k („'+ k3
2 z x+y

I, = 2P3+kz +

3 + F(tang)k

cos 0 sin 0
I, =

—,'L', +F(tang)

k(x +y )+4kz + F(y/x)
X +y

Cylindrical polar,
rotational parabolic

F = —' IPI-'+ k (x +y')+

I1 —
2 P3 +4kz',

I2= ~Lg+F(tang),

I3=L)P) PgL, kgb—(g—g)+-(&—q)F (tand )

7l

F (y /x)
f p (x 2 +y 2

) x 2 +y 2 Spherical polar,

rotational parabolic

IpI + + (y/x)
r(x +y ) x +y

k
~ cos8+F(tang)

sin 0
I, =

—,'L3+F(tang),
k ( + )I, =L,P, P, L — — +

g+ g gg(g+ g)
(g —g)F(tang)

7l

k1&R +y k2&R —y—+ + +F(z)
R

Mutually orthogonal

parabolic cylindricals

k, &R +y k2&R —yE =-'IPI'+ —+ + ' +F(~),
R R R

I1 ——P3 +F(z),

I,=L,P, +, , [k(A, ' —p') —k, V A.'p'+k2v'~'A, '],1

k +p

1 Pl
I3=LgP, +, , k(g' q') (k, +k,)——

I 2

+(k, —k2)

1/2
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II. SUPERINTEGRABILITY AND SEPARABILITY

A d-dimensional Hamiltonian is superintegrable if
there exist more than 1 functionally independent globally
defined and single-valued integrals. Not all the integrals
of a superintegrable system can be in involution, but they
must be functionally independent otherwise the extra in-
variants are trivial. To test for functional independency
of a set of' n integrals in d degrees of freedom, the n X2d
Jacobian

(2.1)

is constructed. If it possesses rank n, then the integrals
are all nontrivial. In this paper the emphasis is on natu-
ral Hamiltonian systems in three degrees of freedom in
flat space i.e.,

H =-,'~P~'+ V(x) . (2.2)

We prove that the the problem of finding all superinte-
grable potentials with quadratic invariants is exactly
equivalent to finding all potentials separable in more than
one way in the confocal ellipsoidal coordinates and their
degenerations.

First, we show that two commuting quadratic integrals
can exist if and only if the potential separates in the con-
focal ellipsoidal coordinates or their degenerations. This
is a straightforward extension to classical mechanics of a
result already known in quantum mechanics. All in-
variants must be either even or odd in the momenta and
so a quadratic integral may be taken without loss of gen-
erality as

K, =pe, (x)P;Pq+g, (x) . (2.3)

The vanishing of the Poisson bracket of H and E& leads
to the system of ten equations

P;P.Pk =0 .
BXj

(2.4)

Solving, it follows that any quadratic integral must be a
symmetric bilinear polynomial in the generators of the
Euclidean group E(3), i.e.,

the equivalence class of linear transformations, of all po-
tentials with four or five isolating functionally indepen-
dent integrals quadratic in the momenta.

The superintegrable potentials share the interesting
properties of the Kepler problem and the harmonic oscil-
lator. The classical trajectories always fill a surface of
less dimensions than the number of degrees of freedom.
In a companion paper, ' the quantum wave functions are
found by solving the Schrodinger equation and the degen-
eracy is used to isolate the dynamical symmetry group.
Representations of the groups are constructed in terms of
annihilation and creation operators of energy quanta.

Tables I and II—which may be consulted independent-

ly of the main body of the paper —list the distinct super-
integrable potentials, the separating coordinates, and the
isolating integrals of the motion.

K) =ae, L;L~ +2b, j,L(Pg+cgP; P~+g )(x), (2.5)

Requiring the Poisson bracket of K& and Kz to vanish
implies that a,„=diag(a, ,a2, a3) and leads to the same
systems of equations given in Ref. 30 and labeled (A), (8),
(C), (A'), (8'), (C'), and (D'). The solutions in all cases
are separable in the confocal ellipsoidal coordinates or
their degenerations.

The commuting integrals K, and Kz are identified with
the commuting operators of the Cartan subalgebra of a
semisimple Lie algebra. The Cartan-Weylbasis is

[K, ,K, ]=0 (i,j =1, . . . , I),
[K;,I ]=a;I
[I,I&]=N &I +&, if a+PrO,
[I,I ]=a'K; .

(2.7)

Here, N &
=0 if a+P is not a root, 1 is the rank of the

algebra and a; are the covariant components of the root
vector. A semisimple Lie algebra decomposes into a
direct sum of the Cartan subalgebra and one-dimensional
root spaces which are generated by the root vectors I .
The important point is that if a and P are roots, then
there is a finite string of roots

P+j a,P+(j —1)a, . . . , P, . . . , P—(k —1)a,P ka, —

(2.&)

where j and A: are positive integers. For any I&, choosing

y equal to (j+1)a and using (2.7) implies that there ex-
ists a commuting operator

[Ip,Ir ]=0 . (2.9)

Now, superintegrable systems possess at least one addi-
tional integral I, . By (2.9), there then always exists a fur-
ther integral Iz (not necessarily distinct from or function-
ally independent of the other integrals) which commutes
with I, . This may be verified in three degrees of freedom
by examining the root spaces of the four locally distinct
semisimple Lie algebras of rank two, namely, su(3), so(5),
sp(4), and so(4), as was done in Ref. 30. A superintegr-
able system therefore possesses two pairs of two comrnut-
ing integrals (other than the Hamiltonian). By hy-
pothesis, the integrals are all quadratic and so the poten-
tial must separate in the confocal ellipsoidal coordinates
and their degenerations in at least two different ways.

III. HAMILTONIANS SEPARABLE
IN MORE THAN ONE COORDINATE SYSTEM

There are 11 coordinate systems in which the three-
dimensional Hamilton-Jacobi equation separates, namely,
rectangular Cartesian, spherical polar, cylindrical polar,
rotational parabolic, parabolic cylindrical, elliptic cylin-
drical, oblate and prolate spheroidal, conical, para-

where L; =&ijk&j ~k &ik aki and Cik &ki Roiatio»
may be used to set a, &

= diag(a&, az, a3). By hypothesis,
there exists a further quadratic integral K2, namely,

K2 =a(~L,L~ +2PgL(Pg+ y;~P;P~ +gq(x) . (2.6)



41 SUPERINTEGRABILITY IN CLASSICAL MECHANICS 5671

A. Conical and rotational parabolic coordinates

Conical coordinates (r, I4, v) are given in terms of rec-
tangular Cartesians (x,y, z) by

r =x+y+z (3.1)

X 2 2+y +' (3.2)r+ a r+p r+ y
where r=p or v and —y v p&y, &——a with a, p,
and y constants. Surfaces of constant r are spheres, while
surfaces of constant p or v define cones of elliptic cross
section. In terms of conical coordinates, rectangular
Cartesians (x,y, z) are

r (p, +a)(v+a)
(a —y)(a —p)

r (p+p)(v , +p)

(p —a)(p —y)
r'(1M+ y )(v+ y )

(y —a)(y —p)

=0,

The transformation from (x,y, z) is unique. The converse
is not true —each choice (r„I4,v) corresponds in general
to eight different points (+x, +y, +z ). The Stackel or se-
parable potential in conical coordinates' ' has the form

v=w( ')+
r (p v)—

A necessary and suScient condition for V to separate in
conical coordinates is

boloidal and confocal ellipsoidal. ' ' %'e wish to find

every potential that separates in at least two coordinate
systems, which may be rotated or translated with respect
to each other. The most general result is always obtained
when the coordinate systems are arranged canonically,
that is, with origin and axes coinciding. Additionally, a
potential may separate in two coordinate systems of the
same type, but displaced or rotated with respect to each
other. In the 11 cases when one of the separating coordi-
nates is spherical polars, the solutions are given in Ref.
30; the remaining 55 cases are investigated in Ref. 36. In
this section we give details of the calculations in five cases
to illustrate the general methods. The remaining results
are reported in the tables, which give a complete list of all
distinct superintegrable potentials with quadratic invari-
ants. Note that, in what follows, A, B, C, D, E, and F al-
ways denote the arbitrary functions in Stackel or separ-
able potentials and k, , k2, k3, etc. are numerical con-
stants.

where g and 2) take values from 0 to oo. Surfaces of con-
stant g or rl are confocal paraboloids of revolution with
the z axis as the axis of symmetry. The point with rota-
tional parabolic coordinates (g, 21,p) has rectangular
Cartesian coordinates (x,y, z) given by

x =v'grl cosp, y =v'g2) sing, z =
—,'(g —2)) . (3.9)

The Stackel or separable potential in rotational parabolic
coordinates ' may be taken as

D (g)+E (r)) F ( tan P)
0+v

If the potential is to separate in both coordinates, then
(3.5) implies that

(3.10)

a2 r ( +y )1/2( +y )1/2
rD r+

Bv dr (y a)l/2(y p)1/2

r ( v+ y )1/2(p +y )
1/2

(y-a)' '(y-p)'/'

This s&mplj. fies to g&ve

=0. (3.11)

2D'(g) —2E'(rl )+ gD "(g)—2)E"(2) ) =0 . (3.12)

Separating and solving, we find the solutions can be taken
without loss of generality as

k3
D (()= —2k, E(rl) = k4

(3.13)

k) k2
F(tan P)= +

cos p sin2$
(3.15)

So, the most general potential separable in conical and
rotational parabolic coordinates is

k, k2V= ——+ +
r ~2 y2

(3.16)

By separating the Hamilton-Jacobi equation, the five in-
dependent isolating integrals may be taken as

k, k2E =-,'/P(2 ——+ +
x y

Equation (3.6) yields no additional information, but (3.7)
implies k2 =k4=0 and

tan tI}sec pF"(tan p)+2 sec pF'(tan2$} —2F=0 . (3.14)

The ordinary differential equation (3.14) is easily solved
to obtain

(r V)=0,
Bp Br

82
(r V)=0,

Over

a2
[(p —v}V]=0 .

Bp Bv

(3.5)

(3.6)

(3.7)

k,I =—'L +1

I =—,'L +2 2 3

k2
, +

sin 8cos p sin 19sin tI}

k, k2+
cos P sin P

k, cos 0
I3 =

—,'L2+
sin Hcos P

(3.17}

Rotational parabolic coordinates (g, 2), p) are defined as I4=L i~2 —~iL2

g=r + z2) =r —z, P= arctan
X

(3.8) +(g —g)
k k k

g+'g gr)cos P (2)sin P
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where (r, 8,$) are familiar spherical polar coordinates
defined as

x =r sinOcos4}, y =r sin8sing, z =r cos8 . (3.18)

(x, +y, z) given by

x =-,'(0' —n'» y =&0'n'. (3.20)

The potential is additionally separable in spherical polar
coordinates, but is not given in Ref. 30 as there are more
general potentials separable in either spherical polar and
conical or spherical polar and rotational parabolic coor-
dinates (cf. Table II). Keplerian motion is recovered in
the special case k, =k2=0. The integral I4 then be-
comes the z component of the Runge-Lenz vector and
the integrals I„I2, and I3 imply conservation of angular
momentum.

B. Rotational parabolic and parabolic
cylindrical coordinates

Parabolic cylindrical coordinates (g', ri', z) are defined

The Stackel or separable potential in parabolic cylindri-
cal coordinates' ' is

D(g')+E(rI') +Fg'+ 2)'
(3.21)

a v
ag az

8 V

aga
2

, [(g'+2)') V]=0 .' rl'

(3.22)

(3.23)

(3.24)

A necessary and suScient condition for V to separate in
parabolic cylindrical coordinates is

as

(2+y2)1/2+Xi)~(X2+y2)1/2 (3.19)

The Stackel potential in rotational parabolic coordinates
(g, r), P) is

where g' and r)' can take values from 0 to ~. Surfaces of
constant g' or r)' are confocal parabolic cylinders. Each
choice (g', ri', z} corresponds to two different points

I

A (g)+B(r)) C(tan (t )

g+ ri

From (3.22), it can be deduced that

(3.25)

(g+'9) [gA (g) riB "(2))]+6(g—rI)[A (g)+8(ri)]+2(g+r))[(2)—2()A'(g)+(22) —g)8'(ri)]=0. (3.26)

g A "(g)—4(A'(g)+6A(g)=0, (3.27)

which has the solution

In particular, (3.26) must hold on r1=0. Choosing 8(0)
and 8'(0) to be zero without loss of generality, then A (g)
satisfies the equation

I]=L &P2 P&L2

(3.33)

k, x k2

y 2( 2+ 2)1/2 2

k&(2) (g—ri)(ki cosp+k2)+
2 gi}sin P

k, cosP+k2
I2 —

—,'L 3+
sin P

A (g) =k4( +—", k3(

Substituting into (3.26) enables 8 (2) ) to be found as

8 (rt) = k42} —
—,'kiri

(3.28)

(3.29}

I3 2P3+k3Z

(k, +k2)g' +(k, k2)7)'—
I4 =L3P2+

Equation (3.23) gives no further information, but (3.24}
implies k& =0 and

2C(tan P) —4 tan /sec PC"(tan P)
—2 sec P(4+3 tan P)C'(tan P)=0 . (3.30)

C. Rotational parabolic and rectangular
Cartesian coordinates

Using the form of the Stackel potentials in the two
coordinate systems given in Refs. 14 and 30, we have that

This can be integrated to give

k, cos((}+k2
C(tan P)=

sin P
(3.31)

A (g}+B(2)) C(tan p)
0+ri

=D(x )+E(y )+F(z ), (3.34)

k, x k2
2 2 2 1/2 2y(x+y) y

(3.32)

Accordingly, the solution for the most general potential
separable in rotational parabolic and parabolic cylindri-
cal coordinates is

where

x =&(2)cosP,

y =l $2) sing

z =
—,'(g —2)) .

(3.35)

By separating the Hamilton-Jacobi equation, the five iso-
lating independent integrals may be taken as

To separate in rectangular Cartesians, the potential must
satisfy
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B'V
Bx Bz

B V

By Bz

B" =o
B By

(3.36)

(3.37)

(3.38)

(3.46)

The solutions can be taken without loss of generality as

B2
(R V)=0,

which can be simplified to yield the ordinary differential
equation
2D'(g') —2E'(i)')+g'D "(g') i)'E—"(i)')=0 . (3.47)

Equation (3.36) leads to exactly (3.26} which has been
shown to admit solutions

k2 —k, k, +k2
D (g') =k +, , E(2)') =k + (3.48)

(3.39)

sec Ptan2$C"(tan ((})+2sec PC'(tan P)
—2C(tan P) =0 .

This is readily integrated to give

(3.40}

kig k3i)
A (g)=kg +, B (i))=ki)—

2
'

2

To determine the function C, (3.38) is used to deduce

to give the potential

k, cos(t +k2V= —+, , +F(z) . (3.49)
R sin (t1

The isolating integrals may be found by separating the
Hamilton-Jacobi equation to be

k1x k2
E =

—,'IPI'+ + +
(x2+y2)1/2y2(x2+y2)1/2y2

k1 k2
C(tan p) =

2
+

cos ((} sin P
(3.41)

Accordingly, the most general potential separable in rota-
tional parabolic and Cartesian coordinates is

+F(z),
k1 cosk+ k2

I1 —
—,'L 3+

sin 1)}
(3.50)

k1 k2V=k(x +y )+4kz + + +k&z .
2

y
2

(3.42)

k 1I1=—'P +kx +
1 p 1 x

k2I =—'P +ky+ y' '

k, k2
I3 —

—,'L 3+ +
cos P sin 1}}

(3.43)

The linear term in z may be made to vanish by perform-
ing a real translation and so without loss of generality
k 3 0. By separating the Hamilton- Jacobi equation, the
five isolating integrals are found to be

k, k2
E =

—,'lpl +k(x+y )+4kz + +
2

y
2

I2 = ,'Pi+—F(z),

i)'(ki —k2)
I3 =L3P2+, , k(g' —i)')++ 'g

g'(k, +k2 )+
7l'

If the separating coordinate systems possess a common
coordinate —such as z for the cylindrical polar (R, 1)},z)
and parabolic cylindrical (g', i)', z) systems —the solution
for the potential always contains an unspecified function.
The superintegrable potential then admits four, not five,
isolating independent integrals.

E. Two mutually orthogonal parabolic cylindrical
coordinate systems

k,I4=L,P2 P, L2 —(g —i))—kgb)
(7l cos 1}}

The anisotropic harmonic oscillator with
quency ratio 1:1:2 is included as the
k, =k2=0.

k2

gi}|sin P
rational fre-
special case

x =
—,'(g' —i)'}=&A,'p',

y =&('i)'= —,'(A, ' —p') .
(3.51)

Consider two parabolic cylindrical coordinate systems
(g', i)', z) and (A, ', p', z) related by

V= A (R)+ +F(z)=, , +F(z),
R2 g +i)

where
(3.44)

D. Cylindrical polar and parabolic cylindrical coordinates

By assumption, the potential has structure A (g')+B (i)')
g'+ i)'

D (A, ')+E(p')
+p

Constructing the equation

(3.52)

The potential separates in both coordinate systems if

x =
—,'(g' —i)') =R cos1)},

y =&('i)'=R sing .
(3.45)

B2
, [(g'+i)') V]=0,

8 'dn' (3.53)

To separate in cylindrical polars, the potential must satis-
fy

we find that D (A,') and E (p') must satisfy

D'(A, ') E'(p')+2k, 'D "(k') —2p'E" (p') =0 .— , (3.54)
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Separating, the solutions can be taken without loss of
generality as

pressions given for the integrals in (3.17), the actions are
found to be

D()(,') =k +k, &A,', E(p') =k +k2&p',
to give the superintegrable system

ki&R +y k2&R —yV= —+ + ' +F(z),R R R

(3.55)

(3.56}

J = fp dr =2m +—2I— kI' 1 1 Q 2E

Je= fped8=2m(+2Ii —+2Iq),
J~= fptd$=2V2ir(QIz —Qk, —Qk2) .

(4.2)

where R =x +y . This is the three-dimensional analog
of the plane system found by Fris et al. and subsequent-
ly investigated by Sen. The four functionally indepen-
dent integrals may be taken as

k, &R +y k2&R —y

I, = ,'Pi+F—(z),

I2=L&Pi+, , [k()I,' p') k—, &A.—'p'+k2&p')I, '],

Solving for E in terms of the actions yields the result

—2m k

[J„+Je+Jt, +2~2m(~k~+~k2)]
(4.3)

As a consequence of the three action variables appearing
only in the form J„+Je+J&, it follows that all the fre-
quencies are equal and the motion is completely degen-
erate. The degenerate frequencies can be removed by a
canonical transformation with generating function

(3.57)
F =(w& —w&)Ji+(we —w„)Jz+w„J&, (4.4)

1Ii =LiPz+, , k(g' ri') (k—, +k2—)

1/2

1/2 where (w„,we, w&) are the old angles and (J„J2,J~) are
the new action variables. In the new action-angle coordi-
nates, the Hamiltonian is simply

+(k, —k2) H=
[Ji+2~2m(+k, +Qk2)]

(4.5)

It may be verified by direct calculation that this is the
only new superintegrable system when the separating
coordinates are of the same type but rotated or translated
with respect to each other. For example, the most gen-
eral potential separable in a pair of arbitrarily rotated or
translated rotational parabolic coordinates is always a
special case of (3.16).

IV. CLASSICAL EQUATIONS OF MOTION

It is entirely characteristic of superintegrable systems
that the classical trajectories always fill a surface of less
dimensions than the number of degrees of freedom. This
is because the intersection of the level sets of integrals
determines the trajectory in phase space. In three de-
grees of freedom, the existence of five globally defined
and functionally independent integrals (hereafter called
maximal superintegrability) immediately implies all finite
trajectories are closed. If there are four integrals
(minimal superintegrability}, the generic trajectory dense-
ly fills a 2-surface and not the entire three-dimensional
space. This was already well known to Born.

A. Maximal superintegrability:
The generalized Kepler potential

As a first example, we consider the superintegrable
Harniltonian given by

It is now a function of the only action variable for which
the corresponding frequency is nonzero. We note that in
the limit k1=k2=0 we recover the well-known result
for the Kepler problem. By solving the Hamilton-Jacobi
equation in rotational parabolic coordinates, the trajec-
tories are given in terms of a parameter ~ by

1/2
'Y1 + + sin(2& —2E r+ C, ),2E 4E2 E

' 1/2
3'2 'V2 I3

2E 4E2 E sin(2& —2E r+ C2 ),
(4.6)

~ = r'
sin P=

2I3

k 2

I3
r
4I

2(I2-Is )kn-I3(n —k)'

2(I2 Ii )gri—
where y; and C; are constants. For trapped orbits, these
are closed fourth-degree curves. Note that in distinction
to true Keplerian motion, the orbits are not confined to a
plane.

8. Maximal superintegrability: the Winternitz system

The three degrees of freedom Harniltonian system
given by

kH =-,'iP/' ——+ +
70 +2y2 (4.1)

k1 k2 k3H= —,'iP~ +k(x +y +z )+ + +
X2 y2 Z2

The constants k, k„and k2 are taken as positive, so the
Hamiltonian is perfectly physical and motion is confined
to, say, the quarter-space x )0 and y )0. Using the ex-

was first identified as superintegrable in Ref. 30. The ob-
vious extension to X degrees of freedom is known as the
Winternitz system and possesses 2N —1 globally defined
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single-valued and functionally independent integrals, as
shown in Ref. 31.

The actions for the Winternitz system with N =3 are

in addition to the energy. The trajectories are
' 1/2

x =— sin(/8kt+C )
2 k

J„=tt) p„dx =2&v~ I2 I2+
2k 4k'

' 1/2

k
sin(&8kt +C2) .

(4.13}

J = $p dy =2V2m ——Qk2

J,= tt)p, dz =2&2m ——Qk3
2 k

where I1, I2, and I3 are the integrals given by

k,I1=—P +kx +1 2 1
X

(4.7) So, the projected motion on the (x,y) plane is closed and
traces out the path of a fourth-degree curve. In separable
systems, the trajectory is bounded by the coordinate sur-
faces and so a trapped particle oscillates in z between
turning points z+ and z . The generic orbit densely fills
the 2-surface defined by (4.13) between the turning points.

V. CONCLUSION

I2 =—'P2+ky2+ k2

y

k3I =-'p'+kz'+
3 2 3

Writing the Hamiltonian as a function of the actions, we
find that

1/2

H =—— (J„+Jy+ J, )
1 k

+2&k (Qk, +Qk2+Qk3) . (4.9)
The action variables appear only in the form J +Jy+ Jz
and so the motion is completely degenerate. The classical
equations of motion may be solved to give the trajectories

Ii If k,2=
2k 4k k

I2 I
' 1/2

2= +
4k 2

2
'1/2

3 3
si n(&8kt +C )3.4k'

sin(&8k t+C~ ),

k2

k
sin(&8k t+ C2), (4.10}

I3
z = +

2k

k2
H = ,'IPI'+4kx'+ky'—+ +F(z}, (4.1 1)

which separates in rectangular Cartesian and parabolic
cylindrical coordinates and possesses integrals

I =—'P +4k@'
1 T 1

k2I2= —'P2+ky +
y' '

k2(g' —r)')
I3 =L3P2 —kg'g'(g —g')+

'7l'

(4.12)

Here, C„C2, and C3 are constants of integration which
depend on the initial conditions. For k &0 and k; )0, a
trapped partial (E (0) is confined to an octant of R and
traces out a closed curve of the fourth degree.

C. Minimal superintegrability

As a final example, we briefly consider the Hamiltonian

The main result of the paper is the construction of a
complete list, up to the equivalence class of linear trans-
formations, of all superintegrable systems in three de-
grees of freedom which possess invariants linear or quad-
ratic in the momenta. The Kepler problem, spherically
symmetric potentials, the isotropic harmonic oscillator
and the anisotropic oscillator with rational frequency ra-
tio 1:1:2are incIuded as special cases of more general re-
sults. There are three known superintegrable potentials
that do not appear in the tables. The most obvious omis-
sion is the anisotropic harmonic oscillator with rational
frequency ratio l:m:n where I +m +n ~ 5, i.e.,

H= —'IPI +I x +m y +n z
2 (5.1)

The potential separates in rectangular Cartesians and
possesses two commuting quadratic integrals. There are
two additional integrals which may be taken as polynomi-
als of degree 1+m —1 and 1+n —1 (see, e.g., Ref. 39).
The Calogero potential in a harmonic well,

k,k1H= —,'IPI +k(x +y +z )+ +
(x —y} (y —z)

(z —x)
(5.2)

R cosg=(2z —x —y)/&3,
R sinP=x —y,
z'=(z +y +z}&6/3,

(5.3)

then (5.2) may be scaled to give a separable potential.
There are two commuting quadratic integrals —the two
remaining invariants are polynomials of degree 6 in the
momenta. Finally, the potential discovered by Thomp-
son ' readily generalizes to give the superintegrable Ham-
iltonian in three degrees of freedom

H = ,
' IP I'+x "+F(z),-- (5.4)

where a =1/(2l + 1), 1 = 1,2, . . . . The system separates
in Cartesians but admits an additional polynomial invari-

was found to be superintegrable by the method of Lax
pairs in Ref. 40. On introducing cylindrical polar coordi-
nates (R, g, z') such that
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ant of degree 2(l + 1).
Obviously, by restricting ourselves to superintegrable

systems with integrals that are linear or quadratic poly-
nomials in the momenta, we lose part of the results. A
point of interest is to generalize the classification theorem
of superintegrable systems to the cases listed above that
separate once but not twice. In three degrees of freedom,
the theory of linear and quadratic invariants is very com-
plete. Although a number of investigations have been
made using simple Ansatze, ' there is no analogous
theory that predicts the existence of higher-degree poly-
nomial invariants. The realization though that the addi-
tional integrals occur in commuting pairs may still enable
progress to be made. Finally, we note that there are no
known superintegrable systems that do not separate in at

least one of the confocal ellipsoidal coordinates or their
degenerations. It is likely that such system cannot exist,
but nothing has been proved.
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