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Divergences in the iterative and perturbative methods for computing Hannay's angle
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A classical analog is obtained for Berry's nonperturbative scheme of adiabatic iteration which
computes corrections to Berry's phase (or Hannay's angle) for-finite values of the adiabatic parame-
ter e. The iterative method is compared to the Lie version of adiabatic perturbation theory. Both
approaches show a divergence of k!e", where k is the order of iteration. It is argued that the diver-
gences are a mathematical artifact of the asymptotic methods used, not related to the physical effect
of transitions, nor to the nonconservation of the action variables.

I. INTRODUCTION

It was found by Berry' that if the parameters of a
Hamiltonian specifying a quantum system are taken
infinitesimally slowly around a circuit in parameter
space, then the system acquires a geometric phase in ad-
dition to the familiar dynamical phase —J "E„dt. The
classical analog of Berry's phase was subsequently eluci-
dated by Hannay and Berry ("Hannay's angle" ). To see
the realization of Hannay's angle, we recall that the
motion of an integrable classical system undergoing an
adiabatic excursion is confined to tori given by constant
values of the action variables. Then Hannay's angle ap-
pears as an anholonomy in the angle variables, complete-
ly specified by the path in parameter space.

More recent work has relaxed the restriction of the
infinitesimal rate of change of the parameters, allowing
instead the rate to be small but finite. In particular, adia-
batic perturbation theory has been employed to calculate
corrections to several orders to Berry's phase and
Hannay's angle for some representative systems. Ber-
ry, on the other hand, has developed a nonperturbative,
iterative procedure for calculating corrections to the
phase. Applying it to the spin- —,

' system, he found that
the sequence of corrections begins to diverge after
N-e ' iterations, where e is the adiabatic parameter.
The divergence was universal, i.e., almost always in-
dependent of the initial cycle in the parameter space.

In this paper we bridge the gap between the iterative
and perturbative schemes. We use the classical analog of
Berry's iterative procedure and compare it to Lie pertur-
bation theory. The two methods are shown to diverge in
the same order and for the same reason for a broad class
of Hamiltonians; only the computational details are
dift'erent. The analysis is restricted to integrable systems,
away from resonances (so as to avoid resonant denomina-
tors).

In Sec. II of this paper we review Berry's iterative pro-
cedure and obtain its classical analog. In Sec. III we de-
scribe the adiabatic perturbation theory using Lie opera-
tors, as given, for example, in Refs. 8 and 9. We work
out the example of a generalized harmonic oscillator and
show that the iterative and perturbative schemes agree if
at each iteration the e dependence is expanded in a series.
We then take up a very general Hamiltonian, and show

how the divergence occurs in the adiabatic perturbation
theory. Section IV is devoted to the study of the diver-
gence of the iterative procedure. At each iteration, the
explicit e dependencies of the generating functions are ex-
panded in a Lie perturbation series. The terms in the
series from subsequent iterations show a divergence
which is analogous to the one found in Sec. III. An ex-
ample of the divergence of the iterative scheme is given in
Appendix A for both the quantum-mechanical and the
classical version of the generalized harmonic oscillator.
Concluding remarks are presented in Sec. V.

II. ADIABATIC ITERATION

The iterative scheme consists of a sequence of unitary
transformations which diagonalize the Hamiltonian with
changing parameters. At each step, however, the diago-
nalization is not complete because of the explicit time
dependence of the unitary operators.

Berry considers a smooth cyclic evolution of the Ham-
iltonian Ho, Ho( —~ ) =Ho(+ ~ ), with all the time
derivatives vanishing at t =+ Do. He takes I ~N ) I to be a
(complete) set of initial eigenstates of Ho, the phases of
which are arbitrary but fixed. The adiabatic iteration
then provides a prescription for calculating the total
phase that the state i+0) accumulates at t =+ ~ with
respect to iN ), if ~%'0( —~ ) ) = ~N ), and

The rate of change of Ho is assumed to be small,
t)HO/t)t =0(e), e «1, so that i(%0(+ oo )iN ) i

—1 « l.
[It is actually of the order of exp( —1/e) (Ref. 10).] We
thus assume that all explicit time dependence of Ho
occurs in the combination et. This then holds for the ei-
genvalues and eigenstates of Ho as well.

If ~no(t)) denotes the eigenstate of Ho(t),
Hoino) =E (on)~no), then the choice of its phase can be
made unique by requiring that

a
n —n =O.0 gt 0

This condition is known as parallel transport, and is tak-
en for definiteness, as well as computational simplicity.
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The total phase accumulated by I+p& is independent of
Eq. (2.2). ' In Ref. 7 the total phase of I+p(+ ap ) & is writ-

ten as y —f + "Ep(n)dt, and the calculations are present-

ed for y. Thus

y=Im[ln&NI+p(+ ~ ) &]+f Ep(n)dt . (2.3)

Adiabatic iteration now stipulates the introduction of a
unitary operator Up, such that Inp(t)&, =Up(t)IN&. As
shown, for example, in Refs. 11 and 12, then

Up(+ ~ )IN & =e 'IN &, (2.4)

t—I'Il (t) & =H, ( )t1%' (t) &

. a
(2.6a)

where yo is exactly the original Berry's geometric phase. '

Berry uses the operator Uo to construct a new state
q, (t) &, Iq, (t) &

= Up(t) Iq p(t) &. ~ith this definition

y=yp+Im[ln&NIiP~(+ ao ) &]+f dt Ep(n), (2.5)

and I+,(t) & satisfies

smaller than the diagonal ones by a factor of e. Then

I+k+, & =exp —i f Ekdt IN &,

and

k
y=y'"'= g y;(n)+ f [Ep(n, r) Ek—(n, r)] dr—.

i=1 00 E

(2.9)

As emphasized by Berry, the procedure described above
is not perturbative since each of the yk's contains e to
infinite order. We note, however, that at each step we @re

required to solve exactly the equations of motion keeping
the parameters of H constant (i.e., we need to find a suit-
able U for each iteration).

We now proceed to give the classical analog of the
iterative procedure. It is useful to introduce the usual
time evolution operator U for the Hamiltonian Hk,

with

H& = UpHpUp ieUpUp (2.6b)

U ( ~, 1 } Texp — ' f '
H~(r')dr

Ae
(2.10)

Here the overdot denotes Blur and r:et Equa—tion.

(2.6b) shows that the off-diagonal elements of H, in the

t IN & ] representation are of order e [and —i eUpt Up does
not have diagonal elements because of condition (2.2)].
Then in the adiabatic approximation we can neglect the
term —i EU0Uo which yields

I4,(+ ~ }&=exp i f Ep(n—)dt IN &,

and y =yp. This is Berry's original result. ' [Note that if
there had been diagonal terms of O(e) in H, , then they
could not have been neglected, as they would have yield-
ed a correction to y of O(1).] For e finite, Eqs. (2.5) and
(2.6) provide a first step in the adiabatic iteration.

The procedure can now be easily repeated: we let
H In &=E(n)In & with &n In &=0; then In(r)&
= U, (r) IN &, followed by I %z &

= U, I'P, &, etc.

Hk+1 —UkHk Uk —t &Uk U (2.7a)

U„IN &
= In„ &, H„ ln, & =Ep Ink &, & n, In, & =0 .

(2.7b)

As given in Ref. 7, in the I IN & I representation, the ma-
trix elements of Hk+, are

& M
I Hk + ) I

N &
= EI, ( n )&M v

e(1 —6M~)t &Ml UyHk Ul, IN &

Ek(n) —Ek(m)

(2.8)

The off-diagonal elements come from the second term in
Eq. (2.7a).

To obtain the kth approximant to y, one can neglect
the off-diagonal terms of Hk+, , on account that they are

'T here denotes time ordering, and we have introduced A'

explicitly. Notice that in contrast to the unitary opera-
tors given in Eqs. (2.6) and (2.7), in the time evolution
operator the index appears as a superscript. In this nota-
tion the first step of Berry's iterative procedure can be
written as

U'=U U',0

and the (k + 1)th as

Uk U Uk+1
k

leading to

Uo U U . . . U Uk+1

(2.11a)

(2.11b)

(2.11c)

Up = 'Texp f g Iri p & & n p I
dr

no

(2.12)

Next, we rewrite Eq. (2.1la) as U'= UpU, and examine
the commutator of the arguments of Uo and U,

d~' no & "o ~ d~ Ho
00 Ae

no

(2.13)

Using Q„ Inp & & npI = —Q„ In &&ripI, pand Hp

,E, Imp & &mpI, in the position representation the

integrand from Eq. (2.13), with I /A'e factored out, yields

To obtain a classical analog of Eq. (2.11a), we use a
form for Uo inferred, for example, from Appendix A of
Ref. 7, or directly by di6'erentiating with respect to ~ the
defining equation for Up [ I

n p &
= Up IN & ],
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m0, n0

E (r")f dr dr'dr" ~r )(r~ri p(r')) (np(r')~r') (r'~mp(r") ) (mp(r")~r") (r"~+H. c. (2.14)

Here H.c. stands for the Hermitian conjugate.
To proceed to the limit fi~O, we use for ( r~np ) the semiclassical wave function associated with the torus in phase

space, the actions of which are quantized according to the Bohr-Sommerfeld rule I(np)=(np+o. )fi ''. (o is a con-
stant which need not concern us at present. )

(r~np(r)) =g a, («, I(np}, r)exp[(i!A)Gp(«, I(np), v }] . (2.15)

Here a, («, I(np), ~) is independent of iri, and in r it varies slowly compared to Gp/"; Gp(«, I(np), r) is a generating func-
tion for the canonical transformation (r,p)~(8p, I(np)); and s labels the branches of the inultivalued generating func-
tion. Substituting Eq. (2.15) into Eq. (2.14) yields to lowest order in fi

E (w")f dr dr'dr" ~r)(r"
~ g —,Gp(«, I(np), r')

m0, n0

Xa, («, I(n p), r') a,
'(r', I(n p), r) a, (r', I(mp), r")a,'-(r", I(mp), r")

X exp —[Gp(«, I(np), r') —Gp (r', I (np), r')+ Gp (r', I(m p), r" )

Gp —(r",I(mp), r")] +H. c. (2.16)

As fi~O we can also consider the sums over n p and mp as integrals [g„~llfi J dI(n p)]. Keeping to the lowest or-

der in R, the integral in I(np) gives 5, , 5(r r'), and—the integral over I (mp ), 5.. ."5(r' r" ). Oth—erwise, the rapid os-
cillations of the exponentials send the integrals (with iii factored out) to zero, linearly in fi if Gp(I) have no stationary
points on the interval IE[0,~ ], or as R i' if there is a stationary point of order p (see, for example, Ref. 15). Conse-
quently, to lowest order in R, Eq. (2.16) becomes

E (1 )f drlr ) &«I —' g, Gp(r I(np},r')la, (r I(np), r')I'la, (r, I(mp), r )I'+H. c. =0 .
0 ri, ar'

m0, n0 S, S

Hence the commutator of Eq. (2.13}is

f 'f 'dr'dr" f dr dr'~r )(r'~ g 0(A"), p& —1
0 0

0' 0

(2.17)

which is of higher order in fi than either of the terms forming the commutator. (This can be easily verified by writing
either term in the position representation. ) To lowest order in R we then have

O'= 7 exp — f dr' Hp(r') ice g ~

ri—p(r') ) ( np(r')
~

n0

(2.18)

Differentiating both sides with respect to ~ gives

H, =H, i Ae y ~—ri p ) & n p I
.

n0

(2.19)
pa'(r, Ip, r}exp Gp(r, Ip,r)—

S

We now take the matrix element of Eq. (2.19) between
(r~ and ~mp) and obtain

dr' r H] r' r' mo

a
0 0

aGp(«, I,r)
X H~ r, , w

—Hp(Ip, v)

a—e Gp(«, Ip, r) =0 .
O'T

(2.21)

With («~H~ ~r') =H&(«, fili d„,r)5(r r'), and using—
again the semiclassical expression for the wave functions
( r

~
m p ), to lowest order in fi, Eq (2.20) b.ecomes

[I(mp) =Ip]

Observing that in the limit Pi~0 the terms in the sum be-
come orthogonal for different s, and expressing the
dynamical variables in terms of the canonically conjugate
pair (Ip Op), yields
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Hi(IO 8O R (r})
= Ho(IO, R;(r))

BGO[r, IO, R (r)]
+eR;(r)

l r r(Ip Hp T')

(2.22}

X exp —[Go(r, IO, R, ) —Go (r, IO, R, )] =0 .

(2.23)

As fr~0, the exponent produces 5, , To proceed fur-
ther, we identify' ~a, ~

with 1/2' d 8O(r, IO, R, }/dr,
yielding

We have dropped the explicit index s on Go (the last term
is single valued anyway after evaluating r) In. writing
Eq. (2.22), we have emphasized that the explicit time
dependence of the Hamiltonian comes from a set of
time-dependent parameter R;, the rate of change of
which, in t, is of 0 (e). The summation over i is assumed.
H& is thus simply a result of a canonical transformation
(r,p)~(Io, 80), where Io and 8O are the appropriate
action-angle variables for R, =const. As R, 's are an ex-
plicit function of time, the second term on the right-hand
side of Eq. (2.22) is nonzero, and H, is also a function of
8O.

The condition for parallel transport can be inferred
directly from Eq. (2.2). We write (no~rio) in position
representation and use the semiclassical wave function
for

~ no). To lowest order in iii the result is

dGO(r, IO, R )

g f dr a, (r, IO, R;)a,*. (r, IO, R )R;
$, $

Hk(Ik, R, )=—Hk+, (II,R, ). Then Hk(Ik, R, ) corresponds
to Ei, (n) in Eq. (2.9) and the accumulated shifts of the
origin with respect to which 01, is measured correspond
to g; =0 y, (n), with 68„= f—

idy „/dIk.
The shifts in the origin are sometimes denoted as

"geometric" contributions to Hannay's angle, whereas
Ek —Eo gives the "dynamical" contribution. This split-
ting is dependent on the condition given by Eq. (2.24). If
we were to change it, the relative dynamical and
geometric contributions would change. The total change
in 8 due to the variation of parameters, however, is given
by the sum of the dynamical and geometric contributions
[see Eq. (2.9)], and is independent of condition (2.24).

While we have outlined the derivation above for one
degree of freedom, it is obvious that it can be extended to
any number by simply adding indices on Ik and 8k [in the
step preceding Eq. (2.24)

~ a, ~
is identified with

(2ir) det~d8;(rk, IO, Rk )/dr/~]. In that case, of course,
k

the caveat of integrability and not being at resonance ap-
plies.

III. ADIABATIC PERTURBATION THEORY
USING LIE OPERATORS

A. Review of Lie perturbation theory

For the sake of completeness, we give here a brief
description of the Lie version of adiabatic perturbation
theory. More complete accounts can be found, for exam-
ple, in Refs. 8 and 9.

We denote by z all the variables of canonically conju-
gate pairs z = (q, ,p; ). For 2N degrees of freedom, for ex-

ample, z =q and z +&=p . The adiabatic perturbation
theory is then applied to Hamiltonians of the form

8 GO( r, Io,Ri )

R;
BR; H

=0,
r = r(Ip, Hp, R, )

(2.24) h = g e"h„(z,et),
n=0

(3.1)

i}Gk ( 8k, ,I„,R, )
Hk(Ik, R, )+eR,

BR; Hk —,(Hk, Ik, R )

=HI, ~,(81,II„R,), (2.25)

where at each step the generating functions satisfy the
condition for parallel transport.

The iteration can be terminated after k steps by writing

where the angular brackets indicate an average over Oo.

Equation (2.24) removes the indeterminancy of
Go(r, IO, R; ) to within an arbitrary function of IO and R;,
which corresponds to the action and parameter-
dependent specification of the origin with respect to
which 80 is measured. [Recall that 80(IO, r, R, )
=BGO(Io, r, R; ) /dIo. ] In particular, then, the anholono-
my in the angle variable appears as a nonzero shift in the
origin as the cycle in parameter space is traversed. Based
on Eq. (2. 11b), we can now repeat the procedure for arbi-
trary k. ~nk) is expressed in the 8k, representation
(which is fine since II, „8k, form a canonically conju-
gate pair). Uk is again taken to be of the form (2.12)
(with the appropriate indices on n), and all the steps are
repeated. The result is

where E is taken to be the small parameter. We note that
e appears both as a free parameter, multiplying h„, and as
the adiabatic parameter, multiplying t. From now on, we
revert to the variable ~, ~=Et.

We assume that we can solve for the motion of z when
E=O. The aim of the perturbation theory is to obtain a
canonical transformation, ordered in powers of E, from z
to z, such that the motion of z under E (z, w), can also be
solved (in powers of e) Of course, li.m, oz=z. The gen-
erator of this transformation is w (z, 7, e) and it obeys

= Iz, w I:— L(z) . —
BE

(3.2)

B~=—TL,
BT '

=LT
BE BE

with the formal solution

T = @e p x—f d e'L ( e' )
0

(3.3)

The curly brackets denote the Poisson bracket, and L is
the Lie operator L —= I w, I. The canonical transforma-
tion operator is defined as T, Tf(z, r}=f(z(z,~},r). T
and its inverse obey the equations
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and correspondingly for T '. 8 stands for the e ordering
of the expanded exponential since L's at dift'erent values
of e do not commute. The transformed Hamiltonian is
now given by

(3.4)

Equation (3.4) is a functional equality, i.e., the same dum-

my variable is used on both sides of the equation.
We can expand T, w, and E in powers of e:

T= g e"T„,
n=0

W= g 6 Wn+1k
n, k =0

(3.5)

BW„k
e"jw„k, hp j+e

k=0 r

=n g eK„k —h„
k=0

n —
1

g E"L„K k+mT„' h, (36a)
m=1 k=o

K= y En+kK

n, k =0

The double sums in Eq. (3.5) occur because e is used both
as a free small parameter, and as the adiabatic parameter.
Substituting Eq. (3.5) into Eq. (3.4), and using (3.1), we
obtain the recursion relations

initial transformation to action-angle variables has been
done, i.e., hp =hp(I, r). Hence, regardless of whether we
are doing iteration or perturbation, the first step of adia-
batic iteration, specified by Eq. (2.22), will be performed.
For systems with Hamiltonians of the form
H(q, p, R; (r)) =H—(q,p, r) (i.e., Hamiltonians with slowly
varying parameters) the first iteration yields

h(I, O, r)=hp(I, r)+eh, (I, O, r) . (3.7)

Before examining divergences in the adiabatic pertur-
bation theory, we take up a specific Hamiltonian and
compare the anholonomies computed using the perturba-
tion theory and the iterative method. The system under
consideration is the generalized harmonic oscillator,

H = ,'[X(r)q +—2Y(r)qp+Z(r)p ] . (3.8)

Neglecting for the moment condition (2.24), the first step
of iteration yields

H', (Ip, Op, r)=copIp+erupIp A(r)sin Op

This is exact, of course. Therefore, in Eq. (3.6a),
[w„k,hp] can be replaced by cop(I)(Bw„k/BO), with
ct)p=(Bhp/BI). The condition of smoothness, on the oth-
er hand, requires that BQ;(6 ao ) =0 for all n, where R s
are given in Eq. (2.22). Hence in Eq. (3.7) h&(+m)=0.
We also remark, in passing, that the lowest-order approx-
imation to Hannay's angle (the original anholonomy ' ) is
independent of whether ho depends on ~ or not. '

B. Iterative and perturbative methods applied
to the harmonic oscillator

n —1

T„=——g TL„" m=O
(3.6b) 8(r) . 8, )

2
"" (3.9)

n —
1

T„-'=—y L„
n m=0

(3.6c)

Equations (3.6) contain additional implicit e dependencies
in L„'s (and hence in T„'s), which come from the k ex-
pansions in Eq. (3.5). These need to be taken into ac-
count when computing any specific w„k. It should also
be noted that up to now no specific prescriptions were
given for choosing the K„k's that enter the right-hand
side of Eq. (3.6a). We use this freedom to choose K„k
such that the right-hand side of Eq. (3.6a) is free of secu-
larities. This means that K„k is set equal to the orbit
average of the other terms on the right-hand side of Eq.
(3.6a).

In what follows, we restrict ourselves to systems with
one degree of freedom (not counting the explicit r depen-
dence). The results can be easily transcribed to integrable
systems of many degrees of freedom away from reso-
nances, by simply adding indices on the variables of con-
jugate pairs, and performing summations where they are
required. In this paper we consider systems in which the

Here the terms multiplying e come from Go, and the
primes denote that the condition of parallel transport has
not yet been satisfied. Further, coo =XZ —Y,
A =1/(copZ)( YZ —ZY), and 8 =Z/Z —mp/cop. From
the condition of smoothness, A, 8, and all of their deriva-
tives vanish at r =+ ao. [We note that the term multiply-
ing sinOcosO in Eq. (32) of Ref. 6 should have the oppo-
site sign. This change should be carried through all sub-
sequent calculations. ) As a specific example we take
coo=const, and choose a path in parameter space such
that X+Z =const—=a. With this, X =

—,'(a+b cosa),
Y =(b/2)sina, Z =

—,'(a bcosa), an—d a =2copcoshP,
b =2copsinhP. We have thus expressed X, Y, and Z in
terms of cop and two angles a and P; of the three, only a is
time dependent. Geometrically, the cycle in parameter
space is a circle on a sheet of a hyperboloid with constant
transverse and conjugate axes.

Perturbation theory has already been applied to Eq.
{3.9) to 0 (e ). The computations are straightforward, if
tedious, and to 0 (e ) we obtain

K =hp+eK, p+e (K, , +K~ p)+e (K, 2+K2, +K3 p)+O(e )

=copI+ —,'ecopIA —
—,'e cupI( A +8 )+ —,', e I[(AB —3AB)+2copA ( A +8 )]+O(e ) . (3.10)
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I is the transformed action. The total shift in 0 due to
the change of parameters can now be denoted as
58=1/e f + dr(aK/aI —cop), yielding

do — d~ 1MOA —16~0 A2+B2

+ —,', p~[( AB —3AB)+2cppA ( A +B )])

(3.11)

For the path we have chosen

ing parallel transport, and second, we redefine the origin
of the angle variable so that Eq. (2.24} is satisfied:

I', = I d epIp(ep)

Hi
d00 1 ——A cos 2 00+vo

2&c00 0 2

+B sin[2(ep+vp)]t

68= n(1——.coshP) — d r aesinh P + . z

8Q)0 —oo

e sinh P coshP ++ dra
166)o CO

(3.12)

H,
COOR

(3.14)

where R =[1—(e /4)( A +B )]'~2. To find the generat-
ing function Gi(ep, Ii, r), we use aGi/aep=Ip(ep, I', , r).
With Eq. (3.14),

As we see, this result makes no distinction between
geometric and dynamical contributions to 68. A clarify-
ing remark is in order here. We have defined, and corn-
puted, Hannay's angle and its corrections in terms of the
transformed angle variable 0. Because of the condition of
smoothness of h, however, the result is the same as the
shift in the original angle variable ep, given in Eq. (3.9).
At r =+ 00, H'i (Ip }=I(.'(I )~-, , and the canonical

0

transformation (Ip, ep)~(I, O) reduces to the identity
transformation. This is most easily seen from the fact
that w„z, and hence T, does not contain any quantities
that are integrated in r [T(r) depends only on A, B, and
their derivatives at r]. Then setting A, B, and their
derivatives equal to zero simply produces the identity
transformation. So the definitions of (Ip, ep) and (I,e)
coincide at r=+~, and the total accumulated shift in 8
is the same as the one in 00. This is, of course, not true
for the accumulated shift up to an arbitrary time.

To apply the iterative method to Eq. (3.9), we first im-

plement the condition given by Eq. (2.24). To this end we
perforin a canonical transformation (Ip, ep)~(Ip, ep),
where Ip=Ip, Op=Op —vp, and vp= ,'zopf

' —„dr'A(r').
Equation (3.9) becomes

E
Hi (Ip ep r) =p)pIp 1 I A cos[2(ep+ vp)]

+B sin[2(ep+vp)]I

(3.13)

The expression above could have been obtained, of
course, in one step from Eq. (3.8). It constitutes the first
iteration. We see now that if we stopped at this iteration,
AI9d =0, and

Ct)0
60 = dr A (r)= rr(1 —coshP)—

2 Qo

(subscripts d and g stand for "dynamical" and
"geometric" parts of be). In order to verify agreement
with higher-order terms from perturbation theory, we
need to perform additional iterations.

We proceed with the second iteration again in two
steps: first we transform {Ip,ep)~(I'i, e', ) without apply-

6', (eii,I'„r)=I', tan
R {r)

EA (1)
2

X tan[Op+ vp(r ) ]

eB (r)
2

(3.15)

=tan — 1+ tan(0 +v )—1 eA eB
R 2 0 0

(3.16)

To obtain aGi/ar,
,

we differentiate Eq. (3.15)
0 1' 1'

with respect to r, and invert Eq. (3.16). The first step of
the second iteration then produces

aG', (e„I'„r)
Hi(I i, e'„r)=Hi(I', ,r)+e

ar e,(e', , I', , ~&
'

(3.17)

where Hi(Ii, r)=pipRI', . Rather than displaying explic-
itly the second term on the right, we proceed immediately
with the second step, (I'„8', )~(I„O,), where I, =I', and

6)
e, =e', f-—

eo( el, I l, ~)

The result is

H2(Ii, ei, r) =pipRIi +eIi [Cisin[2(ei+vi)]

+ Cocos[2(0, +v, )]), (3.18)

where

1 ~, 1 AB B
v, (r) =— dr' ——+(1+A/2)vp

2R 4( I+ A /2) 2

vpR vQ 2

+ +(1+A /2) 4(1+ A /2)

We also write 8'] as a function of I'„00, and ~ by using
0', = [aG', (O, , I', , r)]/aI'„

ei(eii, I', , r)
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and C, and C2 are functions of ~ which need not concern
us at present. If we stop at this iteration, we obtain
b.8d =1/e j+"drcoo(R —1} and b,8 =vi(+ cc ). Ex-

panding these results to O(e ) [which is O(e } for the
Hamiltonian], for our specific path in parameter space,

although we do not present the explicit results, that if
condition (2.24) had not been satisfied, then 68 would
have remained the same, but 60d and 68g would have
been different.

C. Divergences in perturbation theory

esinh P f d l
8COp

E sinh P coshP +

16')p
oo

(3.19a) We now turn to the study of divergences in high-order
terms of perturbation theory. The equations we use are
given by (3.6a) —(3.6c), and the Hamiltonian is given in
Eq. (3.7). We introduce the notation h, =h, —(h, )s.
Then,

(3.19b)

We see that 58d+68g is in agreement with the result
of the perturbation theory. Again we comment on the
question of canonical variables. The transformation
(I0,80)~(I„8,} consists of three canonical transforma-
tions, one of which reduces to the identity transformation
at r=+ao (smoothness of h) [(I0,80)~(I', , 8', )], and
two which do not for the angle variable, but do for the
action variable [(It,80)-+(I0,8o) and (I', , 8', )~(I, , 8, )].
Then the shift in 80 at r=+ cc (Hannay's angle) is given

by the accumulated shift in 8, (dynamical part), corrected
for the change in the origin with respect to which t9, is
measured (geometric part}. (On the basis of this one
might argue that the phase shift computed by perturba-
tion theory is entirely dynamical. ) Equations (3.19a) and
(3.19b) are analogous to the explicit calculations in Ref. 7
where the quantum-mechanical version of the adiabatic
iteration was applied to the spin- —,

' system. We also note,
I

h, (I,8,r}=g C&(I, r)exp(i81) .
leap

(3.20)

(In parallel transport (h, )&=0. )

Let us first examine w, k. We set Ki o
= (h i )g. From

Eq. (3.6a) then,

1
wi p= fd8hi

COp

(3.21)

1 Bw i 0 1 ~
B(h 1 /~0)

w = — d8 ' = d81, 1
COp O'T cop O'T

(3.22)

Again we can choose the function of I and R, such that
(c)w, , /c)r)s=0. Then K, 2=0. Repeating the pro-
cedure, we obtain

This expression is determined up to a function of I and
R . Let us choose this function so that (c)wi 0/c)r)a=0.
Then E) ) =0,

W = k+~81)k+i

COp

t)(h i /coo)

dr

fdk+18
Q)p

(3.23)

lim supk~ oo

c)"h, (r )

g k

1/k

(3.24)

where R is the radius of convergence of the Taylor series
(distance to the nearest singularity). For simplicity, in
what follows, we assume that the sequence

I [~(1/k!)c),"hi(ro)~]' "j has only one limit point (and so
we drop sup). Thus we have ~dkh, (r, )~~klR " as
k~ ~. For finite R, R is subdominant to k!, and Eq.

From the condition of smoothness of h, h, (+DO)=0,
h, (+~ ) =0, and coo(+ cc ) is finite; hence h, /coo(+ ~ )

=0. If we take these conditions to imply analyticity of
h„coo, and h, /coo in a strip about the real r axis, then

w, k as given by Eq. (3.23} is divergent. To see this, we

first consider the case when cop is time independent. For
any ~p on the real axis, h

&
can be expanded in a conver-

gent Taylor series about vp. Then we can use the
Cauchy-Hadamard formula (see, for instance, Ref. 17),
which yields

I

(3.23) gives the asymptotic behavior for e"wi k as

E' w)k 6 k!, (3.25)

for all finite r. The factors from the 0 integrations are
also of the form m "(m is an integer), and therefore sub-
dominant to k!.

Three things should be noticed here. First, if the
singularities of h, are all at a finite distance from ~=0,
then the factor R guarantees that w, k is zero at
~=+ ao. Second, we emphasize the general nature of the
result (3.25). Any singularity of h i in the finite domain of
the complex r plane (and not on the real axis) leads to
this form for w& k (poles or isolated essential singularities,
branch points, natural boundaries, etc.). Third, we keep
in mind that the divergence in Eq. (3.25) really goes as
(e/mR) k!, where m is the integer of the term in Eq.
(3.20) for which mR is smallest. Thus the series starts to
diverge after mR/e terms, rather than after 1/e terms.
A similar comment also applies to the discussions that
follow.

Returning to the case when cup is a function of time, we
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write the integrand in Eq. (3.23) in the form

c! hi
k+1 g k

COp

Bpip 1 i} h i

k+2 g k —1
Ct)p

+ 0 ~ ~

BC00

87

k

h, . (3.26)
1

Ct)p

„+i, (n +k)!
Wnk

1 n!
(3.27)

for some region of finite ~. (If h, and cop have other types
of singularities in the complex ~ plane, then the analysis
is more complicated. A brief mention of some possibili-
ties is made in Appendix B.)

As can be seen from this expression, the divergence
occurs because of the second index k on w„k, i.e., be-
cause of the compounding of the ~ derivatives on func-
tions containing singularities in the complex ~ plane. It
also follows that for a given power of e, N, N »1, the
most divergent term is the one for which k »n. Thus
w„k -Ã is the most divergent multiplier of e . This also
shows that w, ~ is of the order of the most divergent
term multiplying e (hence, to see the full divergence, one
needs to calculate only w, i, to high order). These results
agree with Berry's study of the spin- —,

' case, where he took
the zeroth-order function to have only simple poles. He
found the divergence to behave as m!E™.

IV. DIVERGENCE OF THK ITERATIVE PROCEDURE

In this section we examine the divergence of the
method of adiabatic iteration. An example is provided in
Ref. 7 for the Hamiltonian H =B(r).o, where e are the
Pauli spin matrices [note that the right-hand side of Eq.
(47) in Ref. 7 should be multiplied by (

—i)]. Another ex-

If both h, and cop have singularities in the finite ~ plane,
then the first few and the last few terms of Eq. (3.26) are
dominant, behaving as k!. Then, unless there is a cancel-
lation to 0(l/k!) between leading order terms for all
finite r, Eq. (3.26) will still have the dominant behavior of
k. for some regions of finite ~. Whereas the possibility of
cancellation for all ~ cannot be ruled out a priori, we con-
sider this a pathological case. Thus, in general, even
when cop is time dependent, e w& k will have the dom-
inant behavior given by Eq. (3.25), at least for some re-
gion of finite ~.

As a word of caution, we remark that simply eliminat-
ing the singularities of cop and h, in the complex ~ plane
does not necessarily remove the divergence. We take, for
example, cop= 1 and h i

o- exp( —r ), both of which are en-
tire functions with all derivatives vanishing at ~=Woo.
Then it is easy to show, by considering, for example, the
Fourier transform of w, k, that 6' w& k

E' k!!, which is
divergent.

Next, we give the dominant behavior of w„k for arbi-
trary n and k, satisfying n »1 and k »1, for the case
when the only singularities of h

&
and cop are finite-order

poles (note that we do not require that k ))n). The steps
of the derivation are outlined in Appendix B. The result
1s

H] (Ip Op r) =Hi p(Ip r)+ EHi (Iip, 8p, i) (4. 1)

Here H& p=Hp and

(eo, Io, ~)

The second index on H is introduced to denote powers of
e. Equation (4.1) is the same as Eq. (3.7) in a slightly
changed notation.

The next iteration, which, for clarity in notation, we
denote by 1, consists of bringing H, into a canonical
form (independent of the angle variables) by neglecting,
at first, the explicit dependencies on ~. Using the canoni-
cal transformation operators from Sec. III, we write the
transformed Hamiltonian as

K "=r" (e)H (4.2)

But H, , T, and w do in fact depend on ~, and hence the
correct transformed Hamiltonian H2 is given by Eq. (3.4),

(4.3}

The superscripts indicate the order of iteration. We note
carefully that the small parameter arising from
differentiating w"' with respect to w is e, not e. It can
therefore be taken out of the integral. As stipulated in
the method of adiabatic iteration, we need to find a gen-
erating function (or equivalently T'" and w"') which
satisfies Eq. (4.2), and then substitute it in Eq. (4.3). We
solve for w" ' and T' "by using perturbation theory,

ample is given in Appendix A, where the iteration is ap-
plied to the Hamiltonian given by Eq. (3.8), with 2qp re-

placed by (qp +pq). The unitary operator and the canon-
ical transformation method yield the same results, which,
furthermore, are analogous to the example studied in Ref.
7.

In our approach, we use the time-independent version
of Lie perturbation theory to find the generating function
for each iteration. The advantage of this method is that
it offers a straightforward computational prescription for

computing all quantities after many iterations, for any
Hamiltonian. In addition, we do not insist on parallel
transport. At r=+ ~ (and H, , =0}the transformation
operator T will reduce to the identity operator, in analo-

gy with adiabatic perturbation theory. The first task,
then, to which we now turn, is to obtain an equation
governing the vth term of the expansion after the ath
iteration (we denote the subscripts and superscripts by
Greek indices to distinguish them from the quantities in
adiabatic perturbation theory). Once we have the re-
quired expressions we can determine how the divergence
occurs. We assume that the first iteration has been per-
formed, and the Hamiltonian H, (notation of Sec. II) ob-

tained,
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T(1)—y &vT(1)
v

v=p

w"'= e"w"'—Z E' Wv+1
v=p

(4.4)

BW2
(2) —2(y{ (2) g (1)

) (I (2)g (2) + T(2) I('(1) )
—1

~0
gg 2 2 1 1 1 1

—2(g (2) I( (1)
) g (2) —It (1) (2) 0

(4.1 lc)
~(l ) y vt( (1)

v
v=p

In contrast to Eq. (3.5), only single sums occur in w"'
and E("; e multiplying t is not expanded. Substituting
Eq. (4.4) into Eq. (4.2) and using Eq. (3.3), we obtain

gw(l)

etc. In Eq. (4.11c), the second term in parentheses on the
right-hand side is zero because w'1 ' =0. Hence the gen-
eral solution for v~X is w' '=0, K'„'=K"' T' '=0
(but T02' =1). The observations given in this paragraph
will be very useful shortly.

We now determine Q'„" explicitly. Substituting the ex-
—1

pansions for w"', T'", and T"' in Eq. (4.9}, and per-
forming the integration in e yields

v —1

@=1
(4.5) Q(1)—

v —2 v —2

X X
Compared to Eq. (3.6a), Eq. (4.5) does not contain deriva-
tives with respect to ~, and all the quantities have only
one index v, which has been explicitly solved for (the su-
perscripts have no relation to the power of e}.

Suppose the set of equations (4.5) has been solved and
substituted into Eq. (4.3) [w'" as calculated from Eq.
(4.5) will in general converge ]. We bring H2 into the
canonical form by neglecting the explicit r dependences:

(4.6)

which yields the analog of Eq. (4.5),

ew"'

p, '=p p" =p
p'+p" ~ v —2

(4.12}

By requiring that for nonzero values the subscript of w'"
is greater than 1 [see Eq. (4.4)], we obtain the condition
that Q'„"=0 for v~ 1. From the discussion in the
preceding paragraph, this leads to T',2' =0, wp, ' =0.

We can continue the process for subsequent iterations.
The general result for ath iteration is

gW(a)
v(~(a) ~(a —1)

)P g V V

V Q

@=1
v —1

@=1
(4.7)

v —a—Q" "—g T" Q' (4.13a)

where

&v(It (1) +Q(1) )
v=p

(4.8)

'We have used the fact that H2 p H1 p Hp ~ H2 is given
by

with

v —2 V 2
Q(a —1) — y g T(a

P„'=p „"=p v p 1
p'+p" & v —2

(a-1)
~ T( —1) ~w--)-~'-~"

P dr
(4.13b)

Q(1)—~T(1) d~iT(1) W
(1)

p 8'7
(4 9) and

We now notice that if Q(,"=0 for v N, then Eq. (4.7)
reads

Q'„"=0 for v~a —1,
w', '=0 for v~a —1 .

(4.13c)

v —1

p=1

(2)Bwp
CO' ao

=0~w =0 (4.1 la)

which can be easily solved (as K' "is independent of Q):

An application of the condition (4.13c) has been used to
restrict sums appearing in (4.13a). Similarly, in Eq.
(4.13b) the terms in the sum with (u' and p,"%0 and (M' or
((2" (a—1 vanish. For a= 1 Eq. (4.13}should be supple-
mented with Q', '=H, „Q' '=0 for y ~2, IC0( '=H, 0,
Ep ' =0 for P~ l.

As an example, we can apply the procedure described
above to the Hamiltonian of Eq. (3.9). After two itera-
tions, to 0 (e ),

It (2) P(2) + I P(2) A ( ~2 P(2) ( A 2+B2)

aw', "
1 E(2) K(1) E(2) K(1) w(2) 0~o (4.11b)

+ ,', e I3 '[( AB —AB—)+co0A(A +B )]+O(e ) .

(4.14)
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The third iteration does not produce corrections to the
Hamiltonian to this order. It is clear from this expres-
sion that b, 8(3 ' is the same as 68 given by Eq. (3.12}. The
shifts accumulated up to an arbitrary time, however, are
not the same. This is due to the fact that 03 ' and 8 are
different variables which coincide only at a=+Do [see
comment following Eq. (2.12)].

We now turn to the question of divergences of w' '.

First we examine the divergence in the lowest nonvanish-
ing order of e in each iteration, v=a. From Eq. (4.13b}
we get

(a —1)

leading to

1

87a —1
(4.15)

Bw
co =(z(K' ' —K' ")—
ciao

—Q

(a —1)a (}wa—)

(}7.a —1
(4.16)

COp
(}8 a —1 Br

This is easily solved, yielding

() ( —1)a Jd (} 1
Wa

o)o (}1 coo
H] ] e

(4.17}

(4.18)

But this expression is the same as Eq. (3.23) (H, , =h) ).
Hence, for a &&1, e 'w' ' -e a!.

In general, we consider the case w'+&, when the only
singularities of H, , and cop in the complex ~ plane are
finite-order poles. For a»1 and P»1, we obtain the
asymptotic relation

a+P —
1 (a) a+P (&+P}.

W a+@ E (4.19)

for some region of finite v. The steps of the derivation
are outlined in Appendix C.

Therefore, for a fixed power of e, N, X&&1, the most
divergent term has a»}()( (i.e., the divergence increases
with the increasing order of iteration), and the divergence
occurs as e K. We also see that w' ', which is the lowest
nonvanishing term after the ath iteration, is of the order
of the most divergent terms. This divergence, e 1P., has
already been seen in perturbation theory. It is also in
agreement with the results of the spin- —,

' problem from
Ref. 7. In that case, however, the only explicit results
were given, in our notation, for P=O (see also Appendix
A).

This gives w', "= —I /coo Jd8H», where H» =H»
—(H) ) )(). Choosing the constant of integration such
that (I}w()"/Br)()=0, for a=2 we get K'2 '=K'2". Re-
peating the procedure, K' '=K' ", and Eq. (4.16) be-
comes
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APPENDIX A

The Hamiltonian

H =
—,([X(~)q + Y(r)(qp+pq)+Z(r)p ], (Al)

where [q,p]=i, can be written in terms of generators of
SO(2, 1),

term, for a ))1, behaved as e u!. In perturbation theory,
on the other hand, for a given power of e, N, N ))1, the
most divergent term was e %. Both of these occurrences
were the result of taking a (or N} derivatives of H, , (or
h) ) with respect to r. It can also be seen that the details
of the path in parameter space are not important, as long
as (oo and H, , (or h, ) possess singularities in the finite
domain of the complex ~ plane. Thus the divergence is
"universal. " Though this paper has not dealt with the
question, we expect these results to remain valid for the
quantum-mechanical versions of the iterative and pertur-
bative methods (see Appendix A for an example). Anoth-
er remark is in order: While we have obtained the results
in Secs. III and IV in order to understand the behavior of
corrections to Hannay's angle, there is nothing specific to
that problem in the derivations. Hence the divergences
obtained are to be seen as germane properties of adiabatic
perturbation theory, or adiabatic iteration, applied to
Hamiltonians given by Eq. (3.7), for integrable systems
away from resonances. They occur whenever hp or h]
have singularities in the finite domain of the complex ~
plane.

Finally, on the physical significance of divergences. It
was suggested in Ref. 7 that the divergences are linked to
nonadiabatic effects of transitions between eigenstates of
the Hamiltonian. This proposal is reinforced by a study
of WKB methods applied to harmonic-oscillator-like
problems in one dimension. ' ' Similarly, transitions
seem to occur under conditions closely parallel to those
for divergences. ' We caution, however, against the
inference that the transitions and the divergences in the
iterative and perturbative methods are connected in a
universal way. In Appendix D we present an example in
which the evolving state returns at ~= + ~ exactly to the
initial state, yet the iteration and perturbation procedures
seem to diverge.

V. CONCLUSION H() =(ro);g„TJ . (A2)

We have seen how a divergence occurs in the iterative
and perturbative approaches for calculating corrections
to Hannay's angle. For the method of iteration, we have
expanded the ath step in powers of e; the most divergent

Here T, = —
—,'(q —p ), Tq =

—,(qp +pq}
+p~), x =Z —X, y = —2Y, z =Z+X, ro:(xo po zo)
and
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1 0 0
g= 0 1 0

0 0 —I

The summation over repeated indices, except k, is as-
sumed. T1 2 3 satisfy

We have taken pp=2. Equation (A7a} is analogous to Eq.
(47) in Ref. 7. If gp has poles in the complex r plane, then

gk =(i/2)"e"d"gp/dr diverges as e"k!. Also, replacing
Uk by 1 is justified for k &1/e. The divergence of gk
leads to the divergence of yk, since

[T;,T )=ie,j g „T„, (A3) yk= — dwIm k k N T3 N (A8)

Hk ~H»+ i
= ("k+ i ) g / T/ (A4)

First we find a recursion relation relating rk+, and rk.
Uk of Eqs. (2.7) is given by

r

and we assume that T3 is diagonal.
The path in parameter space is chosen as in Sec. III

(zp —x p
—y p

—=pp=const, and X+Z =const). The kth
iteration is given by

This formula is valid in the approximation pk=2 Vk.
We see that the divergence happens in the off-diagonal
elements in Eq. (2.8}.

The same divergence occurs in the sequence of canoni-
cal transformations described in Sec. II. The Hamiltoni-
an is given by Eqs. (3.8) and (3.13),

Hi (Ip Hp) =Ip( 1 E[ A pcos[2(8p+ vp)]

d~'
U/,

= Texp I'T„g„/— [nil»(T')]/ (A5) +Bpsin[2(8p+vp)]) ), (A9)

where Q~~k is the velocity of parallel transport for the kth
iteration,

+Ilk kyk yk k'xk k zkxk'xkyk ykxk
Pk

and we assume that the parameters change in the manner
described in Sec. III. With respect to Eq. (3.13),
Ap = A /2, Bp =B/2, and rap has been set equal to 1. The
subsequent iteration produces, Eq. (3.18),

H/(I, , 8„r)=I,IR, —@[A,cos2(8, +v, )

(A6) +B,sin2(8, +v, )]] . (A 10)

We can now substitute these expressions into Eq. (2.8)
and get the desired recursion relations. We proceed,
however, only to the lowest expected order in e, and set
U„=l. Defining (»=xk+iyk, with Ek=+p», 0 [in a
three-dimensional representation of the SO(2, 1) algebra],
we obtain

The changes from Eq. (3.18) include the addition of a
subscript l on R and the renaming of C, and C2 to A1
and 8, . The iteration can be repeated, yielding

H„,(I», 8», )=Ik(R„—et A„cos[2(8»+ k)]

lE
kk+/ kk2

Zk+1 Pk

(A7a)

(A7b) with the recursion relations

+Bk sin[2(8» +vk ) ] ) ),
(Al 1)

Rk =[R„,—e (Ak i+Bk i )]'

1 Rk Rk 1+ Ak8 = ——ek +
2 Rk Rk 1+ Ak

+2 Vk —18k —
1

Rk —1+ ~k —1

(A12a)

(A12b)

l
ek

(Rk i+ Ak -i»k -i-
(Rk i+ Ak i)R»

Bk —i vk —l(Rk —i + Ak —l ) vk —1Bk i &k-1Rk+ +
k Rk Rk(Rk —I+ Ak —i) Rk —i+ Ak —i

(A12c)

«k- + A» »k-
Vk= E

2 (Rk, + Ak, )R»

k —i vk —1(Rk —i+ Ak —i +k —]Bk —
1+ + +

k Rk(Rk —i+ Ak —i) Rk —i+ Ak —i

(A12d)

We attempt an asymptotic simplification with Rk= 1,
vk, A», B» && 1. Equations (A12a) —(A12c) reduce to

I

For Eq. (A12d), we need to keep one higher-order term,
the reason for which will become apparent shortly,

Ak —
—,
' eBk

(A13a)

(A13b)

(A13c)

E
+k +k —

1 Bk —1+ ~ k —1Bk —
12 2

(A13d)

Defining C„=A» iB», Eqs. (A—13b) and (A13c) become

Ck 2 ~~ck —1
(A14)
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The change in Hannay's angle due to the kth iteration is We now turn to w„k. From (3.6a),

~~(k) J dr(vk vk —1)

oo

oo

+f(n, k),' ae a~
(A15)

where

(83a)

Because of the assumed smoothness of the Hamiltonian
Ak(+~ )=Bk(+~ )=0, and

oo

~~(k) dr( ~k —1Bk —1 ~k —
1 k —1)4

= —f d r Im(Ck )Ck 1) .
4

(A16)

If Co(r) has poles, Ck, as given by Eq. (A14), diverges as
e"k! and the asymptotic approximation on Eq. (A12) is
consistent for k ~1/e. 58[k] then also diverges in a
manner completely analogous to yk [see Eq. (AS)].

APPENDIX B

For future reference, as well as for the present calcula-
tion, we now write the explicit form for T„:„obtained
by iterating (3.6c),

—1
Tn —)

ml m,
n —1)m]) )m

(n —1)m m
],

L (w„) ~( (()

XL(w ( ) L(w () .

(B2)

Equation (B2) corresponds to the power of e of
n —2 —m +m —m + . —m+m+l + +1 =n

1 1 2 r r 1 r—2+l, +l2+ +l„. To O(e" ') for T„,h), then
l&=l2= =lr=O. Therefore the system of equations
(Bl) is closed for w„o, i.e., w„o does not depend on w
for k 1. In addition, there are no time derivatives in
Eq. (B1). Hence, for the computation of w„o, r can be
treated as constant. From the assumed form of h, [Eq.
(3.20) and the comment above it], we see that as far as the
v. dependence is concerned w„p-h", '. w„p may also
contain cop to a power less than or of the order of n; this,
however, is not relevant for the argument that follows.
(The order and the location of the singularities of h, and
cop in ~ should be independent of I so as to insure that the
derivatives with respect to I do not affect the singular
points. This is, however, what is realized if the parame-
ters vary in time in a prescribed fashion, independent of
the value of the action variable. )

We determine the dominant behavior of m„& for arbi-
trary n and k. First we look at w„p. For n =1, w& p is
given by Eq. (3.21). As far as the explicit time depen-
dence is concerned, w, o-h) /coo. For n &2, we set the
following preliminaries: L„K k

=L ( w„& )K
which corresponds to a power of e of n —m —I
+l+m+k =n —1+i+k. Then to O(e" ') (which is
the order of w„o) we set l =k =0. So

BN„p n —1

coo
' =nK„o QL(w—„o)K o+ T„,h, . (Bl)

m=1

( —1)"
dke 8 1

W Jd8
COp 7 COp

COpLUn p

' j —
1

( 1)~
Jd~g

8 1

6)p 87 coo
f(n, k —j+I) .

(B4)

Before we proceed further we establish the following
useful result: All terms in w„k contain exactly k deriva-
tives with respect to r. Here the derivatives are taken of
h, , or of some power of h, and their number does not
specify how they are distributed [e.g. , h, B„h, and (B,h, )

both contain two derivatives]. The proposition above is
valid under the following condition: As ~„k's are given
in terms of indefinite integrals over 0, we choose the con-
stant of integration so that it has the same number of
derivatives as the integrated part. Of course, an arbitrary
constant of integration would not affect the end physical
result; a term canceling it would appear at a subsequent
step. However, the systematics of relating the second in-
dex on w„& with the number of derivatives would be lost.
The simplest way to show the relation between k and the
number of derivatives is by a variant of the induction
principle on n (first index of w„k ). This we call induction
1, in contrast to induction 2 to be introduced later.

For n =1 we have seen that m, k contains k deriva-
tives, for all k. Similarly, E~ k is either zero or it also
contains k derivatives for all k (K, k

= ( w) k ) ). Next we
assume that for all n ~ r, m„k and K„k have k derivatives
for all k (or K„k is zero). For n =r + 1 we then have

Bwr+), k Bwi+1, k —I
o)o

' = — ' +(r+1)K + ka7.

r k

L ( w m, ( )Km(+ Ti k h 1—,
m =1 l, l'=0

I+I'=k

(B5)

The last two terms in this expression contain k deriva-
tives by assumption [see Eq. (B2)]. (The taking of the
Poisson bracket does not alter the number of derivatives. )

I%'„+& k, on the other hand, is given by the orbit average
of the other terms on the right-hand side of Eq. (B5).

n —1 k

f(n, k)=nK„k —g Q L(w„()K (, +T„', kh) .
m =1 I, I'=p

I + I'= k

(B3b)

In the last term of Eq. (83b), we have added the index k
on T„'„where k =1,+ + l, and l1, . . . , l„are given
in Eq. (82). We can iterate Eq. (B3a) in k for fixed n.
The result is
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for which the hypothesis of induction 1 does not hold. ]
For k = 1 we have

~wr+ l, l ~wr+1, 0
coo

' = — ' +(r+1)K„+i i+g(r, 1),
1

(86a)

where g(n —l, k) =f (n, k) nK„—&. By hypothesis of in-

duction 1 g(r, 1) has one derivative, and from the discus-
sion following Eq. (82) w„+i 0 has none. Hence K„+»
and w, +, , both have one derivative. Next we assume
that for k =1, w„+, , and K„+, &

contain 1 deri~ati~es.
Then k =I +1 gives

=1 aw +1,1
w, +i,I+i= d// —

&

' +(r+1}K,+i, i+i
Ct)p 81

+g (r, l +1) (86b)

By hypothesis of induction 1 g(r, 1+1) contains 1+1
derivatives, and by hypothesis of induction 2 w, +» con-
tains /. Hence w„+, &+, and K, +, &+, [orbit average of
the other terms on the right-hand side of Eq. (86b)] both
contain /+1 derivatives. Therefore induction 2 gives
that m„+& I, , contains k —1 derivatives. This result sub-
stituted into Eq. (85) immediately completes the first in-
duction. Hence the assertion that all terms in m„ I, con-
tain exactly k derivatives holds.

We return to the divergence of m„z, and examine the
case n »1, k » l. [The two limiting cases are simple:
For n finite and k »1, Eq. (3.24) and the discussion fol-
lowing Eq. (3.26) apply and e"+" 'w„ I,

-e"+" 'k!; for
k finite and n »1, e"+" 'w „-(n+ k)! /n!e"+"
which does not diverge for sufficiently small e.] First, we
limit ourselves to the case where the only singularities of
h, and coo in the complex r plane are poles of finite order.
Then the most divergent terms in m„ I, are the ones which
take the highest derivative of the highest power of hi.
(This can be seen most easily by writing h, and coo in a
partial fraction expansion. ) From the discussion in the
preceding paragraph, and from Eq. (84}, the highest
derivative is the kth one, and it can act on the highest
power of h, , which is n —1. This is manifest in the 6rst
term in Eq. (84), but it also appears in the reinaining
terms. In f(n, k —j+1), the highest derivative is the
(k —j+1)th, and it acts on h, by choosing the indices
as follows m =1, 1 =k —j+1, 1'=0 (or 1'=k —j+1,
1 =0) for the sum term off (n, k —j+1) [see Eq. (83b)],
and I

&

=k —j + 1, /2, . . .=0 and m . m =0 for the
last term [see Eq. (82)]. [For this case, then,
T„,z J. +, =1/(n —1)L(w„, I, J. +, ).] Hence the
remaining terms of Eq. (84) contain

Therefore it has the same number of derivatives as those
terms. It remains to see how many derivatives

B„m„+, I, , contains. This is most easily established by
doing an induction in k (induction 2). [Equation (84)
does not help because of terms

Ic —1

g ( —1)jcoo ' f d 8(8~0 ') 'K„+, i

g- f(n, k 1+1} aj-'[(a"-J+'hi ')/(jg~ +']
a~j-' a~~-'

(n +k)!
nt 1 (87a)

Similarly,

8 1 1 ~ w, o (n+k)! h„
& +p ' eo v~

(87b)

We see that ~0 raised to some power comparable to n

does not acct this result [see discussion following Eq.
(3.26)]. Therefore, including the explicit e dependence,
the asymptotic form of m„ I, is

„(n +k)!
W„A, 6'

7 n!
(88)

We briefly comment on the case when h, and coo pos-
sess singularities other than poles. If h, and ~0 have, in
addition to poles, branch points at which the functions do
not tend to infinity [e.g., sin(r —v~)' ], then Eq. (88)
very likely still holds. The other cases are less clear, but
one may conjecture the following: If all singularities of
h& and coo are branch points at which the functions do
not blow up, then 8,"h", ' diverges more slowly than k!,
for k »1, n »1, and k not much greater than n (and
then the contributions of other terms in w„& should be
studied). On the other hand, if h i or coo have at least one
essential singularity, or a branch point at which the func-
tions blow up, or a sequence of nonisolated poles, then
the divergence of 8,"h", ' is more rapid than k!, for
n »1, k »1, and k not much greater than n (and this is
still the most divergent term in w„ I, ). (The part of this
conjecture pertaining to 8,"h

i
' can easily be verified in

particular cases by using, for example, the symbolic ma-
nipulation routine MAcsYMA. )

APPENDIX C

~~(a—1)~+~-i
a+P —1 Bv.

We write Eq. (4.13a) as

(Cl)

(a)Bw +p a+p Bw +p
coo = — +F(a, a+/3),

(C2a}

We consider to'+&. First we look for the most diver-
gent term in Q'+ ". In Eq. (4.13b), all the terms contain
8/B~ acting on w "(which is multiplied by a combina-
tion of other terms also containing w' "). Of these, the
most divergent is the one which takes the derivative of
the highest previous derivative of H, , As to the role of
the ?"s, from the general expression following Eq. (3.3)
[or even directly froin equations (3.6b) and (3.6c)], we see
that for any smooth function h of I and 8, T„' ' or T„' '

cannot be more divergent than m„' '. Thus
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where

F(a,a+P)= (a+13)(&' 'p &—' p")

APPENDIX D

We consider the harmonic oscillator with slowly vary-
ing frequency,

H =
—,'[p +co (~}q ] . (D 1 }

P gW{a—1)
JM (a) -1 p —1

Ta+P —p
I.—-a I"

(C2b)

We use Eq. (C2a) to obtain w'+'p in terms of w's from
previous iterations,

'a —1

( ) ( —1) '«+» rd (g-5 1 (()
wa+p f d 8 coowp+i

For this Harniltonian, there is no zeroth-order contribu-
tion to 60. For e finite, however, 50 is nonzero. The
exact transition amplitudes between an initial state and a
final state have been calculated for (Dl), ' in terms of a
function p which is given as a solution of a differential
equation. Thus, if at ~= —~ the system is in the ground
state of H, then the probability of being in state

~
m ) at

w=+ ~ is

a —i
( 1)a—y+(

( +p)
F00 (p+ y+ 1)

'a —y
—(

xfd- e-' '
OTo)p'

mt cosh5 —1
Po =

2 [(tn/2)(] cosh5+1

' m/2
2

cosh5+1

' 1/2

for m even

XF(y+1,P+y+1) . (C3) =0 for m odd . (D2)

a+ p —i (a) a+ p (a+A)'
Wa+P E

I
(C4)

As in the case of perturbation theory, we did not have to
take into account the dependence of w&'+, on powers of
cop. Similarly, the remarks concerning other types of
singularities of H1, and ~p can be taken over from Ap-
pendix B.

In a manner completely analogous to Appendix 8, we can
now perform two inductions (first in P, and then in a),
and conclude that all terms in w' +)& contain exactly a —1

derivatives with respect to ~, acting on some power of
H1 1 or ct)p.

We now limit ourselves again to the case when Hi i

and ~p have only finite-order poles in the complex plane,
and deduce the divergence of w', +)p. The dominant con-
tributions come from the highest derivative, (a —1)th,
acting on the highest power of H», which is P (by con-
struction, the calculation of w", +& freezes the time depen-
dence, and the powers of e come simply from taking
higher powers of H, i ). While the function
F(y+ I,P+y+I) in Eq. (C3) is more tedious to analyze
than the corresponding function f in Eq. (B4), the con-
siderations above show that the first term in Eq. (C3) con-
tains the full divergence of w' +&. Hence, for a )& 1 and
P»1,

We assume co(+ oo ) = 1. Then 5 is defined by

r~+ oo, p(r)~+[cosh5+sinh5 sin(2y+q))],

where p satisfies

1
e p+a) (y)p ——=0,

p'
(D4)

2 1 23"
co =—(1—happ),p'

(D5}

and take a solution for p which satisfies the required con-
ditions, for example, p=(r +2)i(r + I). From Eq.
(D5), io, which gives this p, is

with p( —oo ) =1. We are free to choose any combination
of signs in Eq. (D3), and q) is a real phase constant.
Equation (D4) can be shown to be equivalent to the equa-
tions of motion for H given by Eq. (Dl).i

Therefore the question of the example we are after can
be posed as follows: Can we find co(r }, satisfying
co(k oo ) =1, 8",co(+ oo ) =0 Vn, and where to is not an en-
tire function, such that if p( —oo )=1, then p(+ oo)=1.
The condition p(+ oo ) =1 insures that 5=0, thereby giv-
ing Po =5& ', on the other hand, if co(r) is not an entire
function, then there exists the possibility of divergence
discussed in Secs. III and IV.

We solve Eq. (D4) for co,

7 +67 +(15 6e }r +(20—34'—)r +(15—60' )r +(6—24' )r + 16m + 1

(r +1) (2+2) (D6)

and co is taken to be the positive square root of this ex-
pression. It is clear that oi( 4 oo ) = 1 and that
(}",o~(+oo)=0. We have thus found an o) which is time
dependent and has poles in the complex v plane, yet it
gives no transitions at ~=+ ao. We note that H of Eq.
(Dl), with co given by Eq. (D6), differs from the Hamil-

tonians we have treated earlier in one important respect:
it contains explicit e dependence (apart from the e multi-
plying t, which is absorbed in y) Nevertheless, w. e can
still apply the perturbative and iterative methods to study
this problem.

We begin with Eq. (Dl) and perform the first iteration.
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By using the generating function
1/2

Go(q, IO, r) =+Iosin
2IO

+—q(2Ioco) / 1—1 )/2 q co

2 2IO

' 1/2

(D7)

we obtain

0, =Ioa' +e Iosin280+e ) z ID+0(e ) .
4a ' ' 2a'" ' (D9)

Performing the procedures described in Sec. III
(coo=a' ) to 0(e ), the Hamiltonian above is
transformed into

H
&

=coIO+ BIO sin280 . (DS)2'
This Hamiltonian can now be treated by using either Lie
perturbation theory or the adiabatic iteration.

To apply perturbation theory we write co =a+a b,
where, from Eq. (D5), a =p and b = —p 'p, and ex-
pand Eq. (D8) to 0(e ),

terms of higher order in e would have to add up to zero.
However, we have shown that the term of 0(E ) is non-
vanishing. Then there exists no possibility of adding
higher-order terms in such a way as to cancel the term of
0 (e ), for e arbitrary and finite. ( j e") form a linearly in-
dependent polynomial basis. ) Therefore neither the per-
turbation theory nor the iteration method converge to the
exact solution.

From the comments above, we see that the two ap-
proaches studied could either converge to an incorrect
expression for the frequency or result in an asymptotic
series. We think the second possibility is more likely,
with the optimum truncation being after the first term,
which also gives the exact solution. In particular, in Eq.
(D8) both co and ~/co have singularities in the finite
domain of the complex ~ plane. This, then, suggests that
the compounding of derivatives with respect to ~ in either
the perturbation theory or the iterative method could
lead to divergences analogous to the ones discussed in
Secs. III and IV. We have thus found an example in
which there are no transitions at ~= + ~, yet the pertur-
bation and iteration schemes seem to lead to divergences.

It is interesting to consider an alternative iteration for-
mula, given by Eqs. (69}and (70}of Ref. 20,

eI a
I(.'=a' I+ b — +0(e ),

2a l6a
(D10)

b,8'"'= f [0'"'(r ) —co(r) ], (D13a)

with the frequency co=a' +(e /2a' )[b —(a /16a )]
and the shift in the angle coordinate
b, 8=1/e f "„dr(co—a ' ). [As a matter of convenience,

we have defined here 68=1/c f "„dr(co—coo) rather
than I/e f "„dr(co co), as in R—ef. 20.] In particular, we

notice that expressing a and b in terms of
p

gives the
second term proportional to —(p 'p+p p ), which is
not zero for all times.

We can also apply the iterative procedure to the Ham-
iltonian of Eq. (D8). Following the method described in
Sec. II, to 0 (e ) for the Hamiltonian [or 0 (e) for 58] we
obtain

b8s =0, (Dl la)

b8~ = fEdr
ga 1/2

a
320

(Dl lb)

E(P, Q)=p P(:—a'/ P), (D12)

which gives EQ =b 8=0. (Note that in Ref. 22, the time
t is the saine as r in this paper. ) Thus both the perturba-
tion theory [Eq. (D10)] and the iteration method [Eqs.
(Dlla) and (Dllb)] fail to capture the exact solution to
0(e ). But this is also sufficient to insure that they never
will, for finite and arbitrary e. To see this, we notice that
the zeroth-order solution is the exact one, and hence all

Thus, to 0 (e ), the perturbation and iteration methods
agree. What is interesting about the Hamiltonian of Eq.
(DS}, however, is that it has an exact solution. We have
built it into the problem by assuming a smooth solution
for p [see comment following Eq. (D5)]. Then by a
canonical transformation given in Ref. 22, the Hamiltoni-
an can be brought into the form

1/2

fI(k+ ))— 2+(II(k) )1/2~2 (II(k) )
—)/2a2

72
(D13b)

with (0' ') =co . It is not difficult to show that this itera-
tion formula does not terminate. In fact,
(0' ')'=p +0(e'), (0"')'=p +0(e ),
(0' '} =p +0(e ), (0' ') =p +0(e ), etc. , and the
iteration scheme appears to be asymptotic to the exact
solution but does not converge to it. (For example, for
the first four iterations the leading terms in e at ~=0 are
e, 60e', 12000m, and 5009280@ . ) We note that the e
dependence of the deviation from the exact solution of
the iteration procedure (D13a) and (D13b) is different
from the iterative method described earlier in this paper.
Both methods appear to give the correct asymptotic be-
havior, but the divergences of the two methods are gen-
erally not the same. The divergences thus appear to be
no more than mathematical artifacts.

It may also be interesting to point out that co specified
by Eq. (D5) is a "reflectionless" potential. The solution
of the equation of motion for, for example, q which starts
at v = —ao as a wave traveling in the direction of increas-
ing ~ remains so at all times. Hence there are no
reAections at any time, a fact which is a consequence of
the existence of the solution to Eq. (D4). This, however,
should be distinguished from the additional requirements
on p(r} which insure that there are no transitions at
r=+ 0)) (see, for example, Ref. 21).

Finally, it may be possible to argue that divergences
are linked to transitions between the eigenstates of 0 at
finite times. We show below that those transitions cannot
be excluded for any choice of time-dependent ~, and
hence this example cannot settle the question. %"e write
the Hamiltonian of Eq. (Dl) at any time in terms of
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creation and annihilation operators, 7/(r ) (4co) (p + cop t &p ) (D15)

H =co(r)(b b+ —,'),
' 1/2

co(r)
2

[q +i co '(~)p],

1/2
co(T)

2 [q i—co ( r )p],

(D14a)

(D14b)

(D14c)

e'p'(pP p'—)'+4p'p'=o (D16)

The condition that the system always be in the instan-
taneous ground state of H is then given by ~g~ =1. This
coupled with Eq. (D4) enables one to obtain an equation
involving only p,

with [b(r), b (r)]=1. The instantaneous eigenstates of
H are then defined as the eigenstates of b (v)b(r). In
particular, if the system is in the ground state at ~= —~,
then the probability of being in the state which is annihi-
lated by b (r), at r, is given by ~ri~ ', ' where

If we require p to be a real function of w,
' then Eq. (D16)

has no other solution than p =const. Hence there is no p,
and therefore no co, other than a constant, which insures
that the system stays in the ground state at all times.
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