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Equation of state and conductivities of dense hydrogen plasmas near the metal-insulator transition
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Strong correlations between electrons and ions in hydrogen plasmas near metal-insulator boun-

daries are analyzed through an integral equation approach, which adopts the hypernetted-chain
{HNC) approximation for the classical ion-ion correlation and the modified convolution approxima-
tion (MCA) for the quantum-mechanical electron-electron and electron-ion correlations. The re-

sulting HNC MCA equations are solved self-consistently. The correlation functions and the equa-
tion of state thus calculated reveal the emergence of "Rydberg states" in the metallic phase near the
metal-insulator boundaries, which acts to reduce the electric and thermal conductivities.
Parametrized formulas for the equation of state and the conductivities are presented.

I. INTRODUCTION

In an earlier series of investigations' Ichimaru, Mi-
take, Tanaka, and Yan (IMTY) developed a strong-
coupling theory of dense hydrogen plasmas appropriate
to the interior of the main-sequence stars and to final
stages of inertial-confinement fusion plasmas. In such a
dense plasma, the strong Coulomb and exchange cou-
pling between the charged particles beyond the random-
phase approximation' (RPA) becomes essential. In the
density-response formalism, on which the IMTY theory
is based, such a strong-coupling effect can be treated
rigorously in terms of the local-field corrections' (LFC's).

When the density and/or temperature of the plasma
are lowered toward the conditions for the onset of pres-
sure and/or thermal ionization, the Coulomb coupling
between the electrons and the ions becomes particularly
pronounced; a trend toward an incipient formation of
bound pairs (i.e., neutral atoms) should be revealed in the
features of the electron-ion correlations. A major
shortcoming of the IMTY theory lies in its inaccuracy in
treating such an effect of strong electron-ion coupling as
the plasma approaches the metal-insulator boundaries.
They approximately expressed the joint distributions be-
tween electrons and ions in terms of linear response of
the electrons against the ions; as a consequence, the LFC
between electrons and ions vanished identically in their
calculations. The predicted equation of state (EOS) did
not show a tendency toward incipient bound pairs; the
calculated values of the conductivities remained relative-
ly high near the metal-insulator boundaries.

In this paper, we develop a strong-coupling theory of
dense hydrogen plasmas applicable in the vicinity of the
metal-insulator boundaries (see Fig. 1). Strong Coulomb
and exchange correlations are analyzed through an in-

tegral equation approach, which adopts the hypernetted-
chain (HNC) approximation for the classical ion-ion
correlations and the modified-convolution approxima-
tion (MCA), justified both in the classical plasmas and
in the quantum electron liquids, for the quantum-
mechanical electron-electron and electron-ion correla-
tions. The resulting HNC MCA equations are solved
self-consistently for the structure factors and the LFC's.
The EOS thus calculated reveals the emergence of "Ryd-
berg states" in the metallic phase, implying physically an
approach toward an insulator phase. The Rydberg states
are found to modify the electron-ion correlations remark-
ably and act to reduce the electric and thermal conduc-
tivities. Parametrized formulas for the EOS and the con-
ductivities are provided for a practica1 application.

The strong-coupling effects in dense plasmas have been
studied theoretically by a number of investigators. ' Ear-
lier in 1982, Dharma-wardana and Perrot (referred to as
DP) presented a density-functional theory of hydrogen
plasmas. In this theory, the ion-ion correlations were an-
alyzed in the HNC approximation. The electron-electron
correlations, however, were treated in the density-
functional formalism' with the local-density approxima-
tion (LDA); essential spatial-dispersion (i.e., wave-
number-dependent) efects in the electron-electron LFC
were thus ignored. Furthermore, they neglected the con-
tributions of exchange-correlation potential altogether in
their LDA treatment of the electron-ion correlations; no
LFC effects were therefore retained. More recently, "
these authors applied analogous correlation calculations
to the electric resistivity in hot dense plasmas, where
electron scattering against ions beyond the Born approxi-
mation was treated through phase-shift analyses. When-
ever feasible, the results of the present study will be com-
pared with those of DP, although degrees of approxima-
tions involved are significantly different.
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where pl, (r) is the wave function for a Is electron. The
electron-ion interaction energy in such an atom is —2%,
so that

E /Nk T = ——'(9m l4) 8I
As hydrogen plasmas approach the boundaries, (4) and
(5), in Fig. 1, coupling between electrons and ions be-
comes so pronounced that features resembling (6} and (7)
of a bound state may emerge in their correlation charac-
teristics. Such will be called Rydberg states in hydrogen
plasma, with an implication to incipient bound states.

III. HNC SCHEME
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FIG. 1. Various parameters on the number density vs tem-
perature plane for hydrogen plasma. See the text for definition
of I, r„8,and 5.

II. METAL-INSULATOR BOUNDARIES

We consider a hydrogen plasma at temperature T with
n electrons and n ions (protons} in a unit volume. The
Coulomb-coupling parameter' for such a plasma is

where a =(3/4mn)'~ is the ion-sphere radius. The di-
mensionless density parameter and degeneracy parameter
for the electrons are

r, =arne /lh'

8=kq T/E~,

(2)

(3)

where E~ =A k~ l2m is the Fermi level of the electrons in
the ground state with kr =(3m n)' In Fig. 1. we show
relative magnitude of those parameters on the n-T plane.

We take the condition for pressure ionization in hydro-
gen approximately as

E~ =%, (4)

where %=me /2l}12= 13.6 eV, the ionization energy of a
hydrogen atom in the ground state. Analogously the
condition for thermal ionization is taken approximately
as

We investigate the interparticle correlations, EOS, and
transport properties in dense hydrogen plasmas through
the solution to a set of integral equations in the density-
response formalism' with the HNC approximation and
MCA. The wave-number and frequency-dependent
density-density response functions y„„(k,co) are thus ex-
pressed explicitly in terms of the free-particle polarizabil-
ities y„' '(k, co) and the LFC's G„„(k,co). The subscripts p
and v are introduced here to distinguish between the par-
ticle species; 1 is reserved for the electrons and 2 for the
ions. For generality we designate the charge number by
Z„and assume the macroscopic charge neutrality:
Q„Z„n„=0.

In the density-response formalism, the LFC's play ma-
jor parts in describing the strong Coulomb- and
exchange-coupling effects beyond the RPA. Since

y& '(k, co) can be calculated at an arbitrary degenera-
cy, " the structure factors S„„(k)and the joint probabil-
ity functions (i.e., the radial distribution functions,
RDF's) are formulated exactly through the fluctuation-
dissipation theorem' once the LFC's are known. Ther-
modynamic functions and transport coeScients then fol-
low through a standard procedure. '

We approach the strong Coulomb-correlation effects
between ions in the HNC scheme, assuming that the ions
obey the classical statistics. Although the derivation of
HNC equations is a canonical subject in the theory of
simple liquids, " we briefly retrace it here, so that an ex-
plicit expression for G22(k) is obtained in the HNC ap-
proximation.

To begin, let us set the position of one of the ions at the
origin r=o, and consider the spatial distributions of oth-
er ions, n2(r), and of the activities, '3 z„(r), which may be
written as

nz(r}=nzg22(r) =nz+nzhz2(r},
k~T=A . (5)

Relations (4) and (5) are likewise displayed in Fig. 1. Hy-
drogen is in an ionized, metallic state, when EF &% or
k~T &%.

For an isolated hydrogen atom in the ground state, the
value of the joint probability function between an elec-
tron and an ion at r=0 is

z&(r) =exp[a& —v2&(r)/ke T] .

Here, a„denotes the normalized chemical potential,
vz„(r) refers to the potential between the ion and a Ju-

species particle, and h„„(r)=g„(r)—1 is the pair-
correlation function between the p and v species.

The direct correlation functions are then calculated in
terms of the functional derivatives as'
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c„,(r,r')=, ln[n„(r)/z„(r)]n„r1, 5
5„„5(r—r')—,lnz„(r)

where uzi(k)=4me /k and

u„(k)[1—G,~(k)] yI '(k, O)=1+
s22(k) 1 —v „(k)[1—G„(k)]g '(k, O)

(17}

and are connected with the pair-correlation functions
hz (r, r') via the Ornstein-Zernike relations'

hz„(r, r')=c2„(r, r')+ g fdr, nzhzz(r, r&)cz„(r„r') .

Analogously, the electron-screened ion-ion direct correla-
tion function is given by

d22(k) =c~~(k)

v', 2(k)[1—G,z(k)] yI '(k, O)y2 '(k, O)

n2 1 —u&&(k)[1 —G~&(k)]yP'(k, 0)

The HNC approximation consists in expanding
ln[nz(r)lz2(r)] to the first order in n„h„2(r), so that The HNC equations now read as

(18)

ln[nz(r)/z2(r)]=lnn2 —a2+ g fdr'n„h„z(r')c&„(r, r') . g22(r)=exp[ —u22(r)/ks T+h22(r) —d22(r)], (19)

(12) h2~(k) =d~~(k)+n~h2~(k)d2z(k), (20)

With the aid of Eqs. (8), (9), and (11), Eq. (12) is
transformed into

The ion-ion LFC and static structure factor are calculat-
ed as

g22(r)=exp[ u22(r)l—kBT+h22(r) c22(r)] (13}

an HNC equation for the ion-ion correlation.
The set of HNC equations, (11) and (13), can be rewrit-

ten exactly in a form which accommodates the electron-
screened ion-ion potential' and thereby the LFC's. For
this purpose it is instructive to define and calculate the
equal-time density responses as

ks Td22(k)
Gz~(k) = +

e22( k)

ks Tc2~(k)

u22(k)

1

I —n2d2z(k)

(21)

(22)

5n„(r)

= —[n„n „h„,(r, r') +n„5&„5(r r') ]Ikz T—.

(14)

Once an explicit formulation for G&&(k) and G&2(k) is ob-
tained, we thus have a complete description of the inter-
particle correlations in the hydrogen plasma. In the fol-
lowing section, we shall formulate G» (k) and G &2(k) in
the MCA scheme.

The latter expression assumes that p or v is a classical
particle (i.e., an ion). The density responses are connect-
ed with the direct correlations via

=n„g fdr, y„z(r, r, )cz,(r, , r') . (15)

Q 22 ( k ) = v 2z ( k ) /s &2( k ),

Since the system under investigation is homogeneous, a
two-point function such as those in Eq. (15) depends only
on differences in the spatial coordinates. The Fourier
transform of Eq. (14) with respect to the difFerences gives
the static density response, which in turn is expressed'
in terms of y„' '(k, O) and G„,(k).

The electron-screened ion-ion potential is thus calcu-
lated as

IV. MCA SCHEME

We describe quantum-mechanical correlations between
electrons and ions as well as between electrons by the
MCA scheme, which was derived from a convolution ap-
proximation to the triple correlation functions. The
scheme predicted the thermodynamic properties accu-
rately and self-consistently both for the classical OCP
(Ref. 7) and for the electron liquid in the ground state.
We expect that it may likewise provide a useful tool in
the analysis of the electrons at an arbitrary degeneracy.

Following the equation of motion for the density Auc-

tuations,

N

p„(k}= g exp( ik r„), — .
j=l

one derives a relation for the LFC as

N„QZ„„ZG( )k(p (k)pz( —k)) = —g g'I(k, q)Z„Z [(p„(k—q)p„(q)pz( —k)) —(p„(k)pz( —k))5„„]. (23)

Here I(k, q) =k q/q, ( ) refers to a statistical average, the prime means omission of the terms with q=0 and q=k in
the q summation, and N„ is the total number of p particles. For the symmetry of interparticle forces between p and A, ,
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we symmetrize Eq. (23) as

N„g Z„Z„G„„(k)(p„(k)p2(—k) ) +N1 g ZqZ„G~„(k)(p„(k)p„(—k) }

= gg'I(k, q)Z„Z [(p„(k—q)p (q)p„( —k)) —(p„(k)p„(—k))5„„]
v q

—g g'I(k, q)Z2Z [(p2(k —q)p„(q)p„( —k)) —(p„(k)p„(—k))5&„] .

The triple correlation functions in Eq. (24) are factored in the convolution approximation' ' as

N„N„Ng
(p„(k—q)p„(q)pz( —k))= g " S„„(lk—ql)S„„(q)S&„(k),

Yl

where S„„(k)= (p„(k)p„(—k) ) /QN„N„ is the static structure factor. We thus find from Eq. (24)
1/21, — Z2 "2

G»(k)= g' K(k, q)[1+S»(q)]+I(k,q) S12(q} [S»( lk —
ql )

—1 1
1 q Z1 n1

' 1/2

g' J(k,q) [1+S»(q)]S,2(lk —ql)
2N1

'
Z1 n1

1 Z2-
B12(k}g' I«q) [S22(q) Sll(q)]S12(lk —ql)

1 q 1

(24)

(25)

+-,'K(k, q)
n2

' 1/2 2
' 1/2

n1 2 n2

n,2 S12(q}S12(lk —
ql } (26)

G»(k) = — C(k) g'E (k, q)S»(q)S, 2( lk —
ql )

1

2 N, N2 q

B„(k)g' II(k, q}[1+S„(q)]S»(lk—ql)+ J(k, q)S12(q)[S11(lk—ql) —1]j
1

2 N, N2 q

B»(k}g' lI (k, q)[1+S»(q)]S,2( lk —
ql )+J (k, q)S„(q)[S,2( lk —

ql )
—1]I .

2 N1N2 q

(27)

Here J(k, q) =k.(k —q)/lk —ql,
+J(k,q}, and

B„(k)=S„(k)/[S1,(k)+S22(k)],

I (k, q)=I(k, q)

(28)

k'+k',
S (k}=k'+k'

02

S,2(k) =
—,'[S„(k)+S22(k)]—S(k) .

(32)

(33)

1/2 ' 1/2

C(k) =B„(k) +B22(k) . (29)
Z1 n2 Z2n1

S(k)= k
k'+k,'

k2+k2
S„(k}=

k +k01

(3O)

(31)

In Eqs. (26) and (27), we have classified the contribu-
tions of the structure factors physically into two parts:
fluctuations and screening. The structure factors acting
as screening functions have been designated in these
equations by S„„(k),and are parametrized as

S„„(0)=S„„(o), (35)

are met.
With such a modi6cation of the screening functions,

ensuring thermodynamic consistency, G„„(k)in Eqs. (26)
and (27) are expressed in forms linear with respect to the
unknown functions S„„(k).The latter functions, in turn,
can be expressed as functionals of G„(k) via the
Auctuation-dissipation theorem. We have thus obtained
the HNC MCA set of integral equations for the calcula-
tions of S„„(k)and G„„(k).

The parameters ko, k„ko„k2, ko2 are determined so
that the thermodynamic consistency conditions,

g u (k)[S„„(k)—5„„]= g u (k)[S„(k)—5„], (34)
k k
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FIG. 2. Radial distribution functions.
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FIG. 4. Effective ion-ion potentials, as compared with the
bare Coulomb potential (chain line).

V. CORRELATION FUNCTIONS

On the basis of the HNC MCA scheme developed in
the preceding sections, we calculate the correlation func-
tions in hydrogen plasmas though numerical solution to
the integral equations by iteration. The method of solu-
tion is similar to those found in the literature. '

In Fig. 2, the results for g„„(r)are shown at 8=1 and
I =0.5. For comparison, we also calculate g„„(r) in the
HNC MCA scheme where Giz(k)=0 is set a priori and
show the results in the figure. We observe that G,z(k)
acts to increase the values of g„,(r) in the short-range re-
gime, implying physically an enhancement of attraction
between the ions and the electrons.

The local-field corrections are likewise shown in Fig. 3
for a number of combinations between 8 and I . Note
that G»(k) &0, Gzz(k) ~0, and G,z(k) ~0. This fact im-
plies that the difFerences between the effective potentials

u„„(k)[l—G„„(k)]and the bare potentials u„„(k) are al-
ways negative (i.e., attractive). In the strong-coupling re-
gime, the magnitude of G,z(k) remarkably increases in
the large-k domain, leading to enhancement of the
effective electron-ion attraction at short distances (cf. Fig.
2) and thereby to incipient bound states.

In Fig. 4, we plot the values of the effective ion-ion po-
tential together with those with Giz(k)=0, and compare
them with the bare Coulomb potential. We find that
Giz(k) acts to reduce the repulsive interionic potential in
the short-range regime, leading to enhancement of gzz(r)
The short-range enhancement of gi i (r), shown in Fig. 5,
can likewise be interpreted in terms of reduction in the
repulsive inter-electronic potential.

Figures 6 and 7 contain comparison with the DP re-
sults. The DP ion-ion correlations, relying on the HNC
approximation, resemble the HNC MCA result with

G,z(k)=0, as one would have anticipated. It may be
somewhat surprising at first to find in Fig. 7 that the DP
scheme, assuming G,z(k) =0, appears capable of predict-

1.0—

5— 1.0

0

0.5

Q. I 10 gk 100

FIG. 3. Local-field corrections at 8=1 and I =1. For
G»(k), the results at I =0.1 (dotted line) and I =0.5 (dashed
line) are also plotted.

2 3
kFr

FIG. 5. Radial distribution functions between electrons.
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1.0 HNC MCA
ISOLATED ATOM ~j'

9„(O)

0.5

DP

1 2 3 4 5

kFr
0.5

I

1.0
FIG. 6. Radial distribution functions between ions. Solid

circles are the values obtained in Ref. 9.

ing an incipient bound state as is the present HNC MCA
scheme with G&2(k) fully taken into account. This
feature can be attributed to the use in the DP scheme of
the Kohn-Sham equation' ' for the electron-ion correla-
tions (albeit with assumption F/2" =0 in the LDA).

A salient demonstration of the incipient bound states
in hydrogen plasmas predicted in the HNC MCA scheme
is exhibited in Fig. 8, where the values of g, 2(0) are plot-
ted as functions of I at 8=1. We here observe that the
HNC MCA values approach asymptotically the isolated-
atom values, Eq. (6), as the Coulomb coupling parameter
increases.

=
—,
' g Jdk, U„„(k)[S„„(k)—5„,],

(2m )' (36)

where N denotes the total number of the electrons (or the
ions}. In Table I, we list the numerical results of the

4
r. =1
I'= 2

CA

VI. EQUATION OF STATE

With the knowledge of the structure factors, the in-
teraction energy is calculated as

FIG. 8. Values of the electron-ion radial distribution func-
tion at r=O as a function of I at 8=1. The corresponding
quantity for a hydrogen atom is designated as an isolated atom.

computation for various parametric combinations of 8
and I .

In order to single out the difference between the
present HNC MCA results and the previous IMTY re-
sults, we define

E gIMTY.
int int

IMTY (37)

and exhibit their values on Fig. 1. For a given 8, the
HNC MCA results agree with the IMTY results at small
values of I . As I increases, however, the HNC MCA
prediction starts to deviate significantly from the IMTY
prediction, due to incipient bound states which act to
modify g, 2(r}.

In Fig. 9, we plot E;„,/Nk&T calculated in the HNC
MCA and IMTY schemes as functions of I'. We here ob-
serve again that the HNC MCA prediction approaches
asymptotically the isolated-atom value of Eq. (7) as I' in-
creases, another demonstration of an incipient bound-
state effect. The IMTY results, being proportional to
I for large I, predict a substantially smaller magni-
tude for the absolute value of the interaction energy near
the metal-insulator boundaries. These new features
should affect the nature of metal-insulator transition in
dense hydrogen significantly.

For convenience in practical applications, we set

E IMTY +MESC
int int int (38)

~ DP and seek for a parametrized expression of the strong-
coupling term, hE t, with the result:

EEs„,

N(e /a)
a(e)r+b(8)r'

1+c(8)I (39)

0 1
I

2

kFr

FIG. 7. Radial distribution functions between electrons and
ions. Solid circles are the values obtained in Ref. 9.

0.01908
1+2.21108

0 44448
1+1.30788

b(O)=1.84168c(8) .

(40)

(41)

(42)
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The former term, E,'„, , has been accurately
parametrized in Ref. 3. We note that the strong-coupling
part, Eq. (39), of the interaction energy vanishes in the
weak-coupling limit (I « I ) as it should. In the strong-
coupling limit, Eq. (39) approaches 1.8416I 8, which
coincides with Eq. (7). The total energy, Eq. (38), repro-
duces all the values listed in Table I within 10%.

Once an explicit expression for the interaction energy
Ky.

(43)

is found, one can proceed to calculate other thermo-
dynamic quantities such as the free energy and the pres-
sure in the same way as in the previous studies. ' The
isothermal compressibility ~z- is defined and calculated as

TABLE I. Interaction energy and the generalized Coulomb logarithms at various combinations of 8
and I .

—E;g, /N(e /a) LE Lp

10
10
10
10
10

5
5

5
5

5
1

1

1

1

1

1

1

1

1

1

1

0.271 51
0.271 51
0.271 51
0.271 51
0.271 51
0.271 51
0.271 51
0.271 51
0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.05
0.1

0.2
0.3
0.35
0.1

0.2
0.3
0.4
0.5
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
0.2
0.6
1.0
1.6
1.8
2.0
2.4
2.5
0.5
0.543 01
1.0
1.6290
2.0
2.7151
3.0
3.2581
4.0
4.3441
5.0
5.4301
5.4301

10.0
16.290
27.151
30.0
38.011
43.441

0.544 83
0.756 12
1.0918
1.5293
1.9768
0.75009
1.0384
1.3024
1.6297
2.1899
0.756 99
0.959 78
1.1065
1.2285
1.3380
1.4417
1.5442
1.6492
1.7603
1.8822
2.0272
0.900 76
1.1755
1.3345
1.5181
1.5751
1.6327
1.7568
1.7927
1.0237
1.0401
1.1662
1.2741
1.3227
1.4014
1.4295
1.4540
1.5215
1.5523
1.6119
1.6528
1.2623
1.3290
1.3857
1.4582
1.4753
1.5222
1.5543

2.732
2.710
3.295
5.250
8.041
2.097
2.161
2.506
3.249
5.002
0.9560
0.8109
0.7482
0.7184
0.7073
0.7090
0.7214
0.7438
0.7775
0.8273
0.9144
0.2314
0.1658
0.1448
0.1341
0.1336
0.1345
0.1421
0.1466
4.618X
4.496 X
3.679 X
3.153X
2.971 X
2.752 X
2.696 X
2.657 X
2.594 X
2.587 X
2.612X
2.663 X
7.062 X
5.776 X
5.016X
4.505 X
4.450 X
4.415 X
4.483 X

10
10
10
10
10
10
10
10
10
10
10
10
10-4
10-4
10-4
10
1O-4
&0-4
1O-4

2.363
2.256
2.557
3.784
5.573
1.725
1.680
1.853
2.294
3.384
0.7507
0.6047
0.5381
0.5024
0.4836
0.4758
0.4767
0.4853
0.5021
0.5301
0.5828
0.1657
0.1106
0.093 25
0.08402
0.083 28
0.083 50
0.087 89
0.090 61
2.879X10 '
2.798 X 10-'
2.259 X 10-'
1.914X 10-'
1.795 X 10-'
1.651 X 10
1.614X 10-'
1.588 X 10
1.544X10-'
1.538 X 10
1.551 X 10
1.580 X 10
4.130X10 "
3.377 X 10
2.932 X 10
2.633 X 10
2.601X10-'
2.580 X 10
2.619X 10
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—2—
II-

CCl 3

4J

iSOLATED ATOM

0.5—

III
0.1

I

0.2 0.5 i.o

0 0.5 1.0 FIG. 11. Generalized Coulomb logarithms. LE and LT are
those in the IMTY theory (Ref. 4).

FIG. 9. Same as Fig. 8 for the normalized interaction energy,
E;„,/Nkq T.

The same quantity can be calculated via the compressibil-
ity sum rule' as

modynamic instability and an eventual approach to an in-
sulator phase.

VII. CONDUCTIVITIES

1 1

0 nks T—(y „—2y )2+y22),
KT KT

where

(44)
On the basis of the quantum-mechanical transport

equations for the electrons, we have derived the expres-
sions for the electric conductivity 0. and the thermal con-
ductivity K as

4~ne', .
(45)

1 2m—=4
0 3

1/2
3/2r

LE ~

COp

(46)

and KT refers to the ideal-gas contribution to the iso-
thermal compressibility. Figure 10 plots the values of
KTIKz computed in two ways: (43) and (44). We note
that the compressibility sum rule is violated in a large I
regime, due mainly to the use of the HNC approximation
for the ion-ion correlations. We also find in Fig. 10 that
the values of KT may tend to diverge as I further in-
creases. A question that remains to be investigated is if
there exists any physical connection between such a ther-

52(6m)'~ e
L

K 75 k~ COp

Here co~=(4nne Im)' is the plasma frequency of the
electrons, LE and LT are the generalized Coulomb loga-
rithms given by

I I I I I I I

=1
1.0
0

KT
KT

0.5-
1.0—

I I I I I I I I I I I

0.5 p 1.0 I

0.2 0.5 1.0
FIG. 10. Isothermal compressibility: EOS from Eq. (43), and

LFC from Eq. (44). FIG. 12. Electric conductivity.
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~e / 1 S (k)f dk —f (k/2} [1—6, (k)],
4 o k

TABLE II. Coef5cients, pk and qk, in Eqs. (57) and (58) for

LE and LT.

75&~P'"
104X' « iz(k)i'

Bfo(kFx }fX dxx(x —A)
k /2kF (ja

In Eqs. (48) and (49),

fo(k}=[exp(fi k /2mk&T —a)+1]
e(k) =1—u(k)[1 —6ii(k)]yI '(k, 0),

(48)

(49)

(50)

(51)

P2
P3
p4
ps
P6

q2

q3

q4

qz

LE

0.27446
—1.8486
10.577

—11.187
3.2858
2.0934

—5.2431
14.159

—10.463
3.7413

LT

0.25826
—1.4523

7.2871
—7.6455

2.2151
1.,8900

—4.5398
13.639

—10.367
3.7272

9/2

IIs/z(a)I, /2(a) —P[I3/z(a)] ), (52)'
Ii/2 a

Isn(a)—5 Q„

I,/, (a) ' (53)

I„(a)= dz
o exp(z —a)+1 (54)

The factor 1 —6,2(k) in the Coulomb logarithms ac-
counts for strong electron-ion coupling in scattering. It
describes those short-range events where the electrons
and ions, correlated strongly by the Coulombic attrac-
tion, scatter each other repeatedly. It thus represents an
effect beyond the Born approximation and acts to
enhance the values of the resistivities.

We have calculated LE and LT by substituting the
HNC MCA values of S„„(k)and 6„,(k) in Eqs. (48) and
(49); the results are listed in Table I.

Figures 11—13 plot the values of the generalized
Coulomb logarithms, the normalized electric and thermal
conductivities (cr'=cr/co and a'=rrlk~na co ), and

s,„„=s,,'„,+as. (r,e) (55)

and seek for a parametrized expression of the last term,
with the result

as. (r 8)=
[1—e(e)P

6
pk

p(e)= k=2
6

(56)

(57)

compare them with the corresponding quantities in the
IMTY theory. We observe in Fig. 11 that LF and LT
turn over at about I =0.5 and steeply increase thereafter,
resulting in corresponding decreases in the conductivities
(Figs. 12 and 13). Such a pronounced scattering rate in
the large-I regime is a consequence of the strong attrac-
tion between the electrons and the ions brought about by
the factor 1 —6&z(k) in Eqs. (48) and (49); the steep in-

crease in the resistivities should signal an approach to an
insulator phase.

Again for convenience in practical applications, we set

1000—
I I 1 1 1 I li k=0

pk

100—

5
pk

q (Q~) =
Ok

k=0

(58)

I

0.1
I

0.2 0.5 1.0

FIG. 13. Thermal conductivity.

We have found a =0.5 and @=0.75 from the behavior of
hL in the small- and large-I regimes. The coefncients pk
and qk are tabulated in Table II for LE and LT. With the
IMTY values, LF and LT, parametrized in Ref. 4, Eq.
(55) reproduces the values in Table I for r ~ 5 within 8%%uo

and 15% for LE and LT, respectively. At r, =1 and
I =2, the electric resistivity in the present HNC MCA
theory is 2.76X 10 0 cm while that of DP calculation"
gives 2.33 X 10 Q cm. The latter authors used a phase-
shift analysis in the calculation of scattering cross section
for the electrons passing through average distribution of
the ions.
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