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We present the wavelet transform as a natural tool for characterizing the geometrical complexity
of numerical and experimental two-dimensional fractal aggregates. We illustrate the efficiency of
this “mathematical microscope” to reveal the construction rule of self-similar snowflake fractals
and to capture the local scaling properties of multifractal aggregates through the determination of
local pointwise dimensions a(x). We apply the wavelet transform to small-mass (M < 5X 10* parti-
cles) Witten and Sander diffusion-limited aggregates that are found to be globally self-similar with a
unique scaling exponent a(x)=1.60+0.02. We reproduce this analysis for experimental two-
dimensional copper electrodeposition clusters; in the limit of small ionic concentration and small
current, these clusters are globally self-similar with a unique scaling exponent a(x)=1.631+0.03.
These results strongly suggest that in this limit the electrodeposition growth mechanism is governed
by the two-dimensional diffusion-limited aggregation process.

I. INTRODUCTION

Pattern formation and growth process phenomena in
systems far from equilibrium are the subject of increasing
theoretical and experimental interest.'~> In recent years,
much attention has been paid to characterize the geome-
trical properties of highly ramified clusters formed in ap-
parently unrelated physical, chemical, and biological pro-
cesses. In particular, a lot of effort has been devoted to
establish the relationships between the cluster geometry
and growth mechanisms. A number of models for cluster
formation have been proposed to account for Laplacian
fields that are common ingredients in a broad class of ex-
perimental situations'~> such as electrochemical deposi-
tion, fluid-fluid displacement in Hele-Shaw cells and
porous media, formation of snowflakes and dendritic pat-
terns, colloidal aggregation, fracture propagation, and
dielectric breakdown. The prototype of these fractal
growth models is the diffusion-limited aggregation (DLA)
model introduced by Witten and Sander® in the early
1980s. In this model, particles are added, one at a time,
to a growing cluster or aggregate of particles via
random-walk trajectories. The structures generated by
the DLA model exhibit branching over a wide range of
length scales; the fractal dimension of these clusters was
calculated both theoretically’~'® and numerically,®!'-"
and found to be less than the Euclidean dimension of the
space in which the aggregation process takes place. Since
the pioneering simulations of the DLA model, numerous
extensions of the model were considered for various pur-
poses,'” e.g., to incorporate nonzero surface tension!®-23
or to mimic anisotropic growth.'>2=2° In this respect,
the role of the DLA model and its variants in under-
standing growth phenomena in nonequilibrium systems is
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considered by many authors'~ as being analogous to Is-
ing models with respect to critical phenomena.

Despite the importance and the apparent simplicity of
the Witten and Sander model,® there is still no rigorous
theory for diffusion-limited growth processes. Moreover,
there is no convincing experimental demonstration that
well-known fractal aggregates, e.g., electrodeposition
clusters or viscous fingers, actually belong to the DLA
universality class. In fact, only a little is known in quan-
titative terms about the structure of DLA clusters. Most
of the numerical analysis of growing patterns have fo-
cused on the determination of the fractal dimen-
sion.!->6!1 However, the fractal dimension is a global
property of the cluster and it does not provide a deep in-
sight into the geometrical complexity of the aggregate.
Only very recently,'>** has more attention been paid to
the computation of the  generalized fractal
dimensions®'** D, which are closely related (by means
of a Legendre transform) to the f(a) spectrum®~3° of
singularities of strength a (a is also called the local scal-
ing exponent). But, thus far, the conjectured global self-
similarity®!! of the shape of DLA patterns still remains
unelucidated since recent numerical attempts®® have
failed to show that the D,’s coincide, i.e., the f(a) spec-
trum is concentrated on a simple point a=D,, [the local
scaling exponent a(x) does not depend on x].

Although the measurement of the D,’s and f (a) spec-
trum is without a doubt very instructive, it only provides
statistical information about the scaling properties of
fractals. As already emphasized in previous studies,*>*!
the f(a) spectrum identifies the underlying singularities
and quantifies their relative contributions, but it fails to
fully characterize the local self-similarity of fractals,*
since it does not keep track of the spatial location of these
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singularities. An efficient multiscale analysis is thus
essential to collect additional information concerning the
hierarchy which governs the spatial distribution of these
singularities. A known method which comes close to
satisfying this requirement is the wavelet transform.*>**
This mathematical technique provides a two-dimensional
unfolding for one-dimensional signals, displaying both
the position and the scale as independent variables. The
wavelet transform was introduced in the early 1980s in
the context of seismic data analysis.** Since then it has
been applied in many different fields: pure mathe-
matics,*¢~2 quantum mechanics,??~>* signal
analysis,****33-57 synthesis of sounds,”’ and computer
vision.”® The remarkable properties of this multiresolu-
tion decomposition method have been mainly used to
provide visual access to some of the structural charac-
teristics of a signal, e.g., detection of abrupt changes in
sound signals,” and edge and pattern recognition.’®>
Very recently, the wavelet transform has been compared
to a mathematical microscope which is well appropriated
to investigate the local self-similarity of fractal ob-
jects.#0:41:60.61 The ability of this microscope to reveal the
underlying construction rules and to resolve local scaling
properties through the determination of local pointwise
dimensions® a(x) has been demonstrated on pedagogical
examples, e.g., Weierstrass fractal functions over the real
line® and (multi)fractal probability measures on well-
known Cantor sets.*”*1¢!  Further application of the
wavelet analysis to the velocity field of wind tunnel tur-
bulence at very high Reynolds numbers has provided the
first visual evidence of the celebrated Richardson cas-
cade;* this analysis suggests that the energy-cascading
process displays multifractal properties and presents re-
markable similarities with the construction rules of
nonhomogeneous Cantor sets. Even more spectacular is
the recent application*®*! of the wavelet transform to
multifractal invariant measures of some well-known one-
dimensional dynamical systems modeling the transition
to chaos observed in dissipative systems. In this context,
the wavelet transform has been shown to be of fundamen-
tal interest, since it naturally reveals the renormalization
operation which is essential to the theoretical under-
standing of the universal properties of this nonequilibri-
um phase transition.*!

Our purpose here is to generalize the wavelet analysis
to fractal growth phenomena.*’ Most of the theoretical
activity in this field has been based on phenomenological
approaches.””! Many attempts to adapt real-space
renormalization-group methods® remain unclear,®-¢’
while interesting developments have been recently report-
ed on introducing a fixed-scale transformation®® instead
of coarse graining as in the renormalization-group
theory. But many important theoretical questions remain
unanswered; in particular, it is still an open question
whether the fractal geometry of DLA clusters is a prod-
uct of the randomness in the growth process**® or the
result of a cascade of deterministic tip-splitting instabili-
ties.”®=7? It is hoped that the application of the wavelet
transform will allow us to resolve some of these theoreti-
cal interrogations. Our analysis will be twofold. In the
present study, we extend the wavelet transform analysis
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to multidimensional signals’® with the specific aim of
characterizing the spatial distribution of local scaling
properties of fractal aggregates embedded in a two-
dimensional space. Our approach consists in focusing the
wavelet microscope on the geometrical complexity of nu-
merical and experimental fractal aggregates. A short ac-
count of some of the results of a wavelet analysis of
snowflake fractals and DLA clusters has been published
previously.” In a subsequent study,” we will go beyond
this static analysis, since the wavelet transform can be
used as well to characterize the local scaling structure of
the growth probability distribution for the perimeter sites
of a fractal aggregate. Recent theoretical’>7%-%! and ex-
perimental®®® studies have revealed the multifractal
character of the growth probability distribution of Lapla-
cian fractals. Our aim is to achieve a comprehensive
study of the geometrical and dynamical properties of La-
placian growth phenomena, and to emphasize the wavelet
transform as a very promising tool which might play a
decisive role in the development of a unified theory of
nonequilibrium growth processes.

Among the various experimental illustrations of fractal
pattern forming phenomena, electrochemical metallic
deposition®* is commonly considered as the paradigm for
theoretical studies of diffusion-limited aggregation. In
fact, by varying the concentration of metal ions and the
cathode potential, one can explore different morpholo-
gies, such as dense radial aggregates,3® dendritic pat-
terns,®®®” and fractal aggregates.?®38-% Fractal patterns
are usually obtained in the limit of small ionic concentra-
tion and small voltage. These fractal electrodeposition
clusters have been extensively studied and it has been
conjectured®-%" that they are similar to Witten and
Sander DLA clusters. In fact, the deep connection be-
tween highly ramified electrodeposits and DLA clusters
has been explored to a limited extent both theoretically
and experimentally. In a preliminary study performed in
collaboration with Swinney,91 we have developed a com-
parative study of zinc electrodeposition aggregates and
DLA clusters grown in a strip geometry. This study was
essentially based on box-counting and fixed-mass compu-
tations of the spectrum of generalized fractal dimensions.
In this paper we take advantage of the capabilities of the
wavelet transform to push this analysis further. In par-
ticular, we bring definite evidence for the structural self-
similarity of electrodeposit aggregates and DLA clusters,
which are shown to mimic remarkably the geometrical
complexity of the experimental patterns. To test the
robustness of our results against the nature of the metal-
lic compound and the specific geometry in which the
growth process takes place, we consider copper instead of
zinc and a circular cell instead of a strip configuration.
No significant quantitative modification of the geometri-
cal properties of the electrodeposition clusters is induced
by these changes in the experimental protocol.

The paper is organized as follows. In Sec. IT we de-
scribe the implementation of complementary box-
counting and fixed-mass algorithms devoted to the com-
putation of the generalized fractal dimensions D, and the
f (a) spectrum of singularities. The wavelet transform is
introduced in Sec. III with special emphasis on its ability
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to characterize the local scaling properties of two-
dimensional fractal aggregates. In Sec. IV we illustrate
the efficiency of the wavelet microscope to reveal the con-
struction rule of highly self-similar snowflake fractals and
to capture the local self-similarity properties of multifrac-
tal aggregates. Section V is devoted to a systematic study
of the structural complexity of DLA clusters. We show
that DLA clusters are statistically self-similar fractals.
This wavelet transform analysis suggests that DLA clus-
ters possess a deterministic chaotic recursive structure.
In Sec. VI we present a comparative analysis of two-
dimensional copper electrodeposition clusters in the limit
of small ionic concentration and small current. This ex-
perimental study brings quantitative evidence indicating
that the electrodeposition growth mechanism is very like-
ly to be governed by a diffusion-limited aggregation pro-
cess. In Sec. VII the results are summarized and the pos-
sibility of applying the wavelet transform to other experi-
mental situations is briefly discussed.

(b)

FIG. 1. (a) Illustration of the box-counting algorithm. The
partition function Z,(e) [Eq. (2.1)] is computed using a grid of
square boxes of size €. The D,’s are estimated when averaging
over randomly chosen positions of the grid with respect to the
aggregate. (b) Illustration of the fixed-mass algorithm. Balls of
constant mass pu are centered on randomly chosen reference
points of the boundary of the aggregate. The D, s are estimat-
ed from the arithmetic mean = (p) [Eq. (2.7)].
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II. GENERALIZED FRACTAL DIMENSIONS
AND SPECTRUM OF SINGULARITIES

A. Definitions

In the past decade, much effort has been devoted to the
characterization of measures lying upon possibly fractal
sets. In the context of dynamical systems theory, the
Renyi dimensions’! D, have been proposed to describe
the geometric and probabilistic features of strange attrac-
tors.2-3%2 Recently these generalized fractal dimen-
sions have been used to quantify the self-similar proper-
ties of either numerical’®®°! or experimental fractal aggre-
gates.”! When investigating the scaling properties of the
geometry of a fractal aggregate, the measure p is simply
the mass of the object. The Renyi dimensions are closely
related, by means of a Legendre transform, to the f(a)
spectrum of singularities of the corresponding mea-
sure.>>~3 This deep connection has been recently under-
stood using a statistical mechanics and thermodynamics
formalism.3®3%93

For concreteness let us define a uniform square grid of
size € [Fig. 1(a)]. Let u, denote the proportion of the to-
tal mass of the object inside the ith box: for empty boxes
u; vanishes. Then let us introduce the partition func-
tion3% 33

2.1

where N ~1/¢€* is the number of boxes of the grid. The
so-called order-g generalized dimensions’'~3® are ob-
tained from the power-law behavior of the partition func-
tion in the limit e >0 (N — + o ):

(g—1)D
Zq(e)~6 7,

(2.2)
Dy, D, and D, are the well-known capacity, informa-
tion, and (two-point) correlation dimensions.>* As higher
power g in Eq. (2.1) select denser regions, the D ’s are
positive numbers whose values generally decrease with g.
For globally self-similar fractals all the D,’s coincide.”

It is easy to connect the generalized fractal dimensions
D, to the f(a) spectrum of singularities.”®=3*% In each
box the measure i increases with the size € like

pi~er, (2.3)

where the crowding index®® a,(€) is generally position
dependent. At any fixed € there exist, however, several
boxes with a given crowding index, say a. Their number
N (€) scales with € like

N (e)~pla)e /'™, (2.4)

i.e., these boxes cover a subset of fractal dimension f (a).
Substituting Egs. (2.3) and (2.4) in Eq. (2.1), one gets

Zq(€)~f6""7/(")p(a)da ,

where a is a quasicontinuous variable. Since € is very
small, the integral will be dominated by the value of a
which makes the exponent minimal. This immediately
yields the relation®>~*° [when f(a) and D, are
differentiable functions]

(2.5)



5540

fla)=aq—(¢g—1)D,,
d (2.6)
a(q)=d—q(q =1)D, .

Therefore, the spectrum of singularities f(a) and the
generalized fractal dimensions D, are connected by the
Legendre transform (2.6). It has been argued®®®’ that ¢
and 7(g)=(q —1)D, assume for the partition function Z,
the role that the inverse temperature and the free energy
have respectively in thermodynamics. In this context,
the Legendre transform (2.6) indicates that the place of
energy and entropy is taken by a and f, i.e., the variables
conjugate to g and 7.

It is noteworthy that uniform (globally self-similar)
fractals®®*+93% correspond to the special class of fractals
such that all the Dq ’s coincide. Thus, from Eq. (2.6), the
f(a) spectrum of uniform fractals is concentrated on a
single point =D, =D,. In contrast, multifractals®® %%
are usually characterized by a monotonic decreasing
dependence of D, versus g; hence a is no longer unique
but may take on values in a finite range [ain, @maxls
while f (a) turns out to be a single humped function with
D, as its maximum; ¢a,=lim, ,.D, and
Qmax=lim, . _ D, characterize the scaling properties of
the most concentrated and most rarified regions of the
fractal object respectively [see Eq. (2.1)].

B. Measurement of the fractal dimensions D,

Difficulties in the actual computation of the general-
ized fractal dimensions D, mainly arise from intrinsic
properties of fractals, namely, lacunarity** and nonunifor-
mity’®°>%* (multifractality). Lacunarity manifests itself
as intrinsic oscillations®>~%’ in the usual linear regressions
of the log-log procedure used to measure the D ’s and
makes an accurate dimension estimate an elusive goal in
many cases.’®% Multifractality requires the simultane-
ous characterization of the most concentrated (D ) and
the most rarified (D _ ) regions on the fractal which is a
rather difficult task because of poor sampling statistics.
Several numerical approaches have been followed to com-
pute the D,’s. The proposed algorithms are essentially of
two kinds:'®!°! (i) box-counting'®? or fixed-size algo-
rithms,!%* which are well suited to estimate the D,’s with
q =0, as long as D, is not too large; and (ii) nearest-
neighbor or fixed-mass'® 1% algorithms, which are most
efficient to overcome statistical fluctuations and thus can
be used to estimate the D,’s with g <O.

1. Box-counting algorithms

The values of D, for ¢ =0 are estimated with use of a
box-counting algorithm. The aggregate is covered with a
grid of square boxes of size €, which varies from 27° to 2°
[Fig. 1(a)]. According to the scaling behavior (2.2) of the
partition function in the limit €é—0, the D,’s are given
from the slopes of graphs of InZ, /(¢ —1) versus Ine for
small €.

Two factors have proved to be crucial in obtaining
robust estimates of D,. First, since the estimates of D,
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depend on the location of the grid with respect to the
fractal cluster,””'"' we average InZ, /(g —1) for 50
different randomly distributed locations of the origin of
the grid for each value of € as sketched in Fig. 1(a).
Second, the boundary of the aggregate is defined by ele-
mentary cells centered at each boundary site, and the
values of pu; are calculated from the portion of area of
these cells in each box of the grid.”! The ultraviolet
cutoff will thus lead to a crossover to D, —2 at small €
rather than 1 (dimension of a line) or O (dimension of a
point); this contrasts with previous studies which counted
the number of points in each box.

2. Fixed-mass algorithms

For ¢ <0, the values of D, cannot be reliably deter-
mined with a box-counting algorithm because of its
inefficiency in handling spurious small u,. However, a
nearest-neighbor algorithm can be used;'*'% this algo-
rithm requires some averaging over fixed-mass calcula-
tions instead of fixed-size calculations inherent to the
box-counting algorithms.

Let us consider a set of balls B;(u), centered on each
point of the aggregate boundary and containing a con-
stant mass u [Fig. 1(b)]. These balls have a radius R, ().
Similarly to Eq. (2.1), one can introduce the function

4}

14 _
(W)=— 3 R ()7, (2.7)
T M < 1
where M is the total number of boundary sites. In the
limit u—O0, this function scales like

F‘r/Dq

E(u)~u , (2.8)

where again 7(q)=(q —1)D,. The numerical measure-
ment of Dq_1 is actually performed by computing the
slopes of the regression lines of the curves —7 'InZ (u)
versus Inu. In the implementation of the algorithm only
a subset of N reference points chosen at random on the
boundary of the aggregate (N <M) is used to compute
the arithmetic mean in Eq. (2.7). Of course, large values
of N must be used to obtain asymptotic estimates.

For q <0, 7(q) is also negative and in the limit
q— — o, the terms which dominate in the sum = (u)
[Eqg. (2.7)] correspond to large radii R; which makes the
estimate of D _ _ less sensitive to statistical fluctuations
(we recall that D _ characterize the region where the
measure p is the most rarified). However, in return, the
most concentrated regions correspond to small radii R;,
which makes the estimate of D, in the limit ¢ —+
much less reliable than the estimate derived when using
the fixed-size partition defined in Eq. (2.1).

C. Measurement of the f (a) spectrum of singularities

In previous studies, the Dq ’s were usually determined
from box-counting or fixed-mass algorithms and the f(a)
curve was naturally deduced from the Legendre trans-
form (2.6) of the curve 7(¢)=(q —1)D,. But such a com-
putation requires first a smoothing of the D, curve and



41 WAVELET ANALYSIS OF THE SELF-SIMILARITY OF . .. 5541

then Legendre transforming. This procedure has a main
disadvantage: The smoothing operation prevents the ob-
servation of any singularities in the curves f (a) or 7(q),
and the interesting physics of phase transitions in the
scaling properties of the fractal measure can be complete-
ly missed.'®

Several methods®® 10105106 haye been recently pro-
posed for the direct computation of the f(a) spectrum
based on log-log plots of the quantities in Egs. (2.3) and
(2.4). Unfortunately, the application of these methods
suffers from neglected logarithmic corrections!®~ 108
which arise from the scale-dependent prefactors in Eq.
(2.4). To overcome these difficulties we usually employ
the following trick.!”! Let us derive the partition func-
tion Z,(¢) [Eq. (2.1)] with respect to g:

N

4 7. (0= 3 uleln(e) . 2.9)
dq i=1

From Eq. (2.2) and the definition of a(q) in Eq. (2.6), one

deduces

d
alg)=7 (¢ 1D,

1
T _ )
lim - 2.‘ bi(g,€)Inpu;(€) , (2.10)

where

,ﬁ,-(q,e)=,u?(e)/2ujl(e) . 2.11)
J

Then upon using the definition of f =ag—(gq —1)D, in
Eq. (2.6), one gets

—lim - S g o
f(a(q))—il_rg Ine ;,u,-(q,e)ln/,t,-(q,e) . (2.12)

Therefore, the singularity spectrum can be directly
computed from Eqgs. (2.10) and (2.12) without explicitly
Legendre transforming, without suffering from poor sam-
pling statistics for large and small values of «, and
without neglecting logarithmic corrections. In a recent
work by Chhabra and Jensen,'® this alternative
definition of f (a) has been proved to be the Hausdorff di-
mension of the measure theoretic support of fi(q), while
al(g) is an average singularity strength. Consequently,
evaluating the singularity spectrum from Egs. (2.10) and
(2.12) resolves the mathematical ambiguities inherent to
most of the numerical methods, which computes f as a
box dimension [Eq. (2.4)] rather than a Hausdorff dimen-
sion.’%3°

III. WAVELET TRANSFORM OF FRACTALS
A. Wavelet transforms associated to the affine group

1. Definitions

The wavelet transform is a technique which consists in
decomposing an arbitrary signal f(t), into elementary
contributions, the so-called wavelets which are construct-
ed from one single function g by means of dilations and

translations:*%4%>2

8.p(t)=Ala,b)g (1)
:a—l/zg(a*l(t—b)), t€ER, (3.1)

where the parameters a and b can be chosen to vary con-
tinuously (a,bE€R, a>0), or to be restricted to a
discrete lattice. The operator A(a,b) represents the ac-
tion of the affine group. The wavelet transform is gen-
erally a complex-valued function which is given by

T,(a,b)=a '2C; " [dig*(a™ e =b)f(), (3.2

where the asterisk denotes the complex conjugate. Ex-
pressing Eq. (3.2) in terms of Fourier transforms one gets

T,(a,b)=a'?C;'? [ dwe*g*(aw)f(0),  (3.3)

where the Fourier transform of a function f(#) is defined
by

Ffloy=@m~12 [dref(1) .

From Egs. (3.2) and (3.3), it is clear that the wavelet
transform provides a time-frequency (space-scale)
analysis of the signal f(z) with filter §(aw) of constant
relative resolution Aw /@ =const. The function g is called
analyzing wavelet if it satisfies the admissibility condi-

tion 346,52

C,=27 [ dolglo) /o< . (3.4)

For wavelets g €L%R,dx) N L'(R,dx), this condition
essentially means that g (¢) is of zero mean:

[dtgn=o0. (3.5)

Then the wavelet transform is an isometry and one can

reconstruct the original function from the inversion for-
mula® 4652

fW=¢;"*[ [a=%dadb T (a,blg,,(1), (3.6

where a ER*, b ER, and a ~*da db is the natural surface
element in the (a,b) half-plane that does not change un-
der shifts and rescalings.

In this section, we have supposed that the signal f(¢) is
square integrable, i.e., of finite energy: fdtlf(t)12< o,
The wavelet transform is thus a linear transformation
which preserves energy:

[atlf()*= [a 2dadb|T,(a,b). (3.7

2. Some examples of analyzing wavelets

The Morlet wavelets: An historical example of analyz-
ing wavelets can be found in the pioneering work of Mor-
let and collaborators.*> These wavelets are defined as su-
perpositions of shifted Gaussians in frequency space. For
every L €R, the function

Solw)=e —lw=?2_, 413/4e —lw— 0% /4 (3.8)

satisfies §,(0)=0. Its inverse Fourier transform is thus
an admissible wavelet:

go(t)=e e 12\ W17 3.9)
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This one-parameter family of analyzing wavelets is usual-
ly called the Morlet wavelets.*> Let us note that, if Q is
chosen sufficiently large, then the second (counter) terms
in Egs. (3.8) and (3.9) become negligible.

The Mexican hat. A very popular analyzing wavelet is
the so-called Mexican hat,* i.e., the second derivative of
the Gaussian function:

gt)=(1—tHe """ (3.10)
Its Fourier transform obviously vanishes for o =0:
glo)=a 7. (3.11)

This admissible wavelet is well localized in both direct
and Fourier spaces. It will be commonly used in the
remainder of this paper. The Mexican hat (3.10) is
sketched in Fig. 2(a).

Piecewise constant wavelets. Fast discrete wavelet
transform algorithms have been recently implemented by
computer.!"1% These algorithms require a piecewise
constant (or piecewise linear) wavelets. In previous stud-
ies?*41-61.63 we have sometimes used the piecewise con-
stant approximation of the Mexican hat:

1, ltl<1
g=1—1, 1<]t]<3 (3.12)
0, |t|>3.

B. Wavelet transforms associated with the
d-dimensional Euclidean group with dilations

1. Definitions

When one intends to generalize to more than one di-
mension the whole machinery developed for the ax +b
affine group (Sec. III A), it is natural to consider the d-
dimensional Euclidean group with dilations.”*!'!° This
group is a nonunimodular locally compact group.
Q(a,r,b) defined below is its most natural unitary repre-
sentation in L2%(R%d %), which turns out to be both irre-
ducible and square integrable:

&4, 0(X)=Q(a,r,blg(x)

=a %g(a"'r Y(x—b)), (3.13)

(a) g(x)

/
<

FIG. 2. The Mexican hat analyzing wavelet. (a) The one-
dimensional variant defined in Eq. (3.10). (b) The radial two-
dimensional variant defined in Eq. (3.23).
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where a, r, and b are, respectively, the dilation parameter
(a>0), the  d-dimensional rotation  operator
[R'g(x)=g(r 'x)], and the displacement vector. The
wavelet transform is defined as follows:

T(a,r,b)=a 92C; "2 [déx g*(a~'r M(x—b))f(x) .
(3.14)
In the Fourier space, Eq. (3.14) is written as
Tg(a,r,b)=ad/2Cg"”2fddk e** (ar ~'k)f (k) ,
(3.15)

where the Fourier transform of a function f (x) is defined
by

FR)=027) " [d% e "™ f(x) .

For the wavelet transform to be invertible, the wavelet
g (x) must satisfy the admissibility condition

C,=my [ dlk|gk)|2/k|{< o . (3.16)
The reconstruction formula can be written as
fx=¢, "2 [ [ [a=9*Vda drd
XTg(a,r,b)g, ,p(X), (3.17)

where a ~‘“*Vda dr d°b is the left Haar measure and dr
the Haar measure on SO(d) (the special orthogonal group
in d dimension). The energy conservation formula be-
comes

J I fatirof

=[ [ [a='""Vdadrd®|T,(a,rb)?. (3.18)

2. Some examples of analyzing wavelets

The d-dimensional Morlet wavelet:> The d-dimensional
Morlet wavelet is defined as follows:

gq’A(x):eiqx(e*(xle)/Z_e—(qqu)/Ze—(xIAx)/Z) .

(3.19)
Its Fourier transform takes the form
g\qYA(k)z‘detB|1/2(e~((k—q1§,B(k—q))/2
— o {aiBa) /2, —(KIBK) /2y (3.20)

A is a positive definite matrix ({x|4x)>0), and
B =A4"'. The counterterms in 84,4 and gq, 4 guarantee
that é\q,A(O):O, i.e., the admissibility condition (3.16) is
fulfilled. In practice, q is chosen in such a way that the
counterterms in Egs. (3.19) and (3.20) are negligible.

The d-dimensional Mexican hat.”® The d-dimensional
Mexican hat is defined by

g (x)=(d — (x| Ax))e X 4x)/2 (3.21)
whose Fourier transform is
g ,(k)=|detB|'/2(k|Bk e ~‘kIBK)/2 (3.22)
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where A is a positive definite matrix and B =4 ~'. For
the particular choice A =B =1, one recovers in the d =2

dimension the so-called radial Mexican hat,*"’* which is
illustrated in Fig. 2(b):

g(x)=(2—|x[2)e /2 (3.23)
its Fourier transform writes

g(k)=k[2% k' (3.24)

The French top hat. A natural generalization in d =2
dimensions of the piecewise constant wavelet defined in
Eq. (3.12) is the French top hat:

L Ix|lyl<1

gx)=1-1 1<lx],lyl<3 (3.25)

0, Ix|,lyl>3.

In our analysis of fractal aggregates, we will mainly use
the top hat wavelet to achieve a fast but systematic inves-
tigation of the scaling properties of the considered aggre-
gates. Then we will use the radial Mexican hat to obtain
final results.

C. Wavelets and scalings of fractal aggregates

As pointed out in Sec. I A, a typical property of frac-
tals is that they are self-similar at small length scales.*’
Local self-similarity means that the fractal measure®® u
(e.g., the mass of the aggregate) scales around the point
X, as [Eq. (2.3)]

((B(xgy h)) ~ A W Blxg,€)) (3.26)

where B(xy,€) is an € ball centered at x, and a(x,) is the
local scaling exponent (Refs. 38, 42, 62, 100, and 106).
As previously mentioned, the D, ’s and the f(a) spec-
trum provide only statistical information about the spec-
trum of a values over the whole aggregate. To collect ad-
ditional information on the spatial location of these
singularities, let us generalize the wavelet transform
analysis developed in Refs. 40, 41, and 61 to fractal mea-
sures over R?.

Let g be an analyzing wavelet over R? that is localized
around the origin and some of whose moments are zero.
We define the wavelet transform of the measure p with
respect to the wavelet g as’™

Ty(a,r,b)= [du(x)g*(a™'r "'(x—b)), (3.27)
where for the sake of simplicity we have neglected any
normalization factor in front of the integral [see Eq.
(3.14)]. Then for noninteger scaling exponent a(x,) and a
wavelet which decays sufficiently fast at infinity,%% 05111
the local scaling behavior of u [Eq. (3.26)] is mirrored by
the wavelet transform

T,(ha,x+Ab)= [dp, (x)g*(ha)"'r ~'(x—2b)) ,
= [du, (Ay)g*(a " 'r Uy —b)),

which scales, in the limit A—0 like
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T, (ha,xg+1b)~A""'T, (a,x,+b) (3.28)
i.e., with the same exponent a(x,) as u. For integer ex-
ponents, the singularities may be masked by polynomial
behaviors;'®! in order to overcome this practical
difficulty, one generally considers wavelets that operate
modulo some polynomials.

At that point, let us mention that on the basis of usual
pointwise dimension calculations®* [Eq. (2.3)] we have
disregarded anisotropic effects in the local scaling behav-
ior of the measure under consideration [Eqgs. (3.26) and
(3.28)]. Henceforth, we will skip, in the wavelet trans-
form notation, the straightforward integration over the
angular variables. From Eq. (3.28) the wavelet transform
can be seen as a “mathematical microscope’” whose posi-
tion and magnification are x;, and a -1 respectively, and
whose optics is given by the choice of the analyzing
wavelet g. This microscope®®*!'¢! allows us (i) to locate
the singularities of u (every local singularity of p pro-
duces a conelike structure in the wavelet transform point-
ing toward the point x, when the magnification parame-
ter a ! is increased); (ii) to estimate the strength of the
singularities of u [every singularity of p manifests itself
through a power-law behavior of T,(a,b) in the limit
a —0, whose exponent a(x,) is the strength of the singu-
larity located at x;]. This analogy with a mathematical
microscope is apparent in the case of interest here, i.e.,
R?, where

cosé
sin@

—sin6
cosf

and 6 is the rotation parameter. Let us note that the ra-
dial symmetry of the analyzing wavelet g conditions the
isotropy of this microscope. The possibility of using non-
radial wavelets looks, however, very attractive for the
study of fractals that do not scale isotropically.'®

In the following sections, we will mainly focus on the
study of the geometric properties of two-dimensional
fractal aggregates. Henceforth, the probability measure
u will correspond to the mass distribution of these aggre-
gates over the plane. We will use the radial Mexican hat
[Eq. (3.23)] shown in Fig. 2(b) as analyzing wavelet. We
will compute the wavelet transform in Fourier space in
order to take advantage of the rapidity of the fast-
Fourier-transform algorithms'®! (resolution 512X 512).
Despite the isotropy working hypothesis, the wavelet
transform T,(a,b) will still depend upon three parame-
ters a, b,, and by. Because it turns out to be the most
suggestive, we will adopt the following representation:
For a given value of the magnification a !, we will illus-
trate the spatial dependence of T, versus b using a three-
dimensional representation; then we will visit smaller and
smaller length scales showing several pictures corre-
sponding to successively increasing values of the
magnification.

IV. WAVELET TRANSFORM OF SELF-SIMILAR
AND MULTIFRACTAL SNOWFLAKE PATTERNS
A. One-scale snowflake patterns

Dendritic crystal growth!'!? enters the wide class of
pattern formation in a diffusion field.!~*> In contrast to
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the irregularly branched structure of DLA patterns,
which will be studied in Sec. V, dendritic crystals have a
well-organized branched geometry, such as those seen in
snowflake patterns.!'>!"* It has been argued that the
main difference comes from the existence of crystalline
anisotropy.!™> In Figs. 3—6 we study a snowflake fractal
which is commonly thought of as a paradigm for self-
similar fractal aggregates.!!®> Its construction rule [Fig.
4(a)] can be considered as a deterministic model for ag-
gregation processes. The “seed” configuration (“basic
motif’) is a symmetric cross built by five particles
(n =1). The configuration at the nth stage is obtained by
adding to the four corners of the (n —1)-stage
configuration, the cluster corresponding to the (n —1)th
stage. Therefore, from one stage to the next stage of the
construction, the cluster length size increases by a factor

loga(Z4)/(q-1)

r log,3 1
a - q>0 A
1.6 —
1.2 —
. (b):
-10 -5 logy(e) 0
[ T T I T T T T I T T T ]
- l 4
S L - q<0
o N X IS E
- “4 %, -
|l T¥ v N \‘/ i
|l -2 cococcoo 3 ]
0 -5 — — logy5 _J
_10 — . —
F 15 - — - (e)
L i | 1 PR L | s " M-
5 10 1ogy (1)

FIG. 3. These graphs illustrate the determination of the gen-
eralized fractal dimensions D, for the one-scale snowflake frac-
tal shown in Fig. 4(a). (a) Box-counting computation of D, for
g =>0. (b) The local dimensions D,, given by the local slopes of
the curves in (a) obtained from linear regression fits for the
range Alog,e=1. (c) The local dimensions Dq_‘ for g <0, ob-
tained from local linear regression fits using fixed-mass compu-
tation (Alog,u=1). N.B.: We keep the notation In in the text
and log;, in the figure captions.
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1~'=3, while the number of motifs is multiplied by a fac-
tor m =3.

1. Generalized fractal dimensions and f (a) spectrum

If a measure possesses an exact recursive structure, one
can compute the generalized fractal dimensions D, using
the following partition function:*®

F(q,‘t‘,l): 2 piq/liT ’

i=1

4.1)

where the construction rule consists in dividing a single
object of size 1 and measure 1 into m identical pieces
with size /; (I =max!;) and measure p;. At the next stage,
each piece is further divided into m pieces, each with a
measure reduced by a factor p; and size by a factor /;. At
this level the partition function will be

I(g,7,1*)=T(g,7,1). @.2)

As pointed out in Ref. 38, for such measures the first par-
tition function I'(q,7,/) in Eq. (4.1), will generate all the
others. In the spirit of the original definition of Haus-
dorff,*®*? the fractal dimensions are obtained on requir-
ing the partition function to be of the order unity. From
Eq. (4.2), one deduces that the D, =7(q)/(q —1) are easi-
ly determined by solving

T(g,r,D=1. 4.3)

As far as the one-scale snowflake fractal shown in Fig.
4(a) is concerned, the /; are all equal to / =1, while the
m =S5 pieces at the first generation have the same mass
and thus receive the same measure p ={. Thus from Eq.
(4.3), we require

(37

(H)7

which yields 7(¢)=(q —1)(In5/In3) or
D,=In5/In3, Vgq .

(4.4)

By Legendre transforming 7(q) according to Eq. (2.6),
one quantifies the self-similarity of the one-scale
snowflake fractal into a single scaling index a=In5/
In3 with the density f (¢=In5/In3)=In5/In3.

In Fig. 3, we have computed the D,’s using the fixed-
size and fixed-mass algorithms described in Secs. IIB 1
and IIB2, respectively. The determination of D, for
¢ 20 from slopes of graphs of InZ /(g —1) versus Ine
[Eq. (2.2)], is illustrated in Figs. 3(a) and 3(b). These
graphs are well approximated by a straight-line of slope
D,=1n5/In3. However, there are regular oscillations
about this line which can be interpreted as first correc-

tions to the leading-order term 7(q) In€ in the expansion
of InZ (e):

InZ (€)=(g —1)D lne+V¥,(Ine) , (4.5)

where W, is a periodic function of period In/ ~'=1n3.
These periodic oscillations are enhanced when plotting
the local slope of these graphs versus Ine as shown in Fig.
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(a)

FIG. 4. Wavelet transforms of the one-scale snowflake fractals shown in (a). The analyzing wavelet is the radial Mexican hat
defined in Eq. (3.23). TheDscale parameter a is successively divided by the same factor / "'=3: (b) a =a®*, (c) a*/3, and (d) a* /32

T,(a,b) is expressed in a O units, where D,=log,5/10g,3, in order to reveal the global self-similarity of the geometry of one-scale

snowflake patterns (singularities of unique strength a=log,5/log,3).

3(b). As previously emphasized by many authors,®>-%°

these oscillations are intrinsic to lacunar fractals. A reli-
able estimate of the D,’s thus requires one to perform the
linear regression fit on a range of scales, which is large
compared to the period of these oscillations.

For g <0, the D, are extracted from slopes of graphs of
—7 InZ () versus Inu [Eq. (2.8)] which actually yield
D, '. As shown in Fig. 3(c), there still are oscillations
around a value D, '=In3/InS, in good agreement with
the theoretical prediction [Eq. (4.4)]. But now the period
of the oscillations is Inm =In5 since the fixed-mass algo-
rithm consists in partitioning the mass and not the size as
in box-counting computations.

2. Wavelet transforms

In Figs. 4(b)-4(d), we present an overview’* of the
wavelet transform of the snowflake fractal shown in Fig.
4(a), when increasing the magnification factor a ~! The
analyzing wavelet is the radial Mexican hat defined in Eq.
(3.23). We actually represent the spatial dependence of
Y,(a,b)=a "“5/‘“3Tg(a,b) for different values of the
scale parameter a =a* [Fig. 4(b)], a* /3 [Fig. 4(c)], and
a* /3% [Fig. 4(d)]. From a visual inspection one can con-
vince oneself that besides the edge detection ability of the
wavelet transform,”® Y,(a,b) does not depend on the
scaling parameter a wherever one points the wavelet mi-
croscope at the snowflake. When investigating smaller
and smaller scales, the wavelet transform reveals the con-
struction rule of the snowflake. The laser prints in Fig. 5,
where T,(a,b) is coded using 32 shades from white

by

(c) (d)
L 4 oo
: .
“ . .muso.‘c
o $ o PR
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: ® e e e
.:0
LA d sfeeieie
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FIG. 5. Wavelet transforms of the one-scale snowflake fractal
shown in Fig. 4(a). T,(a,b) is coded using 32 shades from white
(T, =0) to black (maxT, > 0) for each value of the scale param-
eter (a) a=a*, (b) a*/3, (c) a* /3% and, (d) a*/3>. The analyz-
ing wavelet is defined in Eq. (3.23).
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[T,(a,b)=0] to black [maxT,(a,b)>0], bring a very at-
tractive illustration of this fact. At large scales, one
starts with a single object (let us say, a square), of length
size a* [Fig. 5 (a)]. In the next step, this object is divided
into nine identical pieces, each of which is a reduced ver-
sion of the original object, with length scale a * /3; we re-
move four among the nine pieces, keeping the central
piece together with the four pieces at each corner [Fig.
5(b)]. Then the same procedure is repeated in the next
step for each of the five remaining pieces [Fig. 5(c)]. The
snowflake is then obtained by applying the same rule sub-
sequently [Fig. 5(d)] ad infinitum. In the limit a —O0, the
conelike structure of the wavelet transform provides a
better and better approximation of the shape of the
snowflake.

At each point of the aggregate, T,(a,b) displays a
power-law behavior with exponent a independent of b
[T,(a,b)~const]. The measurement of this exponent at
different points of the cluster is shown in Fig. 6, where
T,(a,b) is plotted versus a in a In-In scale representation.
Disregarding finite-size effects which occasionally affect
the wavelet transform at large scales, T,(a,b) provides a
very accurate estimate of the exponent a=In5/In3, in
good agreement with the theoretical prediction [Eq.
(4.4)]. In fact, the scaling exponent is found to be unique,
as expected for globally self-similar fractals. As indicated
in Fig. 6, T,(a,b) actually displays an oscillatory power-
law decrease in the limit @ —0. The period of oscillation
around the straight line in the log-log plot is
P =Inl ~'=In3; this observation brings further evidence
that the one-scale snowflake fractal is invariant under di-
lation of the length scales by a factor [ '=3. At this
point, let us note that similar oscillations have been ob-
served in the wavelet transform of lacunar fractals;*>4-6!
e.g., the triadic Cantor set. However, contrary to the os-
cillations encountered in the log-log procedure of fixed-

. r - : . - ]
= | |
%o 10 } 1
it |
1.0 I |
| !
) L ]
G ‘» 4
a0 |
2 v Boundary effects 1
r 1
{
0 r— 1
[ 1
3 1
| P = logy(3) ]
£ . )

0 2 4 6 8

logs(a)

FIG. 6. Wavelet transforms of the one-scale snowflake fractal
shown in Fig. 4(a). log,|T,(a,b=b*)| vslog,a (arbitrary
scales). The two curves correspond to the points A(b*=b )
and B(b*=by) respectively defined in Fig. 4(a). The gap
separating the two curves is arbitrary. The dashed lines corre-
spond to the theoretical prediction a=In5/In3. The analyzing
wavelet is defined in Eq. (3.23).
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size and fixed-mass computations of the D,’s, the ex-

istence of oscillations in the wavelet transform does not

necessarily mean that the support of the measure is lacu-
116

nar.

B. Two-scale snowflake patterns
1. Generalized fractal dimensions and f (a) spectrum

The main difference between the construction of mul-
tiscale and one-scale fractals is the fact that the starting
object is now divided into m parts, which are not all iden-
tical. However, all of these are reduced (by scaling fac-
tors that are not identical) versions of the original object.
In Figs. 7-10 we extend our study to the two-scale
snowflake fractal shown in Fig. 8(a). The configuration at
the nth stage is obtained by adding the configuration at
the (n —1)th stage of the growth to the four corners of
the twice enlarged version of the cluster corresponding to
the (n — 1)th-stage configuration. In the spirit of the di-
mension calculation carried out in Sec. IV A 1, the con-
struction rule of this snowflake consists in dividing a sin-
gle object of size 1 and measure 1 into m; =4 identical
pieces with size /, =1 (S for small) and measure p, =1,
and m,=1 piece with size [, =1 (L for large) and mea-
sure p,=1. At the next stage of the construction, the
same process is applied to each of these m =m | +m,=35
pieces. The procedure is then repeated again and again.

Since the corresponding measure has an exact recur-
sive structure, one can compute the generalized fractal
dimensions using the partition function (4.1) and the rela-
tions (4.2) and (4.3) (with I =1,>1,):

F(q,r,12)=m,—¥+m2p—§= . (4.6)
I7 2
In Fig. 7(b) we show D, =7(q)/(q —1) as a function of g,
as obtained numerically by solving Eq. (4.6) which is
equivalent to

27941794 a7ma=1 | 4.7)

To compute the f(a) spectrum one can reproduce the
calculation developed in Ref. 38 for the two-scale Cantor
set. At the nth level of the construction, Eq. (4.2) be-
comes

[(g,7,15)=3 Clapfipir ~(1{13 /)" "=1, (4.8)

J

where CJ/=n!/jln —j)l. In the limit n —+ 0, we ex-
pect that the largest term in this sum should dominate.
To find the largest term we compute

—a—lnl“(q,r,l;'z')=0 R

3j (4.9)
which is equivalent to
In(n/j—1)+Ind+qIn(p,/p,)
r= KRR (4.10)

In(l,/1,)
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FIG. 7. These graphs illustrate the determination of the gen-
eralized fractal dimensions D, and the f(a) spectrum for the
two-scale snowflake fractal shown in Fig. 8(a). (a) Box-counting
computation of D,, for ¢ 20. (b) D, vs g as obtained by solving
Eq. (4.7). (c) f(a) vs a from Egs. ( 4 11), (4.13), and (4.15). The
X corresponds to the f(a) spectrum [Eq (4.4)] of the one-scale
snowflake fractal shown in Fig. 4(a).

Since we expect that the maximal term dominates the
sum in Eq. (4.8), one can set this term equal to unity;
after some algebraic manipulations involving Eq. (4.10),
one finds

In(n /j)In(l, /1,)—In(n /j — Dinl,
=In41nl/,+q[Inp,Inl, —Inp,Inl,] .

(4.11)
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Thus, for any given g there will be a value of n /j which
solves Eq. (4.11) and, in turn, determines 7(q) (and conse-
quently D,) from Eq. (4.10). This maximal term which
yields 7 actually comes form a set of C. objects of the
same size [{/5" =/, where j and n —j are, respectlvely, the
number of S’s and L’s in the symbolic sequences that ad-
dress each of these objects. Their density exponent f is
determined by [see Eq. (2.4)]

Cia(lly =)y = 4.12)

or

(n/j—Dln(n/j—1)— n/J)ln(n/J)-—ln4
Inl; +(n/j—1lnl,

f=

(4.13)

The singularity exponent a is then obtained by solving
[see Eq. (2.3)]

lp(n—j)z(ljl'l(zn—f) ), (4.14)
which yields
__Inp;+(n/j—1lnp, 4.15)

1n11+(n /_] _—I)Inlz

In Fig. 7(c), we display the f (a) spectrum obtained from
Egs. (4.13) and (4.15). This spectrum is characteristic of
a multifractal measure. The scaling exponent a takes on
a value in a finite range: a.;, <a <a,,, Where

flogin)=0

is associated with the symbolic sequence
LLL ---LLL - -, which addresses the central point and
corresponds to the region of highest mass; conversely,

max=D - =lnp,; /Inl; =2, fla, ., )=1 (4.17)

=D, ., =Inp,/Inl,=1, (4.16)

a

is associated with the symbohc sequences S, , S, ,
S, - S, ,S . (where i =1, ,4 labels the select-

ed small plcce among the m1=4 p0551b1e ones at each
stage of the construction) that correspond to the regions
of lowest mass: from Eq. (4.13) these regions have a finite
density exponent f(a,,,)=1. Let us remark that the
maximum of the f(a) curve gives the fractal dimension
D, [Eq. (4.7) for g =0]:

Dy=3—In(V17—1)/In2~1.357 . (4.18)

In Fig. 7(a) we illustrate the numerical determination
of D, for ¢ 20, from slopes of graphs of InZ, /(g —1)
versus Ine using the box-counting algorithm described in
Sec. IIB1. As compared to the corresponding graphs
obtained for the one-scale snowflake fractal [Fig. 3(a)],
the graphs in Fig. 7(a) are well approximated by a
straight line whose slope is no longer independent of ¢
but ranges from a~a,;,=1 for large values of ¢ to
a~1.39 for g =0. At this point let us mention that we
have also performed the fixed-mass computation of the
D,’s for ¢ =0, together with the direct measurement of
the f(a) spectrum using Eqgs. (2.10) and (2.12). These re-
sults were found to be in good agreement with the
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Ty(2.5)
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a

FIG. 8. Wavelet transforms of the two-scale snowflake fractal shown in (a). The analyzing wavelet is the radial Mexican hat
defined in Eq. (3.23). The scale parameter a is successively divided by the same factor /, '=4: (b) a =a®*, (c) a* /4 and (d) a* /4°.
T,(a,b) is expressed in a 9 units in order to reveal the multifractality of the two-scale snowflake fractal (D, =1.357).

theoretical predictions shown in Figs. 7(b) and 7(c), pro-
vided we initially proceeded through a rather large num-
ber of steps in the construction of the two-scale snowflake
fractal. As previously pointed out, accurate dimension
measurements require averaging over several periods of
oscillation in the usual log-log procedure.

2. Wavelet transforms

In Figs. 8 and 9, we present the two-scale snowflake
fractal shown in Fig. 8(a) as seen through the wavelet mi-
croscope when increasing the magnification factor a .
A three-dimensional representation is used in Fig. 7,
while Tg(a,b) is coded using 32 shades from white
[T,(a,b)=0] to black [maxT,(a,b)>0] in Fig. 9. In or-
der to compare this analysis with the wavelet transform
of the one-scale snowflake fractal (Sec. IV A 2) (and thus
to test the ability of the wavelet transform to distinguish
a multifractal from a globally self-similar aggregate), we
actually show in Fig. 8, the spatial dependence of
Y,(a,b)=a DOTg(a,b) where D, [Eq. (4.18)] is sup-
posed to be known from previous box-counting or fixed-
mass measurements. At large scales, a ~a*, the two-
scale snowflake fractal looks like a single object [Figs.
8(b) and 9(a)]. When progressively decreasing the scale
parameter a, the size of this object reduces to a charac-
teristic size a ~/, =1, while four satellites emerge at each
corner of this object [Fig. 9(b)]. These satellites have ful-
ly developed (with respect to the main peak) when one
reaches the value a =/, =1 [Fig. 8(c) and 9(c)]. As seen
in the three-dimensional representation in Fig. 8(c), the

wavelet transform of the two-scale snowflake fractal
presents a mountainous landscape with a main peak of
size [, =1 at the center (LLL. . .LL. . .) and four identi-
cal hills of lowest height and size /; =+ located at the
points corresponding to the symbolic sequences
SLL...LL.... Then when further increasing the
magnification, the same process is repeated for (i) the
main central peak which splits into a sharper central
peak of size l§=§ (LLL...LL...) [Fig. 9(d)] and four
smaller peaks of size /,/,=+ (LSL...LL...), and (ii)
the four satellites from which emerge four secondary
peaks of size /;/,=+ (SLL...LL...) and 16 smaller
peaks of size I[{= (SSLL...LL...) [Figs. 8(d) and
9(e)]. The snowflake in Fig. 8(a) is then obtained in the
limit a —0, by subsequently applying the same rule [Fig.
9(f)]. The peaks that successively show up when increas-
ing the magnification correspond to symbolic sequences
with k symbols L and S and an infinite “tail” of L’s. The
peaks that have the same size and same height are ad-
dressed by symbolic sequences which possess the same
number of L’s and S’s, respectively, in the k first symbols
preceding the infinite tail of L’s. Then, when further in-
creasing the magnification, these peaks keep growing
(they correspond to singularities of strength a <D,) in
the three-dimensional representation shown in Fig. 8§,
while the height difference between peaks of different
generations (i.e., associated with singularities of different
strength) remains unchanged because of the infinite tail of
L’s in their symbolic sequence address. The mountainous
landscapes shown in Fig. 8, with peaks of different
heights corresponding to the strongest singularities, are
thus typical of wavelet transforms of multifractal aggre-
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(a) (b)

FIG. 9. Wavelet transforms of the two-scale snowflake frac-
tal shown in Fig. 8(a). T,(a,b) is coded using 32 shades from
white (T, <0) to black (max7, >0) for each value of the scale
parameter (a) a =a*, (b) a*/2 (c) a* /2% (d) a* /2% (e) a* /2%,
and (f) a* /2°. The analyzing wavelet is defined in Eq. (3.23).

gates. They drastically contrast with the landscapes in
Fig. 4, where all the peaks have the same height as a
direct consequence of the global self-similarity of the
one-scale snowflake pattern.

Besides its ability to reveal the construction rules of a
multiscale snowflake fractal (Figs. 8 and 9), the wavelet
transform provides a very efficient tool to measure quan-
titatively the local scaling exponent a(x). At each point
on the aggregate, T,(a,b) displays a power-law behavior;
the exponent a(b) is found to vary from one point to the
other, as shown in Fig. 10, where T,(a,b) is plotted
versus a in a log-log scale representation. Disregarding
finite-size effects at large scales and the ultraviolet cutoff
(lattice mesh size) at small scales, the wavelet transform
yields an accurate estimate of a(x), in good agreement
with the theoretical predictions [Eq. (4.15)]. When one
focuses T,(a,b=b,) at the central point b,

20
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logel IT,( a, B=B" ) ]

2 4 6 8 10
logz(a)

FIG. 10. Wavelet transforms of the two-scale snowflake frac-
tal shown in Fig. 8(a). log,|T,(a,b=b*)| vs log,a (arbitrary
scales). The three curves correspond to the central point
A(LLL...LL...) associated with the strongest singularity
a=dm,=1, the point C (SSS...SS...) associated with the
weakest  singularity a=amax=% and the point B
(LSLS...LS...) where a=1.33. The analyzing wavelet is
defined in Eq. (3.23).

(LLL...LL...), one extracts the slope a(b,)=a,,
=1.0, which is the predicted strength for the strongest
singularity [Eq. (4.16)]. From the slope obtained at one
(be) among the 4" points with symbolic sequence address
SSS...SS..., one gets a remarkable estimate of
a(bec)=a,,,=1.50 for the strength of the weakest singu-
larities [Eq. (4.17)]. When one repeats this measurement
for other less trivial symbolic sequences, e.g., bp
(LSLSLS . . .), one obtains values of @ [a(bg)=1.33] be-
tween these two extremes, which fit remarkably the
theoretical values given by Eq. (4.15). To conclude, let us
remark that T,(a,b) actually displays an oscillatory
power-law behavior in the limit @ —0 with two charac-
teristic periods: P;=In/,”'=In4 and P,=Inl,”!
=In2. The oscillations with period P, have a large am-
plitude, as seen in Fig. 10 (point C). The oscillations with
period P, have a rather small amplitude and are unno-
ticed (points A and B). Thus, the measurement of these
periods provide a direct estimate of the two scale factors
1, and /,. Then with the additional information extract-
ed from the exponent measurement a.,;,=Inp,/
In/, at point A4 and a,,=Inp,/In/, at point C, one can
deduce*®*!¢! the value of the measures p; and p, which
leads to a complete knowledge of the structural complexi-
ty of the two-scale snowflake fractal shown in Fig. 8(a).

V. WAVELET TRANSFORM OF DIFFUSION-LIMITED
AGGREGATES

A. Generalized fractal dimensions and f (a) spectrum

The DLA model introduced by Witten and Sander®
can be regarded as describing cluster growth in the
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FIG. 11. (a) A DLA cluster of mass M =13 X 10° computed
on a square lattice with the original model of Witten and Sander
(Ref. 6). (b) Dependence of the radius of gyration R, on the
cluster mass M; R, is an average value over 50 independent
DLA growths.

diffusion field, because particles sticking to the cluster
come far away through pure random walk. Although the
tortuous shape of DLA clusters [Fig. 11(a)] makes them
seem quite different from regular snowflakes [Fig. 4(a)],
recent numerical studies have pointed out some morpho-
logical change of the overall profile of DLA patterns to
more or less regular shapes when some anisotropy is in-
troduced either in the sticking rule or in the random
walk.'>?3-2% But such an anisotropy can also be induced
by the underlying lattice in the limit of large mass clus-
ters (Refs. 8, 14-16, 23-25, 27, 28 and 117-119). This
anisotropy can even show up for small clusters when us-
ing a noise-reduced version of the DLA model.?’ In their
original paper, Witten and Sander® found that the
dynamical dimension D, describing the dependence of
the weight of a cluster (number of occupied site) on its
average radius of gyration during the growth process was
D,=1.70%0.02, while the dimension D, extracted from
the density-density correlation function of the cluster at
the end of the growth was smaller, D, =1.66+0.01. Sub-
sequent numerical simulations'!~*120 have corroborated
the result that D, is larger than D, and D as issued from
box-counting measurements.

Here we compute not only the fractal dimension D,
and the correlation dimension D, (as in previous works),
but also the whole spectrum of generalized fractal dimen-
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FIG. 12. These graphs illustrate the determination of the
generalized fractal dimensions D, for the DLA cluster shown in
Fig. 11(a). (a) Box-counting computation of D, for ¢ >0. (b)
The local dimensions D,, given by the local slopes of the curves
in (a) obtained from linear regression fits for the range
Alog,e=1. (c) The local dimensions D, ' for ¢ <0, obtained
from local linear regression fits using fixed-mass computation
(Alog,u=1).

sions D,, and we find that within the uncertainties the Dq
are the same. The DLA cluster shown in Fig. 11(a) was
computed using the on-square lattice algorithm proposed
by Ball and Brady.'* In order to avoid anisotropic
growth induced by the underlying lattice, we focus our
attention on clusters of small mass (M <15X10° parti-
cles); these clusters are expected to be of the same nature
as those computed using off-lattice algorithms where
disks of elementary size diffuse in a continuous medi-
um.'?! As previously mentioned in Sec. I B, the bound-
ary of the DLA clusters is taken to be given not by a
discrete set of points but by elementary square cells cen-
tered at each border point.’! The box-counting analysis
for ¢ 20 is shown in Figs. 12(a) and 12(b); this analysis
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yields D, =1.60+0.02, independent of ¢ for an € range of
nearly two decades. Moreover, the values of D, for g <0,
as obtained with the fixed-mass algorithm [Fig. 12(c)], are
in excellent agreement with the D, values for ¢ 20. We
have conducted a similar analysis for DLA clusters
grown on a triangular lattice which confirms that our nu-
merical estimate of D, is not affected by the anisotropy of
the underlying lattice. Similar analysis for clusters of
3000-50000 particles have not revealed any significant
change in the measured value of D,. These observations
strengthen the results of previous simulations’! per-
formed in a strip geometry with periodic boundary condi-
tions and converge to the conclusion that small mass on-
lattice DLA clusters are statistically self-similar with di-
mensions

D,=1.60+0.02 , (5.1
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independent of gq. The corresponding f(a) spectrum is
thus concentrated on a single point:

a=1.60, f(a=1.60)=1.60 . (5.2)

At this point, let us note that our estimate of D, [Eq.
(5.1)], as well as previous box-counting!*’?> and point-
wisel’ computations of the fractal dimension D, is
significantly smaller than numerical estimates®!*~!> and
theoretical predictions’~'® for the dynamical dimension
D,(~1.71) deduced from the evolution of the radius of
gyration during cluster growth. This observation is
confirmed in Fig. 11 where the dynamical dimension
computed during the growth of 50 on-lattice DLA clus-
ters is found to be unambiguously larger than D:
D,=1.72£0.05. The possible reason for this discrepan-
cy between D, and D, is that, in computing the depen-
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FIG. 13. Wavelet transforms of the (M =5465 particles) DLA cluster shown in (a). The analyzing wavelet is the radial Mexican
hat defined in Eq. (3.23). The scale parameter a is successively divided by the same factor §=1.55; (b) a =a*, (c) a* /5, (d) a* /82, (e)
a*/8% and (f) a* /8% T,(a,b) is expressed in @' units in order to reveal the global self-similarity of the geometry of DLA clusters
(singularities of unique strength a ~1.60).
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dence of the radius of gyration R as a function of the
mass of the growing cluster, one underestimates the num-
ber of occupied sites that will actually be contained in a
disk (centered on the original seed) of radius R at the end
of the growth. Since this undershoot seems to be less and
less dramatic when increasing the mass of the cluster, it is
very likely that asymptotically D, and D, converge to a
unique value. So far there has been no definite numerical
proof of this conjecture. Let us mention that in a recent
study,!® D, has been found to decrease during the early
stages of growth. The use of D, instead of D, is probably
the reason that a previous study® failed to reveal the
self-similar structure of DLA clusters.

B. Wavelet transforms

Figure 13 shows the wavelet transform’™ of a DLA
cluster of mass M =5645 through different panels corre-
sponding to decreasing values of the scale parameter a.
To best reveal the global self-similarity of this aggregate,
these panels actually illustrate the spatial dependence of
Y,(a,b)=a ’l'ng(a,b). As already experienced in our
previous analysis of snowflake fractals in Sec. IV, the
wavelet microscope provides insight into thinner and
thinner internal details in the shape of DLA patterns.
But what is remarkable in Figs. 13(b)-13(f) is that every-
where in the plane, the DLA pattern branches at the
same rate when the magnification factor is increased:
Y,(a,b) does not display any significant dependence upon
the translation parameter b provided the wavelet trans-
form points to a cluster particle. The laser prints in Fig.
14, where T,(a,b) is coded using 32 shades from white
[T,(a,b) =0] to black [maxT,(a,b)>0], are very sugges-
tive of the fact that, as seen through the wavelet micro-
scope, DLA clusters look very much like viscous
fingers.!~>1%120 When a is decreased, the main fingers
observed at large scales [Figs. 14(a) and 14(b)], split into
fingers of smaller width, among which one can distin-
guish secondary fingers which appear on the side of the
main fingers [Figs. 14(c) and 14(d)]. This structuration of
the cluster boundary when the magnification parameter
a ! is increased presents a strong analogy with the tip-
splitting and side branching instabilities observed dynam-
ically in viscous finger experiments.'?>~'2¢ In the limit
a —0 [Figs. 14(e) and 14(f)], the width of the fingers keeps
decreasing until it reaches the particle size (which is very
likely to play the role of the capillary length in viscous
fingering), while successive generations of fingers are
brought to light. Then one recovers the DLA pattern
with its arborescent structure.

As sketched in Figs. 14(c) and 14(f), the self-similarity
of DLA patterns is strongly related to the existence of a
characteristic screening angle 8 between branches of two
successive generations.!~>!?7 Even though our statistical
sample is not large enough to allow us to produce any re-
liable estimate of this angle, our average value is quite
compatible with a rough pentagonal symmetry (B8) ~36°.
The presence of a fivefold symmetry in diffusion-limited
aggregation has already been suggested in previous
works.”">!28 In a related study of a random fractal au-
tomaton'?’ it has been shown that the rotational symme-
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(a) ) (b)

FIG. 14. Wavelet transforms of the (M =5465 particles)
DLA cluster shown in Fig. 13(a). T,(a,b) is coded using 32
shades from white (T, =0) to black (maxT, >0) for each value
of the scale parameter (a) a =a*, (b) a* /5, (c) a* /8%, (d) a* /&,
(e) a* /8% and (f) a* /8°> where §=1.55. An average angle {B)
can be defined over a wide range of scales as characterizing
screening effects in DLA growth process. The analyzing wave-
let is defined in Eq. (3.23).

try is actually broken at a screening angle of about 47 /5,
where DLA-like patterns occur. This critical angle also
shows up in the shadowing effects which are inherent to
fractal growth processes.!>® We refer the reader to a re-
cent comparative study'®! of unstable viscous fingers and
DLA clusters grown in different geometries (linear chan-
nel, radial configuration, and sector-shaped cells) which
underlines the fivefold symmetry in both these growth
mechanisms and brings more convincing indications that
one can pursue to a quantitative level the analogy be-
tween diffusion-limited aggregation and viscous fingering
in isotropic Newtonian fluids.

In Fig. 15, T,(a,b) is plotted versus a in a log-log scale
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FIG. 15. Wavelet transforms of the DLA cluster of mass
M =13 X 10’ particles shown in Fig. 11(a). log,|T,(a,b=b*)| vs
log,a (arbitrary scales). The three curves correspond to the cen-
tral seed 4 (b*=b,) (solid line) and to two other points B
(b*=by) (dashed line) and C (b* =b.) (dashed-dotted line) ar-
bitrarily chosen on the cluster boundary. The analyzing wavelet
is defined in Eq. (3.23).

representation. The measurement of the local scaling in-
dex a(b) is affected (i) at large scales by finite-size effects
(the fact that M is finite also enhances the privileged role
played by the seed particle at the center of the clus-
ter);*>13% and (ii) at small scales by the ultraviolet cutoff
induced by the mesh of the underlying lattice (sticking
length). Taking care of these experimental difficulties, we
have carried out a rather systematic (log-log) investiga-
tion of the a dependence of T,(a,b) all over the DLA
cluster shown in Fig. 11(a). We have reproduced this
analysis for different DLA clusters with mass
M <15X10% As previously suspected from the qualita-
tive survey in Fig. 13, the collected data bring definite
evidence for the global self-similarity of DLA clusters
with a unique local scaling exponent @~ 1.60. This ob-
servation demonstrates that the f(a) spectrum reduces
to a single point f(a=1.60)=1.60 [Eq. (5.2)] and conse-
quently that the generalized fractal dimensions coincide
D,=1.60, Yq [Eq. (5.1)].

However, beyond the local character of the wavelet
transform analysis, the actual self-similarity of DLA pat-
terns still remains at a statistical level. As shown in Fig.
15, T,(a,b) displays an oscillatory power-law decrease in
the limit @ —0. But in contrast to the wavelet transforms
of self-similar snowflake fractals (Fig. 6), the oscillations
around the straight line in the log-log procedure are ap-
parently not periodic. This observation raises several
questions of fundamental importance. First one can
wonder whether this aperiodicity persists at smaller
scales in the limit of large mass DLA clusters. Then if
one is able to confirm numerically the existence of
aperiodicity, one must decide whether this departure
from periodicity is external noise or deterministic
chaos.!**-137 Noisy oscillations would mean that DLA
clusters are random fractals that are generated by a non-
deterministic construction rule.”**® Conversely, chaotic
oscillations would rather indicate that DLA clusters are
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chaotic fractals that are constructed according to a deter-
ministic recursive process.””~’> Unfortunately, the range
of accessible length scales for small mass on-lattice clus-
ters is only a few fundamental periods of oscillation wide
and much larger off-lattice clusters are needed to answer
unambiguously this interrogation. However, on the basis
of the observation that the numerical aperiodicity con-
cerns a range of length scales which is much larger than
the step size s (the fundamental period of oscillation in
Fig. 15 is about four units in log, scale), it is quite out of
the question that the complexity of DLA patterns result
from the random arrival positions of the discrete accret-
ing particles. External noise only affects the small-scale
behavior of the wavelet transform (a ~s) and thus cannot
be responsible for chaotic behavior observed at larger
scales.

The results of our wavelet transform analysis of DLA
patterns are thus much more on the line of the deter-
ministic approach developed by Sander and collabora-
tors.”>~7> The branched geometry of DLA clusters is
very likely to be the expression of a nonlinear chaotic re-
cursive construction process, which accounts for the pro-
liferation of tip-splitting and side-branching instabilities
observed during the growth. In particular, the sequences
of screening angles 3, B,, .. .,B,, ... between branches
of successive generations are apparently chaotic se-
quences. There exist spatial correlations between
branches; for example, when the screening angle B, is
small at a given stage, then the screening angle 3, ., at
the next stage is very likely to be large. In a forthcoming
publication we plan to investigate the deterministic na-
ture of these sequences which are at the heart of the con-
struction rules of DLA fractal patterns. As far as the
deterministic issue is concerned, we will specially analyze
the oscillating power-law behavior of the wavelet trans-
forms of large mass off-lattice DLA clusters, using nu-
merical techniques inspired from dynamical systems
theory,!’*-137 e.g., phase portrait reconstruction, Poin-
caré sections, one-dimensional (1D) maps, etc. Our hope
is to extract a well-defined 1D map from the wavelet
transform data that will bring the first unambiguous
proof that DLA patterns result from a cascade of spatio-
temporal bifurcations.

VI. WAVELET TRANSFORM
OF ELECTRODEPOSITION CLUSTERS

Electrodeposition of metals from electrolytes offers a
very attractive way to study pattern forming phenome-
na.®* Various experiments with a variety of metals have
revealed dramatic changes in the morphology of the de-
posits according to the precise conditions of deposition.
Essentially three regimes of growth have been identified
in two-dimensional electrodeposition experiments: (i)
dense radial patterns®® which tipsplit repeatedly with a
very small screening angle and thus fill space and have a
stable overall outline, (i) dendritic crystal patterns®®?’
which have an ordered structure with stable tips and side
branches (these dendritic clusters resemble snowflakes
and result from a directional growth mechanism); and (iii)
disordered fractal patterns®®®-°! with no evidence of
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preferred direction of growth and which strongly resem-
ble the clusters produced by the diffusion-limited aggre-
gation model of Witten and Sander.® Most of the metals
examined thus far have produced these three major
categories of morphology, with one exception, copper, for
which the formation of dendritic clusters is apparently in-
hibited.®*

DLA-like fractal morphology has been the subject of
various experimental studies®®~°! with mainly zinc and
copper metals. Different configurations have been con-
sidered, e.g., radial geometry®3-% or strip geometry.’®°!
But thus far, most experiments®*~°! have been conducted
when varying independently the concentration of metal
ions and the cathode potential. As theoretically expect-
ed,®* DLA-like patterns have been identified at small
voltage and small concentration when the diffusion
length becomes large as compared to the size of the de-
posit itself, i.e., when the growth is slow. In pioneering
experimental studies,?®%8-% the disordered structure of
the electrodeposition clusters was quantitatively com-
pared to the fractal geometry of DLA patterns through
the numerical computation of the fractal dimension D,
only. This dimension was found to vary from 1.66+0.03
(Ref. 89) to 1.75+0.03 (Ref. 87), in rather good agree-
ment agreement with the well-admitted value of the
dynamical dimension D, ~1.70 for DLA clusters.®!

In a previous work,”! in collaboration with Swinney,
we did revisit these analyses of the fractal morphology of
electrochemical deposits using box-counting and fixed-
mass computations of the whole spectrum of generalized
fractal dimensions D,. The experimental configuration
was zinc electrodeposition in a thin layer between two
rectangular plates. The zinc electrodeposition clusters in
the limit of small ionic concentration and small voltage
were found globally self-similar with D, =1.66%0.08, in-
dependently of q. The analogy with the DLA growth
process was strengthened by a comparative analysis of
small-mass clusters grown in a strip geometry which
brought evidence for the global self-similarity of DLA
clusters, with D,=1.60£0.02. In this section, we use the
wavelet transform to make a more accurate the quantita-
tive comparison between the electrodeposition mecha-
nism and diffusion-limited aggregation. For the sake of
generality, we consider a configuration which differs sub-
stantially from our earlier experiment: two-dimensional
copper electrodeposition clusters are grown in a circular
geometry by applying a fixed current through the cell in-
stead of a fixed potential difference. This is because for
steady-state current flow, we know that the equations
describing the growth are of an identical form as in the
diffusion-limited case.’* Consequently this configuration
should permit a more reliable quantitative analysis of
DLA like fractal growth in electrodeposition experi-
ments.

A. Experimental details

The experimental configuration is a thin layer of a
0.05M CuSO, solution confined between two glass plates.
The gap between the plates is 0.1 mm. A circular copper
electrode of diameter 10 cm surrounds the fluid, and a
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copper cathode of diameter 0.1 mm is introduced verti-
cally through a hole in the upper plate centered within
the ring. The electrodeposition is initiated by applying a
constant current 7 =0.1 mA between the anode and the
cathode. Then copper trees grow two-dimensionally
from the tip of the cathode toward the outside for about
45-50 min without any abrupt change in the intricately
branched geometrical structure of the clusters. At a late
stage of growth these trees have grown to the size of a
few centimeters. The system is illuminated with white
light from below and photographed (at intervals of 30 s)
from above with a 35-mm camera with magnification
from 1 to 10X. Photographs of the cluster are digitized
(512X 512) and intensity levels above a threshold are tak-
en to define the boundary of a cluster. The size of each
pixel is enough for the resolution of the thickness of the
branches. The cluster boundaries are quite sharp, and
the results of our dimension computations (Sec. VIB)
and wavelet transform analysis (Sec. VI C) are rather in-
sensitive to the arbitrarily chosen threshold. The experi-
mental apparatus is shown in Fig. 16.

B. Generalized fractal dimensions and f (a) spectrum

In the imaging data memory of the computer, the
boundary of the electrodeposition clusters is defined by
elementary cells centered at each boundary pixel, and the
values of y; in the fixed-size partition function [Eq. (2.1)]
are calculated from the portion of area of these cells in
each box of the box-counting grid.”!

The box-counting determination of D, for ¢ =0 is
shown in Figs. 17(a) and 17(b). On a wide range of scales
27%<€e<27*, the local dimensions D, [the slopes of the
graphs InZ_ /(g —1) versus In€] depend very weakly on
both € and g. The results for different g are all approxi-
mated by D,=1.6310.03. At larger scales finite-size
effects become important and the slope increases before
ultimately decreasing for €>273. In contrast with our
previous analysis of Zn electrodeposits,’’ we do not ob-
serve any decrease of the local dimensions at small scales
due to the finite thickness of the electrodeposit branches;
the size of one pixel (e=277) is actually slightly smaller
than the thickness of the branches.

For g <0, the values of D, are determined using fixed-
mass computations. The estimation of the local dimen-
sions obtained by averaging over 400 randomly chosen
centers is illustrated in Fig. 17(c) for several values of

cathode ¢=0.1mm

anode ¢=0.1mm
glass plates

FIG. 16. Schematic of the electrochemical radial cell.
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FIG. 17. These graphs illustrate the determination of the
generalized fractal dimensions D, for the copper electrodeposi-
tion cluster shown in Fig. 19(a). (a) Box-counting computation
of D, for ¢ 20. (b) The local dimensions D, given by the local
slopes of the curves in (a) obtained from linear regression fits for
the range Aloge=1. (c) The local dimensions D, ' for ¢ <0,
obtained from local linear regression fits using fixed-mass com-
putation (A log,u=1).

7<0(¢=1+7/D,). The values of D, for all g are con-
sistent with the estimates obtained for g =0, suggesting
that the copper electrodeposition clusters observed at low
ionic concentration and low current are statistically self-
similar with dimensions

D,=1.63+0.03, (6.1)

independent of q. The scaling properties of these clusters
are thus characterized by a f(a) spectrum of singulari-
ties which reduces to a single point

a=1.63, f(a=1.63)=1.63 . (6.2)

The remarkable quantitative agreement between Fig.
17 and 12 corroborates the conclusions of our previous
experimental analysis of zinc electrodeposits’’ and
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strongly suggests that, at least at a statistical level, the
geometry of electrodeposition clusters realizes the geome-
trical complexity of the theoretically proposed diffusion-
limited aggregates.®

C. Wavelet transforms

Figures 18 and 19 show a survey of the wavelet trans-
form analysis of the copper electrodeposition cluster
presented in Fig. 19(a). To best reveal the global self-
similarity of this aggregate, we proceed in a manner simi-
lar to DLA patterns in Fig. 13, i.e., we illustrate in Fig.

18 the spatial dependence of Y,(a,b)=a Do T,(a,b)
where D, =1.63 according to our previous estimate in
Eq. (6.1). When the magnification is increased, Tg(a,b)
actually evolves from a hilly to a mountainous landscape
with an increasing number of peaks of about the same
height. As discussed in Sec. IV B, the fact that all over
the cluster there is no hierarchy in the height of the proli-
ferating peaks in Y,(a,b) shows a strong indication that
the electrodeposition cluster in Fig. 13(a) is a globally
self-similar fractal aggregate. This observation is made
more quantitative in Fig. 20, where T,(a,b) is plotted
versus the scale parameter a in a log-log scale representa-
tion. The measurement of the local scaling exponent
a(b) is mainly affected at large scales by finite-size effects.
With respect to the wavelet transform of DLA clusters
there is no other bias at small scales than the ultraviolet
cutoff induced by the imaging data analysis; as previously
mentioned, the pixel size is slightly smaller than the
thickness of the electrodeposit branches and at that reso-
lution one does not observe any significant departure
from bidimensionality in the growth process. Taking
care that the central seed plays a privileged role because
of the abnormally large size of the tip of the cathode, we
have measured the exponent a(b) at different points
selected at random on the copper electrodeposit in Fig.
19(a), discarding points lying too close to the cathode.
The results shown in Fig. 20 for two arbitrarily chosen
points are representative of the data we have collected;
they bring a strong indication that the exponent a(b)
does not depend on the position b on the cluster where
the wavelet microscope is centered. Moreover, despite
intrinsic oscillations around the straight line in the log-
log plot in Fig. 20, this local exponent is found to be in
remarkable agreement with the value a=1.63 [Eq. (6.2)]
deduced from (global) box-counting and fixed-mass com-
putations of the D,’s. These local measurements demon-
strate that the f(a) spectrum reduces to a single point
f(a=1.63)=1.63, as expected for a globally self-similar
aggregate. As far as the nature of the oscillations in the
log-log representation of T,(a,b) is concerned, the acces-
sible range of scales in Fig. 20 is not large enough to al-
low us to decide whether they are periodic or chaotic.
However, let us point our that the (main) characteristic
frequency of the oscillations obtained for copper electro-
deposition clusters (Fig. 20) is strikingly similar to the
characteristic frequency previously observed for DLA
patterns (Fig. 15).

In Fig. 19, T,(a,b) is coded using 32 shades from white
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(a)

FIG. 18. Wavelet transforms of the copper electrodeposition cluster shown in Fig. 19(a). The analyzing wavelet is the radial Mexi-
can hat defined in Eq. (3.23). The scale parameter a is successively divided by the same factor §=1.55: (a) a =a*, (b) a* /8, (c)

a*/8% and (d) a* /8% T,(a,b) is expressed in a’o units, Dy=1.63, in order to reveal the global self-similarity of the geometry of

copper electrodeposition clusters (singularities of unique strength a~ 1.63).

[T,(a,b) =0] to black [maxT,(a,b)>0]. When decreas-
ing the scale parameter a from large scales, one recovers
macroscopic fingers [Figs. 19(b) and 19(c)] which break
into smaller fingers [Figs. 19(d) and 19(e)] according to a
scenario which reminds the tip-splitting and side-
branching instabilities observed in viscous fingering ex-
periments.'??-126 One feature that is remarkable in this
scenario is the fact that at any scale, the self-similarity of
the copper electrodeposition cluster involves a charac-
teristic screening angle 3 between branches of two succes-
sive generations whose average value is quite compatible
with the fivefold symmetry emphasized for DLA patterns
in Sec. V (Fig. 14): {B) ~36°. Very recently, Couder and
collaborators'? have reported similar observations in the
investigation of unstable viscous fingers in a radial
configuration. This underlying fivefold symmetry seems
to be a key point in the understanding of fractal growth
processes in a Laplacian field. Let us mention that when
investigating the parameter space ([CuSo,],]), we have
met conditions close to DLA growth where some locking
in the electrodeposition mechanism yields a regular
growth of five needle crystals equally spaced without any
branching during the growth (~ 15 min).

To summarize, the wavelet transform analysis of the
copper electrodeposition cluster shown in Fig. 19(a)
brings definite evidence for the existence of a unique scal-
ing exponent a=1.63+0.03. This exponent accounts for
the local scaling properties over the entire aggregate. Its
value is in remarkable agreement with the exponent
a=1.60%+0.02 found for DLA patterns in Sec. V. A

quantitative understanding of this scaling exponent value
in terms of the suspected fivefold symmetry would be a
major step towards the development of a unified theory
for growth processes which take place in a Laplacian
field, the growth velocity of the patterns being propor-
tional to the local gradient of this field. We hope to ela-
borate on this point in a forthcoming publication.

VII. CONCLUSION

Most previous characterizations of fractal aggregates
arising in physics have relied upon a few “‘universal num-
bers” such as the Hausdorff and correlation dimen-
sions.! 7> Recently, the notion of dimensions has been
generalized to the so-called generalized fractal dimen-
sions D,. These dimensions are closely related to the
continuous spectrum of exponents a and their spectrum
f(a). However, this spectrum only reflects the statistical
contributions of each of these singularities but fails to
memorize their spatial locations. In this paper, we have
introduced a new mathematical technique: the wavelet
transform, which is capable of characterizing the full
geometrical complexity of these aggregates. In fact, this
mathematical microscope is a natural tool for investigat-
ing the local scaling properties of these aggregates.
When increasing the magnification factor, the wavelet
microscope provides an insight into the inner structural
hierarchy of the aggregates, revealing in a spectacular
way, the construction rules of these objects, as shown in
Sec. IV for snowflake fractals.
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(a) (b)

FIG. 19. Wavelet transforms of the copper electrodeposition
cluster shown in (a). T,(a,b) is coded using 32 shades from
white (T, =0) to black (maxT, >0) for each value of the scale
parameter (b) a =a*, (c) a*/8, (d) a*/8%, (e) a*/& and (f
a*/8* where 8=1.55. An average angle {B)~36" can be
defined over a wide range of scales as characterizing screening
effects in electrodeposition process. The analyzing wavelet is
defined in Eq. (3.23).

We have further applied the wavelet transform to nu-
merical and experimental aggregates. The results report-
ed in Sec. V and VI provide the first unambiguous evi-
dence that two-dimensional clusters formed in DLA
simulations and electrodeposition experiments (in the
limit of low ionic concentration and low current) are glo-
bally self-similar fractals. The unique local scaling ex-
ponent a=1.60 for DLA clusters and a=1.63 for elec-
trodeposition clusters are the same within experimental
uncertainty. As seen through the wavelet microscope,
diffusion-limited aggregates and electrodeposition clus-
ters have a similar geometrical structure and are very
likely to belong to the same universality class.

This conclusion seems to be (at least apparently) in

contradiction with the results of previous studies’76-8!
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FIG. 20. Wavelet transforms of the copper electrodeposition
cluster shown in Fig. 19(a). log,|T,(a,b)| vs log,a (arbitrary
scales). The two curves correspond to points A (b*=b,) and
B(b*=by) arbitrarily chosen on the cluster boundary [Fig.
19(a)]. The analyzing wavelet is defined in Eq. (3.23).

of the kinetic properties of growing DLA clusters. Nu-
merical calculations have revealed that the growth pro-
cess is actually not self-similar; in particular, the growth
probability measure (perimeter occupancy probability)
has a finite range of scaling indices, and the f(a) spec-
trum is a convex function similar to those found for mul-
tifractal measures. The sticking probability distribution
is thus a nonhomogeneous distribution over the cluster
perimeter; the physical basis for this fact is that the
(“hot”) tips of the main branches correspond to an active
region of growth, while the growth of many “cold” tips
and fjords is invisibly small if not totally aborted as the
result of screening effects.!>® In a forthcoming publica-
tion”® we will develop a wavelet transform analysis of the
multifractal properties of the sticking probability mea-
sure. Our goal will be to elucidate this screening mecha-
nism in order to make the connection between the mul-
tifractal character of the growth process and the global
self-similarity of the geometry of the growing patterns.
As pointed out in Sec. V, our expectations rely upon the
potential capabilities of the wavelet transform to provide
the foundations for a renormalization-group approach of
growth processes which take place in a Laplacian field.*!
The wavelet transform analysis of the geometry of DLA
patterns performed in Sec. V strongly suggests that the
structural self-similarity of DLA clusters is very likely to
be understood as averaging over the invariant measure of
a deterministic iterative construction process which
displays chaotic behavior. Along this line the scaling
properties of diffusion-limited aggregates would be inter-
pretable in terms of a renormalization-group operator,
which should possess a strange attractor rather than a
classical fixed point as in critical phenomena. In that
sense, this self-similarity would contrast with the exact
fixed-point recursive structure of snowflake fractals.

Since its implementation on a computer is not exces-
sively time consuming and does not require enormous
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storage,'®! the wavelet transform provides a very power-
ful tool for analyzing fractal aggregates of different kinds.
The use of anisotropic analyzing wavelets enriched the
capabilities of the wavelet microscope which may be ap-
plied to characterize directional phenomena or to detect
the presence of local anisotropy in the aggregation pro-
cess. Moreover, there is an alternative to the numerical
wavelet transform of digitized pictures which consists in
performing the wavelet transform using coherent optical
spatial frequency filtering. An optical diffraction device
has been recently designed in our laboratory and is
currently performing what we have called the optical
wavelet transform.'*° The ability of the optical wavelet
transform to operate in real time provides a very efficient
method for characterizing not only static but also dynam-
ical phenomena. The application of the optical wavelet
transform to a variety of experimental situations, e.g.,
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percolation, colloidal aggregation, growth phenomena,
propagation of fracture patterns, nucleation, two-
dimensional melting, and turbulent flows, looks very
promising.
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FIG. 14. Wavelet transforms of the (M =5465 particles)
DLA cluster shown in Fig. 13(a). T,(a,b) is coded using 32
shades from white (T, =0) to black (maxT, > 0) for each value
of the scale parameter (a) a =a®*, (b) a* /8, (c) a* /&%, (d) a* /&%,
(e) a* /8%, and (N a*/5° where 5=1.55. An average angle (B)
can be defined over a wide range of scales as characterizing
screening effects in DLA growth process. The analyzing wave-
let is defined in Eq. (3.23).
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FIG. 19. Wavelet transforms of the copper electrodeposition
cluster shown in (a). T,(a,b) is coded using 32 shades from
white (T, =0) to black (maxT, >0) for each value of the scale
parameter (b) a=a®*, (c) a*/§, (d) a* /8% (e) a*/8 and (D
a*/8* where 6=1.55. An average angle {8)~36" can be
defined over a wide range of scales as characterizing screening
effects in electrodeposition process. The analyzing wavelet is
defined in Eq. (3.23).



,(“) (b)

b,
(c) (d)
® 52
[ 2% ‘ e
. z . | -il o;c -;.
®reecse0ce S TSI
® z ® A A
oce
“ ofe
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shown in Fig. 4(a). T,(a,b) is coded using 32 shades from white
(T, =0) to black (maxT, > 0) for each value of the scale param-
eter (a) a=a™*, (b) a*/3, (c) a* /3% and, (d) a* /3°. The analyz-
ing wavelet is defined in Eq. (3.23).
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FIG. 9. Wavelet transforms of the two-scale snowflake frac-
tal shown in Fig. 8(a). T,(a,b) is coded using 32 shades from
white (T, =0) to black (maxT, >0) for each value of the scale
parameter (a) a =a*, (b) a*/2 (c) a* /2%, (d) a* /2%, (e) a* /2%,
and () @* /2°. The analyzing wavelet is defined in Eq. (3.23).



