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We present a new approach for the calculation of the dielectric response functions for various

strongly coupled Coulomb systems, whose main common feature is that the charges are quasilocal-
ized. Such a model is expected to be a valid description of a strongly coupled plasma in the I »1
limit. The dielectric function a{ken) and the longitudinal plasmon dispersion co(k) appear as func-

tionals of the equilibrium pair-correlation functions. We derive the longitudinal-plasmon disper-

sions for arbitrary k values for the three- and two-dimensional one-component plasmas; both of
them saturate after an oscillatory behavior substantially below their random-phase approximation
value for large k values. In two-component systems correlational effects bring about marked up-

ward and downward shifts in the plasma frequency co(k =0). We find good agreement with

molecular-dynamics data for H+-H mixtures and predict a more significant shift for H+ —high-Z
mixtures.

I. INTRODUCTION

Most approximation schemes for many-body systems,
including classical plasmas, adopt the model of nonin-
teracting particles as a point of departure and add the
effect of interaction as a perturbation. For intermediate
or strong coupling, this is obviously not an expedient ap-
proach. Various nonperturbative mean-field-like' and
semiphenomenological theories have attempted, with
varying degrees of success, to attack the problem in this
latter domain. In this work we present a novel view and
method based upon approaching the problem from the
strong coupling side, i.e., from the I ))1 side, where
I =Z e /k&Ta is the characteristic coupling parameter
for Coulomb systems [a is the interparticle distance;
(4m/3 )a n = l for three-dimensional systems and
tra n= l for two-dimensional systems]. Our general for-2

malism will be applied to a variety of classical plasmas.
In the present paper, the following are of interest: (i)
uniform-background three-dimensional one-component
plasmas (3D OCP)—a single species of classical ions mov-
ing in a neutralizing uniform background of rigid (degen-
erate) electrons; (ii) two-dimensional (2D) electron
plasma —classical e1ectrons trapped in surface-bound
states at the interface of dielectric materials, e.g. , a 2D
electron layer confined to the free surface of liquid heli-
um; here the compensating uniform positive background
is provided by an electrode placed just below the surface;
(iii) uniform-background binary ionic mixtures (BIM);
and (iv) electron-ion two-component plasmas (TCP).

The physical observation that serves as the basis of the
formal development presented in this paper is that the
dominating feature of the physical state of a plasma with
I &&1 is the quasilocalization of the particles. Data
available from Monte Carlo (MC) simulations and

hypernetted-chain (HNC) calculations ' for the OCP
corroborate this physical picture: (i) for high coupling,
the pair-correlation function g (r) establishes strong
peaks at points separated by the order of the interparticle
distance; (ii) the thermodynamic properties (e.g. , energy)
of the OCP change very little as the system passes from
the liquid to crystalline state around I =178 for the 3D
OCP and I =137+15for the 2D OCP.

This physical picture immediately leads to a model
which resembles that of a disordered solid, where the par-
ticles occupy randomly located sites and undergo oscilla-
tions around them. At the same time, however, the site
positions also change and a continuous rearrangement of
the underlying quasiequilibrium configuration takes
place. Nevertheless, inherent in the model is the assump-
tion that the two time scales are well separated and that
for the description of the fast oscillating motion, the time
average (converted, of course, into ensemble average) of
the drifting quasiequilibrium configuration is sufficient.
A requirement certainly necessary for this condition to be
satisfied is that the amplitude of the excursion of the os-
cillations, say s, is much smaller than the interparticle
distance a. That this is indeed so, provided I &&1, can be
seen by considering the paradigm of a strongly coupled
one-component plasma, in which the equilibrium level of
the energy density of the electric field associated with
plasma oscillations can be estimated to be A(I )kttTn,
where k(I ) is a slowly rising function of I, saturating
around 0.1." Then, by virtue of the equipartition be-
tween kinetic and potential energy,

—,
' m co s = A, ( I )ktt T,

leading to
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«1.
In the presence of an external perturbation, further de-

viations from the quasiequilibrium positions result, whose
analysis provides the basis for the determination of the
response functions. In the spirit of the conventional har-
monic approximation for phonons, it will be assumed
that the amplitudes of the total excursions are small and
can be described in terms of a linear analysis. Since the
equilibrium excursions have already been shown to be
small, this assumption is consistent with the standard for-
malism of linear response theory. However, we will fur-
ther assume that the equilibrium oscillations are negligi-
ble and that the excursion amplitude is proportional to
the perturbation. This amounts to neglecting direct
thermal effects against correlation effects in the response:
for strong coupling this is a good approximation since the
former is of O(I' ') times the latter. The distinction
between the "direct" and "indirect" thermal effects in-
herent in the model should be emphasized. The indirect
thermal effects refer to the accessibility of the possible
configurations of the random sites and to the temperature
dependence of the probability of a particular configur-
ation: this aspect is well represented in the present model
through the I dependence of g(r}. On the other hand,
direct thermal effects are responsible for the actual
motion and migration of the particles and give rise, e.g. ,
to the 3k (U ) Bohm-Gross term in the co sum rule
coefficient: this effect is not taken into account in the
present model, although subsequent papers will explore
the phenomenological inclusion of the direct thermal
effects in e(kco).

It should be further realized that even though the ap-
proximation is expected to provide a good description of
the dispersion of the collective modes, it is incapable of
handling their damping or dissipation in general.
Plasmon damping, in general, originates from plasmon
decay into particle pairs (a collisional effect) or from
plasmon-plasmon (or plasmon-sonon, etc. ) interaction. '

The former is absent from the model because particles on
different sites are virtually isolated from each other. The
latter is due to the inherent nonlinearity of the Coulomb
interaction which is not taken into account in the har-
monic approximation. That the plasmon damping de-
creases with increasing coupling strength for I & 10, as
the plasmon-particle interaction loses importance, is
known from 3D molecular-dynamics (MD) simulations'
and is corroborated by theoretical calculations. ' Thus
damping does not appear to be a decisive factor for
strong coupling: this is indeed what one would expect on
the basis of the model of quasilocalized particles. Its cal-
culation, in any case, is beyond the scope of the present
paper and has to await further work and clarification.

Based on the physical picture of quasilocalization, we
will derive relatively simple expressions for the longitudi-
nal dielectric function e(ken) of a strongly coupled mul-
tispecies Coulomb system of arbitrary dimensionality,
and we will show that the resulting dispersion relations
reproduce in the known cases the strong coupling limit of
dispersion relations calculated by nonperturbative

methods. The present formalism, however, goes much
beyond the earlier approaches. While earlier calcula-
tions' ' for intermediate or strong coupling were re-
stricted to the k ~0 domain, here we derive dispersion
relations for arbitrary k values and can predict the lower
bound of the plasmon frequency and an unexpected oscil-
latory behavior. For multicomponent systems, we can es-
tablish new relationships for the shift of the plasma fre-
quency [co(k =0)] and its random-phase approximation
(RPA) values, in more satisfactory agreement with MD
data' than earlier sum rule analysis data. The predicted
shift can be quite substantial and the parameter ranges
where large shifts occur correspond to experimentally
realizable and interesting situations.

The plan of the paper is as follows. In Sec. II, starting
from a Hamiltonian formulation, we calculate the dielec-
tric response function for a plasma system based on the
model we have described. From this parent calculation,
we formulate in Secs. III—V the plasmon dispersion rela-
tions for the 3D ion OCP, the 2D electron OCP, and the
binary ionic mixture. In Secs. III and IV, we calculate
the OCP plasmon dispersion at finite wave numbers; in
Sec. V, we calculate the ionic mixture plasma mode fre-
quency at zero wave number. A dispersion relation for
the two-component electron-ion plasma is briefly ana-
lyzed in Sec. VI. Conclusions are drawn in Sec. VII.

II. FORMALISM

Our principal purpose is to determine the response of
the system to a small perturbing external potential. In
order to do this, we develop a Hamiltonian for the small
displacements (as dynamical coordinates) around the
quasiequilibrium sites (playing the role of parameters
only}. Our notation is as follows: i,j,k enumerate parti-
cles; A, B,C designate different species; a,P, y are the
three-dimensional vector indices. Einstein summation
convention for the repeated vector indices is understood,
but repeated (or unrepeated) species indices are summed
over only when barred ( A, etc). Now, let

be the momentary position of the ith particle of species
A, x,

" its average quasiequilibrium position, and g,"(t) the
amplitude of its small excursion. The (partial) Hamil-
tonian appropriate for the description of the dynamical
processes is

+ y(.4 j) A(

Bxt- ~

where K," & is given by
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(3)

This Hamiltonian, formally similar to that of a multicom-
ponent crystalline solid, describes a system of charged
particles of one or more species (A, B,C =1,2, . . . ) em-
bedded, if needed, in a uniform background (b) of oppo-
site charge which ensures overall electrical neutrality.
[4 "is the potential energy, in the external potential, of a
particle of species A; n;" =m„g,", is the momentum
conjugate to g;"; Nb is the total number of background
particles; Vd is the large but bounded volume of the d-

dimensional (d=2, 3) system. The charge neutrality con-
dition requires NbZ = —Q„N&Z". ] Note the charac-
teristic separation of the Hamiltonian into off'-diagonal
(1—5" 5,&) and diagonal (5" 5, ) contributions (5" and

5, are Kronecker deltas); this latter originates from the
displacement of a particle in a fixed environment of the
other particles, while the former originates from the Auc-

tuating environment.

We now introduce the collective coordinates in Fourier
representation, gk and nk", in terms of which

A
gl Q

(N )f/2 X kk Q

AmA
' 1/2 (4)

A
i, a

Ik'Xke.
k

These are formally similar to the coordinates used in the
harmonic approximation of lattice vibration. Neverthe-
less, in view of the lack of periodicity in the background
in the present situation, the question of the transforma-
tion leading from (g,",n;" ) to (gk, m'k ) being a good
canonical transformation needs further clarification and
is discussed in the Appendix. Keeping this in mind, the
Hamiltonian (2) then can be rewritten as

A AH= gn Vr n p q2N-A

zC
A C z

ZA ZA
—k —

p
—q~ k + Nb5kn —

p
—

q 4,-4,1

V, (N-. m-. )'" (5)

where

4' AZ "e for 3D
mA V3

2m.NA kZ'e
mA V2

for 2D

is the (signed) d-dimensional plasma frequency of species
A; the unperturbed ("base") density

(n "n }=N„NB5p+q 5q+ g (q)
1

p q A B p+q q

+N„5" 5p+q,

where g" (q) is the Fourier transform of the equilibrium
pair-correlation function g" (r) for an ( A, B) pair. The
resulting new Hamilton is

TX~ka~ —ka
k

P1 k
t =1

k kp+ —,
' g D "B (k)+

2
co "(k)co (k)

k

depends on the x, ,I, etc.—coordinates which are not
dynamical variables. Our principal approximation now
consists of replacing this random base by its ensemble
average. This latter is evaluated through where

1/2
A

Vd m— g k C "( k, r)g„", —
k
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D AB(k) y A( ) B(1 ~a~P

q

, on the other hand, with

p "(kco)=y" (kco)4 (kco), (17)

X—Z
X g" (k —q) —5" g" (q)

XAZ

(9)

T

&A&B
+AB(k 1

Vd mAm,

can be obtained from (16) as
1/2

k b, ' (kco).

Note that the background term has been canceled by a
contribution originating from the 5q term in (7) due to
overall charge neutrality.

The routine calculation of gk (t) from Hamilton's
equation yields k,D "B (k)kt3D" (k)=

(19)

Here the 6 ' propagator for the total longitudinal field
perturbation is the inverse of the matrix

JAB(kco) —co2$AB D AB(k)

j:A ~ A
bka ka

S —k, a

k kpD" (k—)+co "(k)co (k)

1/2
A

Vd m„
k 4 "(k, t) . (10)

(co), the Fourier transform of (k, can then be ex-
pressed as

N-
g„" (co) = k&(r ') "& (kco)4 (kco),

Vd m

The standard procedure' now provides e as

AB(k~) g AB yAc(k)~cB(k~) (20)

4 eZ AZB for 3D
k

y AB(k)

ZAZ for 2D

and thus (19) becomes

where P" (k) is the interaction potential between species
A and 8. Here

where the propagator I ' for the external perturbation
is the inverse of the matrix

r AB(k )
— 2gABg A(k) B(k) a

D AB(k)
k kp

(12)

eAB(kco) $ AB coA(k)coc(k)Q
—1 (kco)

The physical dielectric function e(kco) is given by'

e(kco) =1—P" (k)y "(kco)

=1—co "(k)h ' (kco)co (k) .

(21)

(22)

We now consider the Fourier component of the per-
turbed microscopic density

The dispersion relation now can be obtained in general
from

A 1 A
Pk

= —&k~ k —
q qa'

(NAm A )
(13) det e" (kco)=0,

or for the Coulomb potential, from the more familiar

(23)

&A&B
+ AB(k

Vd mAmB

1/2

k.kB(r ') ABB(k~) .
-

(16)

Its equilibrium average p "(kco)= t', pk ) can be calculated
by averaging only over n k q

in (13), since the gq, by vir-
tue of the assumption used in deriving %, is independent
of the x; coordinates. Substituting (10) into (13) and
averaging, we obtain

' 1/2

p"(kco)= k k&(r ')"Bk (kco) . (14)
d A B

We now use the formalism of partial response functions'
ABto calculate partial density response functions g " (to the

external potential) and y" (to the total potential), the
dielectric matrix e and the dielectric function e. The
definition of y

p "(kco)=y " (kco)cP (kco),

compared with (14), provides an expression for y ":

e(kco) =0 (24)

relation. Equation (22) is a new and general result for the
dielectric function of a strongly coupled Coulomb liquid
of an arbitrary number of species and of any dimensional-
ity. Application to particular systems will be discussed in
the sequel.

It is clear from Eq. (22) that e(kco) is real and thus so
are the frequencies satisfying the dispersion relation. In
other words, only the dispersion, but not the damping of
the collective modes, can be determined from the present
theory. Nevertheless, some speculation on the way
damping would appear in a more extended description is
in order. As we have already noted, plasmon damping, in
general, originates from plasmon decay into particle pairs
and from plasmon-plasmon (or plasmon-sonon, etc.) in-
teraction. ' In the physical situation in which the
present model is appropriate, the main mechanism seems
to be the latter. More precisely, plasmon splitting, a1-
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lowed by energy-momentum conservation, is probably
the most dominant process. Thus we expect a small, but
finite damping: its calculation, however, is not part of
the present work.

We will apply formulas (21) and (19) to three uniform-
background situations: the 3D positive ion OCP, the 2D
electron OCP, and the binary ionic mixture. These for-
mulas can also be applied o the two-component electron-
ion plasma with the stipulation that the bare Coulomb
potential is to be modified to incorporate softening of the
Coulomb interaction as a result of quantum-mechanical
efFects, and to eliminate the divergence of g (r) or r ~0

III. IONIC OCP

COp
e(ken) = 1 —

zco2 —co 2)(k)

where co =(4nnZ~e /m, )'~ is the 3D plasma frequency
(n =N;/V) and

(25)

The classical (three-dimensional) one-component plas-
ma (OCP: particles of charge Ze embedded in an inert
neutralizing background) is a widely used model for the
study of the fundamental properties of Coulomb systems.
There is a strong indication that the OCP crystallizes at
I =178+1. Specifying the charges to be ions and the
background to be that of rigid degenerate electrons, the
OCP provides as well a workable model for certain astro-
physical situations (planetary interiors, white dwarfs,
neutron star crusts) and it also faithfully describes recent
experimental situations consisting of Be+ ions trapped
in a Penning trap. The present model should be an ade-
quate description for the strongly coupled liquid state
(15 & I & 178; see below for the lower bound estimate)
and for the possible supercooled ' (178&1'&400) and
conjectured amorphous glassy ( I & 300) states.

The OCP dispersion relation for intermediate and
strong coupling has been calculated by Carini, Kalman,
and Golden' for small k values. Good agreement with
the MD data of Hansen and co-workers' ' was found; in
particular, the critical T' value for the onset of the nega-
tive dispersion (I =9) was accurately predicted. There is
no information, though, in these calculations on the
manner in which the descending portion of the dispersion
curve terminates (for an estimate, see, however Ref. 24).
An asymptotic analysis of the dispersion relation in the
present work provides a prediction for this; even though
refinement of the model somewhat alters the predicted
value, it certainly can be accepted as a reliable lower
bound.

The general expression (22) for the dielectric function
e(k~), in the case of the 3D OCP, simplifies to

2)(k ~0)= 4
k a

45 n I
(28)

where a is the ion sphere radius, P= 1 /ks T, and E, is the
correlation energy density. Since E, &0, (28) provides a
negative dispersion in agreement with MD data. The
theoretical calculations of Carini, Kalman, and Golden'
have also shown that for I ~ (x) and k~0, the plasmon
dispersion is described by (27) and (28). We can use the
results of Ref. 14 also to estimate the I value above
which (27) constitutes a good approximation. The
asymptotic series for I ~ ~ gives

0.5
1 — 0.04— r r k a (29)

The leading term corresponding to (28) dominates over
the next thermal term for about I &15, suggesting this
latter I value as a lower bound beyond which the present
theory gives a good approximation. Moreover, for
k «a=(4nnZ e P. )', the high-frequency expansion of
e'(ken) is manifestly equivalent to the almost exact (25) for
arbitrary frequencies: this justifies the heuristic observa-
tion that the high-frequency sum-rule expansion pro-
vides a good representation of e(kco) in the I ~ oo (i.e.,
I & 15) limit.

For large values, 2) reaches an asymptotic limit

Q( k ~ oo ) = —-', . (30)

Thus for ka »1, the behavior of 2)(k), as also calculated
from HNC data, shows a slower than k dependence.
Evidently, and as we have already conjectured, for
large k, the plasmon dispersion is always dominated by
the thermal k term.

The above asymptotic limit is not reached rnonotoni-
cally: a series of oscillations develops for suSciently high
I values. Details of this behavior are discussed in a
forthcoming paper.

For k~0,

co(k~p)=co 1+ k a
45 nr (31)

which, if E, is expressed through the fitted MC formula,

—co 2)(k) is precisely the required correlational contribu-
tion to the coeScient of co in the high-frequency expan-
sion of t. (ken).

The dispersion relation e(ken) =0 gives

co (k) =co~[1+2)(k)) .

In contrast to earlier calculations ' on 3D plasmon
dispersion restricted to long wavelengths (k~p), Eqs.
(25) and (27) are valid for arbitrary values of k.

For k~0, 2)(k) becomes

2)(k)= —g q [g(k —q) —g(q)] .
V kq

(26) PE = —0.898I +0.950I' +0.190,
We contend that Eq. (25), in conjunction with Eq. (26),
provides the most reliable description in the co=co
domain of the dielectric function of a strongly coupled
OCP. The expressions (25) obviously satislies the third-
moment high-frequency sum rule for 1 && 1, since

n

becomes

co(k ~0)
=co~[1 (0 0399 —0 0.422I —'~'. p 0084)k—'~2.I- i~—

(31')
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For k~ oo,

co( k ~ oo ) =0.577co (32)

in agreement with the already noted behavior of X)(k).
The static e(k) =e(kco =0) as determined from (25),

e(k) =1+ 1
(33)

is quite different from the screened Debye-type e(k), and
it resembles more the e(k} of a Wigner lattice, calculated
by Bragchi. The data of Rogers et al. on the static
structure factor S(k) allow one to trace e(k) by using the
fluctuation-dissipation relationship

co (k)
e(kco) =l ——

eo' —co (k)l)(k)

where co (k)=(2irne k/m, )'~ is the 2D (k-dependent)
plasma frequency and

2)(k) =—g, [g (k —q) —g (q)] .
1 (k.q)

k'q
(36)

co'=co'(k)[1+2)(k)] . (37)

As in the 3D case, Eq. (35) satisfies the co high-
frequency sum rule. The dispersion relation e(kco)=0
gives, similarly to (27),

k aS(k)= 11—
e(k)

(34) Equations (35)—(37) are valid for arbitrary values of k.
For k~0,

The results show that there exists a k~(I ) such that
e(k) &0 for k &k, in the high-I domain. Comparison
with (33) in this domain reveals a qualitative agreement
(although with an incorrect numerical coeScient, as can
be ascertained by comparison with the requirement of the
compressibility sum rule). For k &k, , however, e(k)
from (33) remains negative for all values of k while the
actual e(k), from (34), is positive; the e(k)) 0 behavior
can be expected to be recoved only if the direct effect of
the thermal motion is correctly included in the model.

IV. 2D ELECTRON OCP

The two-dimensional version of the OCP (with 1/r in-

teraction) provides a model for a variety of physical sys-
tems, consisting of strongly correlated electrons trapped
in surface-bound states at the interface of dielectric ma-
terials (e.g., bound electrons in the ground state of a po-
tential well formed above the free surface by an attractive
image potential and a repulsive surface barrier. The po-
tential energy of an (ij ) pair is given by P(r j)=e /r...
where e is a renormalized charge which incorporates the
effects of the dielectric substrate. With the experimental-
ly realized density values [e.g. , pEF=p~n/(2m) &0.06
(n =N, /A is the electron areal density) in the Grimes-
Adams experiments ] the system, in fact, is adequately
described as a classical 2D OCP.

There is evidence both from MC data and from experi-
ments that the 2D OCP crystallizes at I =137+15.
Dispersion relation calculations for the plasmon mode in
the 2D OCP have been carried out both for the liquid and
the solid state. An RPA-like model was developed by
Platzman and Tzoar; a genuine treatment of the strong
correlations via the static mean-field theory' is due to
Studart and Hipolito, while the more satisfactory
dynamical mean-field theory description is given by
Golden and Lu the latter work, however, is restricted
to small k values, whereas the former is not. The disper-
sion in the hexagonally crystallized solid state ' is iso-
tropic to 0 (k }and thus serves as a required limit for the
liquid dispersion as I ~1: the calculation of Ref. 26
fails to reproduce this, while that of Ref. 16, as well as
the results of the present work, do accurately provide this
limit.

For the 2D OCP, Eq. (22) simplifies to

E,
$(k ~0)= ka,

16 nI
(38)

where a is the electron circle radius; again note the lower-
ing of the frequency compared to its RPA value, in analo-

gy with the 3D case. In the I )&1 domain we can use the
HNC formula'

pF., = —1.095I'+0.985 (I & 30) (39)

which, substituted into (38), yields

co(k~0)=co (k) 1 — 0. 171— '
ka

0. 154
P r (40)

1/2
2e

co „=0.874co0=0. 874 at ka =1.60 .

Thereafter, co(k) descents through a series of oscillations
to an asymptotic value which is determined by

(41)

2)(km)= —1 —lim f dq q g(q),4~k o

whence

(42)

co (k~ ~, I )=—2 g co~(q)g (q)

2 2= ——co0 dx x ng(x), x =qa .4 (43)

The right-hand-side integral is bounded; we find that

In order to estimate the I value, above which (37) con-
stitutes a good approximation, one can compare the lead-
ing term of (40) with the (3/4I ) thermal Bohm-Gross
term in the RFA dispersion relation. The leading term
dominates over the thermal term for about I ) 5, sug-
gesting the 1atter I value beyond which the present
theory gives a good approximation. For k « ic=2mne2p,
the high-frequency expansion of e(kco) is manifestly
equivalent to the almost exact (35) for arbitrary frequen-
cies. This is consistent with an earlier observation' that
it is the correlational contribution to the co sum rule
which controls the long-wavelength k~0 dispersion of
the plasmon excitations in the I' I (i.e., I ) 5) limit.

With increasing k, co(k) increases to a maximum whose
value as I I is
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dx x~ng x =1.46 for I )90
0

leading to the asymptotic value

co( k ~ ~ ) =0.604co0 .

(44)

(45) yg AB(1
(52)

and we have exploited the fact that, in view of the repul-
sive interaction between the two species, all the pair-
distribution functions 1+g (r) vanish at r=O, whence

More detailed analysis of the 2D OCP dispersion relation
with the inclusion of direct thermal e6'ects, will be the
subject of another forthcoming paper. '

V. BINARY IONIC MIXTURE

The binary ionic mixture consisting of two ion species
(with different charge, mass, and density values) embed-
ded in a neutralizing background, as a model, is the natu-
ral extension of the OCP. The system is conveniently
characterized by the total density n =n~+nz, the con-
centrations c, =n, In, c2 =n 2/n, charge averages
&Z") =ciZ", +c2Z2 and I =pe ja, (4n. /3)a'n= 1. It
will be also useful to introduce the two asymmetry pa-
rameters

3
1 —x
1+xy

(54)

This result is in agreement with those quoted in the litera-
ture ]7 ]8

In the k ~0 limit, (53) can be expressed in terms of the
partial correlation energy densities, E~~, as

d2+ 4 [(xy)1/2+(xy) 1/21 2

The coefficient of co in the high-frequency expansion of
(49) is easily calculated as

coded +co, Wi, ( k) +2' ice 2W, 2(k)+co2W22(k), (53)

with

Z2m ], Zpc2x=, y=
Zimg Zici

(46)
X 0 (x Eii+E12+xE22)k a2 2

vnr' (55)

The precise value of I" where crytallization occurs is not
known, but scaling arguments suggest that v=Z) Zpc ) cp

I' &Z'")&Z)'"=I"'
For a binary system, D" (k) is a 2X2 matrix with

D Aa(k) — A Bg)AB(k) (47)

p1E» = ,'n,
I/ g—(t,1(k)g»(k),

k

1
E12 1 2 V g ( 12(k)g12(k)

2

2)"(k)=—g g "(k—q),
V kq

(48)

etc.
From (22) and (48) above, we then find that

The matrix elements are
2

2)"(k) =—g [g "(k—q) —g "(q)+yg "(q)],
V kq

etc. Note that, in general, the sum-rule coefficient cannot
be expressed in terms of the total correlation energy den-
sity.

We turn now to the analysis of the dispersion relation.
In contrast to the OCP, for a multicomponent sytem, the
plasmon frequency deviates from the nominal (RPA)
plasma frequency co even for k=0. We focus now on the
magnitude of this co(k=O) shift, as a function of the
asymmetry between the two ion species.

For k =0, the dispersion relation becomes
Am —8

e(ken) =1-
N CN +D

4~n, (Z, e)
A —co] +cop- +

m&

4m n 2(Z2e)

mp
=CO

p

(49) COp

co =
I 1+@+[(I—p) +4d ]'/ I,2

with

(56)

~2~2[1(y1/2+y1/2)2+W(k) 1 x+y
3 1+xy

(57)

D =coicoz —,
' —Wi, (k)+2 W, 2(k)+y W22(k)

y

+ W, 1(k) W22(k) —Wi2(k)

where

W-(k)= —,X „' [g"'«-q)-g"'(q)],
V kq

(51)

—2 W, 2(k) + W22(k) ],
(50)

C =
—,'coico2(&x/y +&y/x )+coi W»(k)+uzW22(k),

and d given by (54). The binary system possesses two lon-
gitudinal modes, corresponding to the plus and minus
signs in (56).

The character of the two solutions (co+ and co )

represented by (56) depends on whether (i) —,
' &x & 3, (ii)

x & —,, or (iii) x) 3, as shown in Fig. 1. In domain (i),

co+ ~co and approaches co both for c2~0 (species 2 as

impurity in a plasma of species 1) and c2~ 1 (species 1 as

impurity in a plasma of species 2); co &co and does not
approach co in either limit. In domains (ii) and (iii) one
solution (say c01) approaches co~ for c2 ~0, while the oth-
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FIG. l. Typical variations of the shift of the plasma frequency at k =0, in terms of the RPA plasma frequency
co~ = [4m e'(Z2in, /m, +Zz~n, /m2)]'~ vs the concentration of the heavier species in hydrogen, c, . Note that (c) and (d) are in domain
(i) (see text), and (a) and (b) are in domain (ii); domain (iii) can be reached by interchanging species 1 and 2, and reading the diagram
from the left to the right. For the explanation of the two branches see text. The uppermost curves in (b), (c), and (d) are enlarged ver-
sions of the upper branch and are to be read by the right-hand-side scale.

er (say co») approaches co~ for c2~1. We have the
correspondence

co, =co+, co»=co for domain (ii)

co, =co, co»=co+ for domain (iii) .
(58)

The frequencies co& and u» in the opposite limits ap-
proach 1/v'3x and &x/3, respectively. These frequen-
cies are independent of the impurity concentration and
represent the oscillation frequency of an isolated impurity
2 (1) in the environment of the other species 1 (2).

We expect that in domain (i) co+ represents a physical-
ly meaningful solution for the plasmon mode for a11 c2
values, and so do ~, for c2 &&1 and co» for c] &&1 in
domains (ii) and (iii). The remaining solutions corre-
spond to the low-frequency longitudina1 mode. In the
c, ~0 [for domain (ii)] and in the c2~0 [for domain (i)]
limits they are expected to be restricted to a very small
region of k space and to damp out or to saturate at an ex-
tremely low amplitude; these latter effects are, of course,
not described by the present theory.

2

co = I(1+p)+F(k)
2

+[(1—p) +41 +2(1+p)F(k)
+F (k) —4G(k)]'i ) (59)

It follows from the above considerations that heavy im-
purities in a light plasma [x(3; domains (i) and (ii)]
cause a positive upward shift, co) ~ . The opposite case,
light impurities in a heavy plasma (x & 3), leads to a nega-
tive downward shift, co & co, .

Sizable shifts may occur for large mass ratios (x ~0)
when the charge density of the heavy species greatly
exceeds that of the light species (y » 1). Such a situation
prevails in the presence of heavy, highly charged scatter-
ers in a hydrogen plasma. An experimental verification
of the plasmon frequency shift under these conditions
may become feasible. As an illustration, Tables I—III
show the plasma frequency as a function of concentration
for He +, Li +, and Xe' + impurities.

The more general finite k dispersion relation for the
binary ionic mixture can be written in the form
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TABLE I ~ Frequency shifts for the H+-He + mixture:
Z, =1, m1=1, Z2=2, m2=4, x=05, and y =2n&/n„ in

domain (i).

TABLE III. Frequency shifts for the H+-Xe' + mixture:
Z, =1, m, =1, Z, =10, m, =131, &=0.076, and y =10nz/n
in domain (ii).

n2/n I

0
0.01
0.10
0.50
1.00
1.50

Cp

0
0.01
0.09
0.33
0.50
0.60

1

1.001
0.009
0.023
1.032
1.033'

n2/n,

0
0.01
0.1

0.25

C2

0
0.01
0.09
0.2

1

1.014
1.124
1.257

'Maximum. VI. TWO-COMPONENT ELECTRON-ION PLASMA

F (k) = [ Wi i (k)+xy W22(k) ],1

1+xy

G(k)=
2 [W„(k)—2W, 2(k)+ Wq2(k)]

(1+xy)

+ [ W„(k)+2y Wi2(k)+y'W»(k)]
3p

+ [ Wi, (k) W22(k) —W, 2(k)] . (60)

Further analysis of this dispersion relation will be pub-
lished in another paper.

It is important to note that, in contrast to what hap-
pens in the one-component system, the dispersion rela-
tion derived from the sum-rule expansion does not pro-
vide, even in the case when the shift from the RPA plas-
ma frequency is small, a good approximation. Special sit-
uations, however, still render the sum-rule result
equivalent to the more exact (56) or (59). For this to hap-
pen, one must have both p «1 and d «1; in this case,
the sum-rule expansion provides a reasonable approach
for I ))1. This feature has already been conjectured (al-
though without the latter qualification) and used by

Golden, Green, and Neilson. '

Hansen and his collaborators' studied the plasmon be-
havior for the 50—50% H+-He + HIM system though
MD simulation. Results for I =40 show a 3.9% upward
shift of the plasma frequency, which is higher than a
1.9—2% shift predicted' ' by the sum-rule expression.
Our calculated value (see Table I) 3.2% is quite close to
the MD result. '

The two-component electron-ion plasma, a classical
charge-neutral system consisting of point ions of charge
Ze and electrons of charge —e, with densities
n; =(4na; /3) ', n, =(4ma, /3) ', is a realistic model for
actual high-temperature plasmas. The classical ap-
proach, however, breaks down at low temperatures for at
least two reasons. First, full ionization requires tempera-
tures of the order of Iz, the complete ionization energy of
an atom with nuclear charge Z; second, in order for the
electrons to be nondegenerate, the temperature should be
higher than the Fermi energy of the electrons. These two
conditions severely limit the attainable I values. Since
Iz-Z and a, -Z ', one finds that I;,„&Z /a'
where a = I IPIz & —,

' for almost complete ionization.
The classical model is further limited by the incorrect

description of the two-body distribution function at small
particle separation. In order to remedy the situation
within the classical model, pseudopotentials have been in-
troduced and were used successfully to represent the
quantum mechanical softening of the Coulomb interac-
tion as r ~0 The thr. ee pseudopotentials P' '(k), P' '(k),
and P' '(k) are, in general, difFerent, at least in scale.
Therefore, in contrast to the case of the bare Coulomb in-
teraction, the determinant of the interaction matrix
(~g" (k)(~ does not vanish. This, in turn, invalidates the
simple relationship (22) between the response functions
y "(ken) and e(ken). Nevertheless, since the pseudopoten-
tials dift'er from the Coulomb potential only for very large
wave numbers (k ' of the order of the Bohr radius or of
the de Broglie wavelength), for k ~0 the formalism we
have derived remains valid, with the only stipulation that
the replacement

(61)

TABLE II. Frequency shifts for the H+-Li'+ mixture:
Z& =1, m, =1, Z&=3, m2=7, X=0.428, and y =3n2/n&, in
domain (i).

in the previously derived formulas in Sec. V should be ob-
served.

The charge neutrality of the system simplifies (54) and
(57) to

'Maximum.

n2/n,

0
0.01
0.10
1.0
1.33

C2

0
0.01
0.09
0.50
0.57

1

1.002
1.016
1.051
1.0513'

(62)

I= — f d rg' (r)V g' (r) .
1

4ne Z]Z2
{63)

The integral I defined in (61), although not directly relat-
ed to g(r=0) anymore, still picks up contributions from
the close vicinity of r=O. This can be seen by rewriting I
in r representation:
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Noting that P(r)WP(r) for small r values only and that
V P(r) =0 for r&0 proves this assertion. It then also fol-
lows that I)0. The dispersion relation finally simplifies

34

co =co (1+—,'I) . (64)

VII. CONCLUSIONS

In this paper we have developed a new approach to the
analysis of collective modes and their dispersion in
strongly coupled classical Coulomb systems. The
method, based on the quasilocalization of the constitu-
ents of a strongly coupled Coulomb liquid, is expected to
provide a good description of the dynamical properties of
such systems for intermediate and high I values (I ) 15
for 3D and I ) 5 for 2D plasmas) in the intermediate-
and high-frequency domain. The structure of the result-
ing e(kco)'s not only satisfies the co frequency moment
sum rules, but also explains why in many cases the high-
frequency sum-rule expansion provides a good approxi-
mation even for frequency values which would not justify
the use of a high-frequency expansion. The method is not
restricted in k, and thus it affords the first analytic
glimpse into the high-k behavior of the plasmon mode for
strongly coupled systems. The response functions and
the ensuing dispersion relations are functionals of the
pair-correlation function: in a number of cases, these are
readily available either from Monte Carlo computations
or from the solution of the hypernetted-chain equations.
We have analyzed the overall features of the plasmon
dispersion for 3D and 2D one-component plasrnas: for
the former, we have used the HNC data of Rogers et ah.
and for the latter the HNC data of Lado. ' The analysis
yields the first reliable calculation of the lower bound of
the asymptotic value of the plasmon frequency in the 3D
and 2D OCP's [co(k ~ ao ) =0.577co and co(k ~ ~ )=0.604coo, respectively] and the upper bound
(co,„=0.874coo) in the 2D OCP. We have found an os-
cillatory behavior in the co(k) curve for high-ka values in
both systems, reflecting the existence of a well-developed
short-range order.

There is now only implicit dependence on charge and
mass ratios through the correlation function and the cor-
responding integral I. We note the shift is always posi-
tiue A.s to the missing co solution, in the charge-neutral
system it becomes an acoustic mode, and for this reason it
does not show up in the k=0 analysis.

Molecular-dynamics data by Hansen and co-workers
are also available for a hydrogen plasma. The discussed
combined conditions of nondegenerate electron gas and
of complete ionization, however, limit their I values to
I (I,„=2. Nevertheless, an upward shift of the plas-
ma frequency can be identified. Apart from a qualitative
agreement with the prediction of Eq. (64), however, appli-
cation of the present theory would be appropriate to
higher Z systems, with their corresponding higher I
values and has to await the evaluation3 of the corre-
sponding integral (63). This work is in progress by us-
ing the pseudopotential determined from the Slater sum
with the Planck-Larkin correction.

For binary systems, partial correlation function data
for the calculation of the full dispersion relation are not
immediately available. Here, however, the most interest-
ing effect is the shift of the plasma frequency (at k=O),
which depends only on g' (r =0)=(1/V) g g' (q)
(modified into (1/V) g [g' (q)/P' (q)]g' (q) in the case
of a pseudopotential tP(q) diff'erent from the Coulombic
P(q)}. Since g(r =0)= —1 for a binary ionic mixture,
the plasma frequency is easily calculated, providing the
first reliable evaluation (going beyond the co

~ sum-rule
estiinate} of this quantity. For highly asymmetric mix-
tures, the shift turns out to be quite substantial (12% for
H+ mixed with 10% Xe' +) for parameter ranges of ex-
perimental realizability. We also find a low frequency
longitudinal mode which does not vanish in the
n2/n, -+0 limit. The physical significance of such "local-
ized" modes is, however, questionable as long as damping
and saturation effects are not included in the description
of the system.

For the electron-ion plasma, we demonstrate the ex-
istence of an upward shift in the plasma frequency (at
k=O). Quantitative evaluation of the shift is contingent
on the calculation of the pseudopotential-weighted in-
tegral of the correlation function (appropriate for the
chosen pseudopotential).

Two shortcomings of the method can be identified.
One is the absence of damping or dissipative effects. This
is a consequence of the harmonic approximation and of
the neglect of the slow migration of the particles, con-
sidered as quasisites. The second, also stemming from
the neglect of the slow thermal migration, is the apparent
incorrect structure of e(kco) for high k values. This is
most conspicuous in the behavior of e(kO), which
remains negative as k ~ ao, but manifests itself more im-
portantly in the absence of the thermal (Bohm-
Gross —type) term in the plasmon dispersion, which
should be the dominant term as k ~ m.

In future papers, we further analyze the collective be-
havior and dispersion characteristics of strongly coupled
Coulomb systems. The inclusion of the "direct" thermal
effects is one of the objectives in going beyond the scope
of the present work.
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APPENDIX

In this Appendix, we show that the transformation
from the (g,."„,m;"„) set to the (gi",„,n."i,„)set is a canonical
one. While in the case of a periodic lattice a similar
transformation is always canonical within a correctly
chosen set of k vectors, in a random medium the trans-
formation is only approximately canonical. However, the
approximate nature of the transformation is consistent
with the approach used in deriving the basic Hamiltonian

The coordinate transformation is defined through [cf.
Eq. (4)]
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1 ik-x,
ki, a

N g]/P 2 kQN„m„)
1/2

A ik x,
"

e
k

(A 1)

right-hand side of (A3) by its average

(
~ GAc eBc

pi, pa —qi, va
i

Since (Al) represents a nonsingular linear transforma-
tion, the transformation matrix certainly possesses an in-
verse, say ek,

I

bk, a (,]/2 X ki, alibi, P &

N~m~ j
' 1/2 (A2)

A
k, a

AB Bg ekiap+, ip',
i

The Poisson bracket of the new coordinates now can be
calculated:

(A4)

If we make the plausible assumption that the b, 's are un-
correlated with the parent positions or with each other,
then all the averages in (A4) but the first contain the aver-
age (b, ), which, in turn, can reasonably be assumed to
vanish. Thus one is left with the erst term, which, in
view of (7), becomes N„5 . Returning now to (A3), the
Poisson bracket becomes

(A5)

e a.c etc
(N N )] /2 Pl jtlQ ql vQ

i

The transformation matrix 8 can be expressed as

—ik x"
e„",'„,=(. ' "

+ak, )S"'fi„, ,

(A3)

where Ak, represents the deviation, due to the random
positions, from the exponential form which would be the
correct expression for a periodic lattice. In the spirit of
the approximation used to derive (8), we now replace the

demonstrating the canonical character of the transforma-
tion. Nevertheless, it should be kept in mind that, strict-
ly speaking, the canonical transformation is valid only for
k & k,„,where k,„ is determined by the number of de-

grees of freedom in the system and therefore is of the or-
der a ' (a is the interparticle distance). Even though in

a disordered or Auidlike system, the study of wavelike
collective motions for k )k,„ is not quite meaningless
(in contrast to the situation in a periodic lattice), the re-

sulting relationships should be regarded as relying on
more severe approximations than those pertaining to
modes with k (k,„.
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