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The screened electrostatic potential and free energy of electric double layers near modulated
boundaries are computed in terms of the height function 4 of the surface, as an extension of linear-
ized Gouy-Chapman theory. Two approaches, one perturbative, the other iterative, are explored
and compared, both expressing the average electrostatic potential away from the surface as a power
series involving n-point correlations of &. When compared order by order in powers of the height
function, the two methods are found to be equivalent, but they differ in the degree of
differentiability demanded of A for a convergent expansion, the perturbative technique requiring
infinite differentiability, and the iterative method needing only twice-differentiable functions. The
wider applicability of the iterative method is shown to arise from the summation of certain infinite
classes of terms in the perturbative expansion which remove ultraviolet divergences associated with
the high-order nondifferentiability of the height function. The electrostatic free energy of interact-
ing double layers is found to depend on height-height correlations both within and between the sur-
faces, a result that may also be interpreted as expressing the coefficients of capacity and induction of
conductors in terms of their surface roughness. For boundaries with a well-defined modulation
wavelength, the thermodynamic and electrostatic quantities are computed perturbatively in terms of
the ratio of the modulation amplitude to the Debye-Hiickel screening length, and the characteristic
gradients of the height function. It is suggested that these long-wavelength results may find applica-
tion in the study of the stability and structure of multilamellar liquid crystals composed of modulat-
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ed membranes.

I. INTRODUCTION

The mathematical problem of determining the electro-
static potential in an electrolyte near a boundary has
traditionally been studied under the simplifying assump-
tion that the boundary has a simple geometrical form.'
Yet there are many examples of interest in nature of sur-
faces exhibiting modulations about such simple shapes.
Important examples are provided by the “rippled” phases
of lipid membranes® and by “rough’ metallic electrodes
in electrochemical systems.® In contemplating electric
double layers near modulated surfaces, two complemen-
tary areas of investigation may be distinguished, dealing,
respectively, with the properties associated with individu-
al double layers and with their interactions. How does
the electrostatic potential away from the surface depend
on the nature of surface corrugations? What features
control the dominant decay length of screened Coulomb
interactions between opposed double layers? How does
the free energy of a double layer depend on the structure
of the modulations? How do the forces between double
layers depend on the nature of interface distortions?*
Here we study these issues and others by developing tech-
niques to express the electrostatic potential and free ener-
gy of such structures directly in terms of the geometrical

41

properties of the modulation.

While there exists a highly developed microscopic
theory of electric double layers with simple geometries,’
a theory which goes far beyond the “mean-field” level of
the classical Gouy-Chapman treatment in recognizing
microscopic details such as finite ion size,” we suggest
that it is of basic interest to investigate first the role of
surface modulation even within that simplified approach,
particularly in the regime of modulation length scales
large compared to the Debye-Hiickel screening length.
The generalization considered here of Gouy-Chapman
theory! to modulated geometries is studied within the
context of the linearized Poisson-Boltzmann equation for
the electrostatic potential ¢(r),

(V2—k*¢=0, (1.1)
where k~'=(ekgT/8wce?)'’? is the Debye-Hiickel
screening length at temperature 7, with ¢ the mean ion
concentration, € the dielectric constant, kz Boltzmann’s
constant, and e the charge of the electron. Although the
quantitative validity of (1.1) may be rather limited,">
particularly in the low-salt regime in which the interac-
tions are weakly screened,’ we expect the relationships
between long-wavelength features of the modulation and
the various electrostatic and thermodynamic properties
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of double layers to be correct on a qualitative level. We
shall see that even the solution of the linearized Poisson-
Boltzmann equation with specified boundary conditions
on a modulated surface may be rather complex. The goal
of understanding the fully nonlinear problem is thus
perhaps best reached by way of a concisely formulated
linearized theory.

The general statement of the problem may be illustrat-
ed in two dimensions with the surface lying on average
along the x axis and specified by a height function A (x)
[for instance, the lower surface in Fig. (1(a)]. Solve (1.1)
subject either to Dirichlet or Neumann boundary condi-
tions (i.e., either the potential or charge on the surface
given),

d(x,h(x))=a(x), fl(x)-Vo(x,h(x))=b(x), (1.2)

where Ti(x) is the unit normal to the surface, and a and b
are some prescribed functions of x. We shall assume that
the surface is indeed representable by a single-valued
height function, that is, that it has no overhangs.

For a periodically modulated interface in an electro-
lyte, it is readily appreciated that there are two important
dimensionless parameters that enter any perturbative
treatment which starts from the known properties of the
planar interface. Considering the simplest sinusoidal
modulation 4 (x)=a cos(gx), we see that the amplitude a,
the modulation wavelength A=27/q, and the Debye-
Hiickel screening length Ap; =« "' are the only three in-
trinsic length scales in the problem. From these, two
convenient dimensionless combinations are the typical
value of the gradient g of the height function,

g~a/A, (1.3)
and the relative amplitude m of the modulation
m—~a /}\'DH 5 (1.4)

and for small-amplitude long-wavelength modulations, g
and m will enter naturally into the analysis here.

Two alternative approaches to the general problem
outlined above are explored in Secs. II and III. The first
preserves the simplicity of the modified Helmholtz opera-
tor in Eq. (1.1) and solves (1.2) by means of a power series

y z
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FIG. 1. Schematic illustration of two modulated boundaries
(a) a distance L apart, defined by height functions A, and h;. A
change of variables maps the domain in (a) to the simpler one in
(b).
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in the function A (x), using the eigenfunctions of the orig-
inal operator in the planar geometry.® The second
method involves a change of variables which maps the
modulated domain onto a planar one [Fig. 1(b)] such that
the boundary conditions may be satisfied exactly, but at
the expense of changing (1.1) to a more complicated
differential equation. We will see below that the first
method is essentially perturbative, while the second
method may be cast in an iterative form and is applicable
to a wider class of height functions than the former, re-
quiring that 4 be twice differentiable, rather than
infinitely differentiable. For the cases in which A (x) is
infinitely differentiable, the two methods are equivalent.
Here we focus on single and interacting pairs of electric
double layers, and specialize primarily to the case of Dir-
ichlet boundary conditions, with a specified potential at
the surface. In Sec. IV we review the computation of the
electrostatic free energy of an arrangement of double lay-
ers, and carry through the analysis of the previous sec-
tions to determine the effects of modulation on the ther-
modynamics of interacting double layers.

The basic result of these analyses is that the electro-
static potential and free energy of electric double layers
near modulated boundaries may be expressed in terms of
a hierarchy of n-point height-height correlations of the
modulation function A (x). When cast in this form, we
may treat surfaces specified directly by the modulation
function, but also consider situations in which the surface
is “random,” namely, the undulations arise from some
stochastic process whose properties are defined only
through these many-point correlations. The discussion in
Sec. V summarizes our results and suggests important ex-
tensions necessary to treat interacting charged surfaces in
a quantitatively realistic way.

II. PERTURBATIVE APPROACH
A. Single surface

As a first approach, we use a perturbative technique’
which consists essentially of proposing for the boundary
condition and the function ¢(x,y) itself power series in a
small parameter related to the modulation function. This
procedure allows us to satisfy order by order in that small
parameter the Helmholtz equation (1.1) and the boundary
condition (1.2), through a new set of coupled differential
equations. In this section, we illustrate the method with
two examples, namely, an isolated double layer and a pair
of interacting double layers, and specialize first to the
simplest case of a double layer satisfying Dirichlet bound-
ary conditions, in particular that the potential on the
boundary be a constant. The extension to more compli-
cated boundary conditions is straightforward; we shall
discuss briefly the important differences between the re-
sults for surfaces with specified surface charge and those
with specified potential. A further simplification we in-
troduce is to view the problem as two dimensional, that
is, to assume that the boundary itself is modulated in only
one spatial direction, say x, with translational invariance
along the orthogonal direction within the mean plane of
the surface. We remark that this simplifying feature is
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present in a number of systems, including the modulated
lipid membrane phases. The basic equation to solve is

then

(3, +3,, —x%)p(x,y)=0, 2.1
subject to the boundary condition

¢lx,h(x))=¢ . (2.2)

It is convenient to introduce a parameter of smallness €
into the boundary condition in order to develop a pertur-
bative expansion of (2.2) as

é(x,€h (x))~(x,0)+e€h (x)p,(x,0)

+—l'-[eh(x)]2¢yy(x,0)

—[eh )3 by (x,0)+ ..o, (2.3)
where subscripts indicate differentiation. Now, we as-
sume that the function ¢(x,y) itself has an expansion in €

of the form

d(x,3)=¢V(x,y)+ed Vx, )+ P x, )+ ..., (2.4

where the superscripts denote the order in €. Substitut-
ing (2.4) into (2.1), we see that each of the ¢'" satisfies the
modified Helmholtz equation,

(34 +3,, —&%)¢"(x,9)=0 Vn , (2.5)

and using (2.4) in (2.3), we obtain a hierarchy of boundary
conditions on the ¢'"'(x,0), the first three of which are

3'%(x,0)=4¢, , (2.6a)
¢'"(x,00=—h(x)$,”(x,0) , (2.6b)
#2x,0)= —h ()4} (x,0~ A2 )Ex0) . (260

Having recast the problem in a domain with a modu-
lated boundary into a series of simpler problems in planar
geometry with specified boundary condmons, it proves
convenient to introduce the Fourier transform $(k, y),

$y)= [ dxe™g(x,y) 2.7)
and obtain (2.5) in the form
2\% —
(9,, —K2)p "(g,y)=0, (2.8)
where
K:=k’+gq? (2.9)

The functions $‘"’(q,y) away from the surface are then
determined simply by the values they take at y =0,

—K

é'"(g,p)=6""(g,00e ", (2.10)
and the perturbative solution of (2.4) is then equivalently
one for ¢(g,0). We may now Fourier transform each of
the equations of the hierarchy and solve them order by
order to obtain the new hierarchy (e=1)
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$(q,y)=¢ol§0i‘"’(q) e @.11)
<
where
T%%g)=278(q) , (2.12a)
TMg)=kh(q), (2.12b)
1<2(q>——K f—h Kh(g —k)2r,_,—1),  (2.12)
19(g)=1w [ 95 [ A RboR kR (g —k =k
X[1—3rqz_k_
+3r, kQ2ry o — D],
(2.12d)
etc., and with
rkzﬁk—= 1+£2— - (2.13)
K K*

For the case of constant charge density o, a complete-
ly analogous procedure leads to the result

~ 477'00 o "()
#(g,y)= 2 " , (2.14)
where
O(g)=2m8(q) (2.15a)
7= xh(g) (2.15b)
rq
J@g)= Zf dk/?(kﬁq—k)
X qu_k_l
Lklg=k) | 2 _1]
I(‘2 Yok
(2.15¢)

Significantly, the two expansions differ even at the first
level of perturbation. The consequences of these
differences will become apparent in a later discussion of
the thermodynamics of double layers.

Equations (2.11)—(2.15) are the main formal results of
this section. It is now apparent the restrictions that must
be placed on the class of height functions for which the
boundary perturbation method is convergent: Consider
the generalization of the boundary conditions in Eq. (2.6)
to nth order, where the boundary value ¢'"'(x,0) will in-
volve, among others, the term
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1
(n—1)

where there are n —1 y derivatives.
representation, we obtain

———h" ) (x,0) (2.16)

Using the Fourier

n— d —igx,.n —
-y (0=(= 1" "'k [ TLe k) " Mhg)
(2.17)

At large momentum, the kernel K; ~! varies as q" 1 so
the integrals are divergent if the associated (n —1)th
derivative of the height function does not exist. Thus a
necessary condition for the applicability of this approach
to all orders in perturbation theory is that the surface
function be infinitely differentiable.

While for some problems we may know a particular
surface functxon h(k), and hence can compute each of the
functions 1 " we may imagine situations in which the
surface of interest is defined instead through its n-point
correlation functions. This situation would pertain if the

|

D(y)=¢(x,y)= ¢0f—e*'q T(gre "

=, 1+ 2fdk@<2)

1
3!
where the kernels w are

wP(k)=
0Pk, k) =1=3r2 4 o +3r, 27 4= 1) .

2rk —1
(2.21)

Note that each of the »'" is unity when its momentum
arguments vanish, so that were the height function sim-
ply to be translated from the original point y =0, the
series in Eq. (2.20) could be summed exactly to give
exp(xh ), thus simply translating the zero of the usual ex-
ponential decay.

Provided the two-point correlation function of the sur-
face modulation decays beyond some correlation length &

which is larger than the screening length x !, we may
look at the expansion of the kernel ©'? in powers of k /k,
namely, o?(k)~1+(k/k)?—1(k/kK)*+ -+, and write

the average potential in terms of low-order moments of
the height-height correlation function, or, in real space,

D(y) =~ | 1+ Lx*h 2+ L(Vh)

’%(Vzh)2+"' e .

1
8 « (2.22)

Thus, in the long-wavelength limit, the mean potential is
sensitive to the average roughness, gradient, curvature,
etc. of the surface modulation.

02X k)+—~x3f——
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surface itself were generated by a stochastic random pro-
cess. In such cases it is of interest to study the properties
of the mean value of the electrostatic potential, averaged
over those processes.

We shall consider stochastic processes which are
translationally invariant in the lateral coordinate x, and
denote averages over the process with an overbar. By a
suitable choice of origin and without loss of generality, it
may be assumed that the mean height function is zero,

h(x)=0. (2.18)

Define the two- and three-point height-height correlation
functions

CP(x —x")=h(x)h(x'),
- (2.19)
C¥(x —x",x'—x")=h(x)h (x")h(x") .
The average potential ®(y) may then be written as
Ok, k0 ke, k) + e v, (2.20)

-

A particular “deterministic’”’ surface of interest is one
which is perfectly periodic, h(x)=a cos(px), for which
h(k)=an[8(k —p)+8(k +p)] and the second-order per-
turbation result in real space is

$(x,p)=¢o{[1+1(ak
+LaK)X(

(r,—+)le +(ak)cos(pxle 7

r —%)cos(2px)e~K2"y§ . (2.23)

As in the case of a stochastic modulation, we may also
compute the average potential {¢(x,y)) for this deter-
ministic surface simply by integrating over one period of
the modulation. From (2.23) we obtain immediately

(B(x,p)) =o[1+ Lak)(r,—1)+0(a*)]e ™,

and in the limit of long wavelengths relative to the
screening length, the correction to the simple form
doexp( —ky) involves the factor

(2.24)

2.4
1+%(ax)2+g(ap)2—i‘”2’ +o (2.25)
8 «

expressed, as for the stochastic surface, in terms of the
mean-square amplitude, the mean-square gradient, and
mean-square curvature.

As a final remark, observe from Eq. (2.23) that the
method of perturbation of boundary conditions is
effectively an expansion of the potential in the eigenfunc-
tions of the planar geometry, the lateral variation
cos(npx) being associated with the decay exp(—k,,p).
There is no “‘mixing of modes” in the x and y directions.
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B. Two surfaces

The generalization of the boundary perturbation tech-
nique to two modulated surfaces centered at y =0 and L,
with height functions hy(x) and h;(x) (see Fig. 1) in-
volves the perturbative expansion of the boundary condi-
tions:

(x,€0h(x))=do=¢(x,0)+€xho(x)d,(x,0)

1
+E[eoho(x)]2¢yy(x,0)+ ce

¢(x,L +e h (x))=¢; ~d(x,L)+e h;(x)¢,(x,L)

+5?[6LhL(x)]2¢yy(x,L)

+ -, (2.26)

where we have allowed for different values of the bound-
ary potential on the two surfaces. Similarly, the potential
itself is expanded as

¢(x,y)___¢(0,0)+60¢11,0)+6L¢(0,])+6(2)¢(2,0)
+epe oMV +He240V+ - (2.27)

The ¢'™" then solve the usual modified Helmholtz equa-
tion, with the boundary conditions

¢'*%(x,00=¢o, ¢*V(x,L)=¢, , (2.282)
¢'"0(x,0)=—hy(x)${>%(x,0) ,
¢(1,0)(x’L):0 (2.28b)
¢(0'1)(X,L)=—'hL ¢(0 0)(x L),
(2.28¢)
¢(0,1)(x,0)=0 ,
¢ V(x,0)=—hy(x)¢\""(x,0) ,
(2.28d)
¢ V(x,L)=—h;(x)$}""(x,L) ,
etc.
|
=g |1+tanh(kL /2)k* [ g—f;rkcsch(KkL)[é&)(
tanh(kL /2) 1
MR vryant (G LR
where

SO =foy)+fL(y)=cosh[k(y —L /2)]/cosh(kL /2) .

Thus the potential determined by the two surfaces de-
pends not only on the individual correlations of the two
boundaries, but also on their cross correlations. We re-
turn to the consequences of this result in Sec. IV.

C 2 k)]
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Introducing the Fourier transforms of the ¢'™", we
obtain

$(m,nJ(q’y) $"’""’(q,L)fL(q,y) »
(2.29)

where f(q,y)=sinh[«,(L —y)]/sinh(x,L) and f;(q,y)
=sinh(k,y)/sinh(k,L). For the simple case in which
¢; = ¢y, and setting e,=€; =1, (2.27)-(2.29) yield

blg, )=, [ [2 Tgmm(q) ]fo<q,y>

=¢'"™"(g,0)fo(q,y)+

+ 12 Timm(g) }fL(q,y)] , (2.30)
where the nonvanishing functions 7™ are
T90%g)=T>%g)=28(q) , (2.31a)
T(b9(g)=tanh(kL /2)xhy(q) , (2.31b)
7 §-V(g)=tanh(kL /2)x* [ %rq_kcsch(xq_kL)

X ho(k)h (g —k),  (2.31c)
fﬁ,z'O)(q)=K2f %[rqﬁktanh(KL /2)coth(k, L)
—1lh Ro(k)holg —k) . (2.31d)

7%V is obtained from Ij"¥
ﬁ0—> h, and TV is obtamed from T("" and
from I {2.0) by interchange of the functions if and ﬁ

Generahzmg now to a statistical surface, and defining
the inter- and intralayer n-point functions

Ca(x —x=ho(x)hs(x") [a,B=(0,L)],

and again assuming vanishing mean height function and
a common value of ¢, on the two surfaces, the average
electrostatic potential is given to leading nontrivial order
as

by the replacement
1(02

(2.32)

(2)(k)]

Sy, (2.33)

III. GEOMETRICAL TRANSFORMATION
A. Single surface

Though the boundary perturbation method is straight-
forward to implement, it has an important limitation,
namely, that the height functions be infinitely
differentiable. This restriction excludes a whole range of
surfaces that may be of interest; in particular certain
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membrane systems and rough electrodes may not satisfy
this requirement. In this section we present an alterna-
tive way to address such systems by means of a geometri-
cal transformation that maps the original domain onto a
new flat one [see Fig. 1(b)]. This transformation, though
involving lengthier calculations, allows us to deal with a
much wider range of boundaries, namely, those which
need only possess two derivatives, as shown below.
For a single layer, the change of variables of interest is

o(x,y)—>d(t,z), t=x, z=y —h(x). (3.1)

The potential ¢(t,z) then satisfies
[0, +(1+n»d,,—2h,3,—h,d,—k*16(t,2)=0, (3.2)

where subscripts indicate differentiation, the boundary
condition being
#(1,0)=¢, . (3.3)
Now define the differential operators .£ and D as
L=9,+3,—«,
(3.4)
D(t,z)=hd,, —2h,3,,—h,0, ,

in terms of which the full differential equation (3.2) may
be written as .L¢= —D4, or, as an integral equation

$(1,2)=Go D
=[7 dg[ TanGolnziEmDE WS, (3.5)

where G, is the Green’s function of L;
LGy(t,z;8,m)=—56(t —§)6(z —n), and vanishing on the
boundary z =0,

Go(t,Z;gy”]): —'i(K(){K[([ —§)2+(Z __77)2]1/2}

—Kol&[(t =&+ (z +2)°]'"2]) .
(3.6)

Here, K, is the modified Bessel function. It may be
verified that the change of variables (3.1) preserves the el-
lipticity of the differential operator £ +9.'°

The fundamental principle underlying the present tech-
nique is that an iterative solution to (3.5) may be
developed by writing (3.5) as

¢(n+1):GOO$¢(n) , (3.7)

where n denotes the order of iteration, and where the
boundary condition on the iterates is

" T1(1,0)=¢, Vn . (3.8)

From the form of (3.7), with D¢'"’ acting as an inhomo-
geneity, we know that the general solution of ¢'" " is of
the form

6" T,z =) T V(L,2) + ey TV1,2) (3.9)

where ¢, is the general solution of the homogeneous
equation and ¢, is a particular solution of the inhomo-
geneous equation. Note that such a partitioning of the
solution will only be possible within the context of the

linearized Poisson-Boltzmann equation, since for a non-
linear differential equation the superposition principle no
longer holds.

A convenient choice of general and particular solutions
leads us to the equivalent system of equations

LG V(1,2)=0, ¢} 1(1,0)=¢, , (3.10)

and
Lo t,2)=—D¢'"(1,2) ,

(3.11)
¢\ 1(1,0)=0 .

It is now apparent that the particular solutions ¢, are

not simply the familiar eigenfunctions of the modified
Helmholtz operator, for those functions do not vanish on
the boundary; the iterative approach is not an eigenfunc-
tion expansion. We return to this point below. From
(3.10) we immediately obtain

&\t z)=doe " ¥n , (3.12)
and
;;”+l)(t»2):G0°$¢(m . (313)

For brevity, adopt the notation s=(£,7) and r=(z,z).
Then iteration of (3.7) yields a Dyson-like equation,

$(1)=6,(r)+ [ dsGo(r;9)D(s)d,(s)
+ [ [dsds'Gy(r;9)D(s)Gy(s;s')

XD(s')py(s))+ - - - (3.14)

In contrast to the boundary perturbation method, the
iterative procedure requires only a twice-differentiable
surface function, for reasons that may be seen from the
forms of Egs. (3.13) and (3.14). While the differential
operator D is of second order, at each stage of the itera-
tion there are two spatial integrals, so the order of
differentiability required for convergent integrals does
not increase with the number of iterations. It is only re-
quired that D itself exist, and this simply means that
d*h (x)/dx? exist as well.

We may remark parenthetically that the Green’s func-
tion of the full operator £ +2 also may be written as an
integral equation analogous to (3.14). Observing that the
full Green’s function G satisfies

(LAD)t,2)G (t,z;6,m)=—58(t —£)d(z —7q) ,
and that £ ~!'=—G, we obtain
G(r;8)=G(r;8)+ [ dp Gy(r;p)D(p)Gol(p;s)

+ffdpdp’GO(r;p)iD(p)GO(p;p')

XDp")Gy(pss)+ -+ . (3.15)

The lack of translational symmetry in the direction
normal to the mean surface, as well as, in general, the
lack of translational invariance of the modulation func-
tion, has the consequence that the integrals in Eq. (3.14)
are not convolutions. In addition, D is a differential
operator rather than simply a function. Thus the usual
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Fourier or Laplace transform techniques do not render
the right-hand side of (3.14) as simply a sum of products
of transformed Green’s functions and operators. Never-
theless, as with the boundary perturbation method, it is
convenient to study the Fourier transform of the electro-
static potential $( k,z). In order to cast (3.14) into a use-
ful form, note first that the two-dimensional Green’s
function has the transform
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DEMSEm= [ dxDEMSX—Ef ), (3.17)

for any function f. The action of ) may then be written
as

DEMS(x—E)=—h1d,,8(x —E)—2h 3,8 (X—E)

=V(&7)D(x—£), (3.18)

Golk,z;6,m)= ff dt e™'Gy(t,z;€,m)

=1 e*(e

2Kk

where &' is the derivative of a delta function, and we have
) used a convenient vector notation,

V(é’,n):(héa,m, _2h§a7’, —hga,’) )
D=(8(x—§),8'(x —§),6(x —§)) .

The iterative expression for the Fourier transform of the
electrostatic potential then becomes

—k,lz—7l —x, lz+7|
k —e k

=e*H,(z,7), (3.16) (3.19)

thereby defining the function H,. It is also necessary to
cast into Fourier space the differential operator 9, and
this is facilitated by use of the identity

|

bk, 2)=8,(k,2)+ [ dnHy(z,[V(k,n)-D0)]1f,(n)

+ [dn [dn [ %Hk(z,n)[\?(q,n)-ﬁ(q—k)]Hk_q(n,n'>[0<k—q,n'>-ﬁ(0)]f,,(n')+ e (3.20)
with
N d ~ .
Vik,m)= ?g—q(k—q)l?(q)h(k—q)a,m,zzkif(k)a,,,—kzﬁ(k)a,, , (3.21)

and D(k)=( 1, —ik,1). The explicit form of the homogeneous solution ¢, has been used to define the function f,(7) as
b, (gm)=278(q)f, (7).

Although appearing rather complex, this form allows the successive orders of iteration to be expressed simply in
terms of powers of the transform of the modulation h, in a way analogous to that in the perturbative approach. All of
the integrals over 7, 7', etc., in (3.20) may be computed knowing only the simple result

—Kp..Z — K, Z
3 k
K —e

TR e
fdnHk(z,n)e k STt (3.22)
The result of two iterations, keeping only terms up to second order in the height function, is
2(2) — — Kz —Kz TKgZ 2(, —kz TKeZ dk (9 —k) N
b 2(g,2)=2md(g)e “—duch(g)le F—e “)+puile F—e )f; p R(kh(qg —k)
dk ~ —KpZ —K_Z
—do® [ S RUR(g —kirge % —e ) (3.23)

It is readily verified that (3.23) is consistent with the analogous results (2.10)—-(2.12) from boundary perturbation theory
when due account is taken of the exponential dependence on % (x) implicitly present in the argument z above. This is
not surprising, since the solution of an elliptic linear partial differential equation for a given set of boundary conditions
is unique, and both the original and transformed operators are elliptic.'© Note also that, unlike in the perturbation
method, the functions generated in the iterative method are not restricted to the eigenfunctions of the bare Helmholtz
operator, as can be seen in the particularly simple example of the height function 4 (x)=a cos(px), for which (3.23) be-
comes

G (1,2)~dofe ~**—(ak)cos(pt)e **—e

2 —K_Z —K ¥4 — —K
—lak)cos(2pt)[r,(e 7 —e F)—Lle *F—e ¥

1} . (3.24)
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We see clearly the “off-diagonal” nature of the expansion,
in the way it mixes functions of the form cos(mpx) with
exp( —k,,z), with m#n.

It is now possible to see how the iterative method im-
plicitly sums an infinite class of terms in the perturbative
approach, and thereby avoids divergences associated with
high-order nondifferentiability of the modulation func-
tion. Consider, for example, the second term on the
right-hand side of Eq. (3.23). Expanding exp(—«,z) gen-
erates terms of order KI ﬁ ), for all positive I, and these
are precisely the ones whlch at large momentum g behave
as the /th derivatives of A, as discussed after Egs. (2.16)
and (2.17).

B. Two surfaces

Here we outline the application of the geometrical
transformation to the case of two parallel bilayers. To
the extent that the approach for two surfaces is analo-
gous to that of one surface, the main difference being the
precise form of the transformation used, we refrain from
presenting a number of details of the calculation. As we
mentioned in Sec. II, the objective of the change of vari-
ables is to map the modulated domain into a flat one
where the boundary conditions are easily satisfied. Un-
like the case of a single layer for which the change of
variables is essentially trivial and linear, this is not so for
two surfaces.

The change of variables is now

d(x,y)—¢(t,2z), t=x,
(3.25)
y —hy(x)
2 T 0 —hyx)

where hy(x) and h;(x) are the height functions that
modulate the surfaces at y =0 and L, respectively. The
domain with modulated boundaries has thus been
mapped to a strip with flat boundaries, as shown in Fig.
1(b). As can be easily verified, z=0 for y =h,(x) and
z=L when y =L +h; (x). Note that denominator of the

go(t,z;g,n)zGo(t’Z;gin)

n=1

+ Ko (k[(2

and G, is the Green’s function for the single-layer prob-
lem. As can be readily seen, the problem is now stated in
the same terms that those for the single layer, then we

can proceed to iterate Eq. (3.26) in the same way as in
(3.14).

2 {Ko(k[(t =&+ (z —m+2nL)*]"")— K (k[ (t —£)*+

— &P —(z—n—2nL) V) —Ky(k[(t —£)*—
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transformation function in (3.25), L +h;(x)—hy(x), is
positive definite, provided that the surfaces do not cross
or touch each other, which is what we suppose here.

We are faced again with a problem completely analo-
gous to that in Sec. II, since now the full expression for
the linearized Poisson-Boltzmann equation after the
change of variables is, as before,

Lo=—T¢, (3.26)

with the difference that the boundary conditions to be
fulfilled are now

&(1,0)=¢,, ¢(t,L)=¢; . (3.27)
The differential operator 7(t,z) is
‘T=u2(z,z)azz+#l“(t)[2L +T(0])(3,—&)
%{zr ) —[L +T(0) ' (1,2)}8,

—%[L +T()]ul1,2)9,, (3.28)
where I'(1)=h,(t)—hy(t) and the functions u(t,z) and
u'(t,z) are given by

wt,2)=zh, ()+(L —2)hg (1), (3.29)
and
w(t,z)=zh; ,()+(L —2)hg (1) . (3.30)

The formal solution to (3.26), analogous to (3.5) for this
case, is
¢=8rT¢, (3.31)

where G, is in this case the Green’s function for the
operator L =09, +9,, —«* vanishing on the new boun-
daries z =0 and L,

(z +m+2nL)*])""?)

(z+m—2nL)*1"%})

(3.32)

IV. FREE ENERGY OF MODULATED
DOUBLE LAYERS

We recall first the computation of the electrostatic and
configurational free energy of an electric double layer
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within the context of the Poisson-Boltzmann equation.'
The contribution to the total free energy coming from the
configurational part is given by the usual ideal-mixing ex-
pression obtained for a binary mixture, and the electro-
static contribution is simply proportional to the square of
the electric field. Thus the excess bulk free energy over
that of the homogeneous system is
c_
c

cE?
+ _
8

€+
kgT |c In|— |+c_In

F=[dv

—(c4 +c_—2c) (4.1)

The functions ¢, and c_ that extremize the functional ¥

and are consistent with the Poisson equation
Vi¢=—4me(c, —c_)/e are
c,=ce -Bed’, c_ =cePe? , (4.2)

where f=1/kgT. The expression for F in terms of elec-
trostatic properties at the surface is already known,!
however, it will be useful to review the derivation in more
strict mathematical terms. Starting from Eq. (4.1) we re-
place the values of ¢, and ¢ _ given by (4.2), and use the
Poisson-Boltzmann equation

8mce
£

V2= "€ sinh(Bed) 4.3)

to obtain
2
F=[dv € 492 —2ck, T[cosh(Bed)— 1]+ 22~ | |
4 87

(4.4)

with E=—V¢. Calculating the variation of F and using
the Poisson-Boltzmann equation, we obtain

8F=-=[dV[V$-V(54)+4V2(84)] . 4.5)
4

Through one of Green’s identities this may be rewritten
as

(4.6)

_ € 9(8¢)

8F=7 3 Js 4 vl
where the sum runs over the surfaces in the system: Note
that 1; points into the ith surface. The quantity
d(8¢)/0n is of course the variation of the normal com-
ponent of the differential of the electric field 8E,, which
is in turn related directly to the charge density through
E, =4mo /e. Thus, integrating Eq. (4.6), we may express

J

= Pk dq ..
Fgo)=——5— [dx |1+« [ TLe™(r, ~Di(g)

+K2f_gﬁ_e—iqxf‘21_ke~ikx %"l"
T v

— 1 —
Fo+xTk —3xVg+k — Tk >
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the excess bulk free energy as a surface term,

Ui ,
Ale=2 [, [, ¢doias,, @7
as a functional of the charge densities {o;]. The full free
energy F({#;}) accounting for surface terms omitted in
Eq. (4.1), as a function of the potentials, is obtained as a
Legendre transform of ¥ in (4.7),"!!

Hio1=lo)1= 2 [, dSio,

¢;
=— 21; f)lds,. fo odd, . 4.8)

The general results in (4.7) and (4.8), valid for the non-
linear theory, simplify considerably in the Debye-Hiickel
limit, where, due to the linearity of the governing
Helmholtz equation, we know that there exist linear rela-
tionships between the induced charge densities and po-
tentials of the conductors in the system. This implies in
turn that the total free energy of the system may be writ-
ten as'!

57([45{}):_%2@1]‘#[‘15,‘ > (4.9)
ij
the diagonal and off-diagonal matrix elements of € being
the coefficients of capacitance and mutual induction, re-
spectively. A computation of the free energy of interact-
ing modulated surfaces is thus equivalently one of their
capacitances and mutual inductances.

Turning now to the computation of the free energy of a
modulated double layer for the case of fixed potential, we
express o as a function of ¢,

o(x)=—-=Vé(x,h(x))q(x), (4.10)
41
with ©i’ the unit normal to the modulated surface, point-
ing into the solvent,

h, A 1 A
A(x)=— i+ ;.
T T ) 2T (rpya?

(4.11)

Using the expansion of the potential given in (2.11) and
(2.12), and expressing the integral over the modulated
surface in terms of the coordinate x by introducing the
metric,

[ds= [dx(1+r})?, (4.12)

we obtain the total free energy of a single surface as

2 gk (4.13)

K

Rhtk)+ - -- } i

In the case of fixed charge, the expansion to second order yields
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2w

Hoo)= 277 [ e |1 [ B oo [ Ly |fig)
(00)_ €K * o 27Te rq 9
__fi E_l —igx _‘& —ikx g_k_
2J 2 ¢ fzwe &2
xh(@h(k)+ - - -

As with the electrostatic potential itself, it proves in-
formative to examine the “long-wavelength” behavior of
the free energy, and so to expand the kernels of the above
integrals. Observe first that at zero momenta each of the
kernels vanishes, so that the free energy is invariant un-
der uniform translations of the boundary, as must be the
case on physical grounds for an isolated double layer. Up
to terms second order in the height function, the free en-
ergies are

- edik
Ho)=——— [ dx

1+%[Vh(x)]2——?1K—V2h(x)

—8—1;[V2h(x)]2+ e 1 . @.15)
K

2mo}
d
€K f x

1+ L[ VAR + == V2h(x)
2k

+ VRO - ] 4.16)
8k

We may recognize the first two terms in each of these ex-
pressions as expansions of the arc-length factor [Eq.
(4.12)].

If we identify the Laplacian of the height function with
the curvature of the surface, then these expressions may
be seen as expansions in the ratio of the Debye-Hiickel
screening length to the local radius of curvature of the
surface. In particular, the terms proportional to the
square of the Laplacian are equivalent to a modification
of the bending modulus k, of the surface.!>!* For a
weakly modulated surface the bending energy may be
written as

F,=1k, [dS(Vh ), 4.17)

so the electrostatic contribution to the bending modulus
for the two types of boundary conditions are

J

edoK

8

+tanh?(kL /2)x* [ %Fo(k)ﬁL(—k)chsch(KkL)

tanh(xL /2)x? [ %[1?0(1()?0( —k)+h (R (=] |r
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2 -2 +1
Fovk  Telg+k Te+k
]. (4.14)
-
kc(¢0)=3;(fi, kc(oo)=32:—:§ (4.18)

It is interesting to note the differences between the two
ensembles in the particular coefficients of the expansion
of the free energy in powers of the curvature. We em-
phasize that o, and ¢, in the above equations are in-
dependent given quantities. For highly symmetric
geometries such as planes, cylinders, and spheres, a
correspondence between them exists in the sense that uni-
form charge density and constant potential are compati-
ble. However, this is not the case for an arbitrary sur-
face. Previous studies of curved double layers”!? have
mainly focused on the case of specified charge density.
Within the present two-dimensional calculation, an ap-
propriate comparison is with the expansion of the exact
solution for cylindrical geometry, and the agreement is
precise. One may easily verify that the same agreement
holds for the cylindrical Dirichlet problem.

Once again, we may consider the very simple case in
which there is only one layer modulated according to the
periodic height function A4 (x)=a cos(px) and lying on
the plane (x,z) perpendicular to y. Focusing on the case
of fixed potential, and integrating (4.13) over one full
period, we obtain the average free energy for a single sur-
face,

edx
8

(ak)?
1+T(rp

F~— —1) [+0(R}). (4.19)

From the general result (4.15) and this particular case, we
conclude that the electrostatic self-energy becomes more
negative with increasing amplitude of modulation, thus
stabilizing rippled structures. Consequently, in the study
of phase transitions between different structures we might
expect to find systematic changes in the transition tem-
peratures with varying ionic strength.

In the case of two layers, again assuming zero mean for
both height functions and equal potentials, the second-
order contribution to the free energy is

¥ tanh(k, L)

tanh(xL /2) -1 ]

> (4.20)

showing clearly the role of both self- and cross-correlations between modulation functions of the two surfaces.
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An interesting example of a pair of interacting boundaries is that of two sinusoidal surfaces with a relative phase shift

o,

ho(x)=a cos(px), h;(x)=a cos(px +0O),

(4.21)

with ©=0 implying the two modulations are nested together, and © == /2 corresponding to layers with peaks in direct
opposition. From (4.20), the average free energy per unit area is

€ 2

F=— 2tanh(xL /2)+(ka)?

tanh(xkL /2) |r,

Asymptotically for kL >>1 and for large wavelength
modulations (p <<«), the difference in free energy
V(L)=FHL)— F ), i.e., the interaction free energy, is

V(L)~ed3| 1+(Ka)2[2rp —1—3r,cos(8)]}e L,
(4.23)

At fixed mean intermembrane spacing, this free energy
is minimized when the phase shift ©=0; i.e., when the
two modulated surfaces are in registry. The barrier for
relative lateral translations of the surfaces, that is, for
changes in the phase shift, is proportional to the relative

roughness (ka)?, and decreases exponentially in the inter-
membrane spacing L. This leads us to predict that in
scattering experiments that probe the relative translation-
al order of a multilamellar stack of membranes there
should be an exponential decrease in order with progres-
sive hydration.

When the two layers are in registry, the asymptotic be-
havior of the net repulsive potential between them has
the form

V(L)=ed¢dx{1+[1(ka)?+2(ap)*]je * . (4.24)
Thus modulation of the membrane surface leads to an in-
crease of the repulsive interaction from that of planar
layers. This would be expected to have consequences on
the stability of charged membranes in multilamellar ar-
rays, in particular, tending to destabilize modulated
structures upon decrease of the intermembrane distance.

V. DISCUSSION

The relationship between boundary modulations and
the electrostatic and thermodynamic properties of nearby
electric double layers have been explored within linear-
ized Gouy-Chapman theory. Systematic expansions of
the electrostatic potential and free energy of double lay-
ers, either isolated or interacting in pairs, have been
developed in terms of powers of the height function
describing modulation, or, in the case of random sur-
faces, in terms of n-point correlation functions of the
modulation. In the long-wavelength limit it is possible to
express these quantities directly in terms of the surface
roughness, gradients, and curvature.

The analysis presented here suggests some important
directions for future study. First, note that the two ap-
proaches explored here are fundamentally expansions
around the properties of the planar membrane systems,

tanh(«L /2)
P tanh(k,L) 2

1 tanh*(xL /2)
sinh(x,L) 7%

] . (4.22)

—

and as such are not able to address the regime in which
the modulation amplitude is comparable to or larger than
the Debye-Hiickel screening length. It would appear that
a fundamentally different approach is necessary to deal
with such systems. The present method is not well suited
to the study of closed surfaces of arbitrary shape and to-
pology. Elsewhere,* we discuss a formalism appropriate
to such geometries. Further, in application to real sys-
tems it may likely be the case that the linearized Debye-
Hiickel approximation studied here will be only qualita-
tively correct, the more appropriate starting point being
the full Poisson-Boltzmann equation.’” As mentioned ear-
lier, the inherent nonlinearity of this equation compli-
cates the use of an iterative scheme, and suggests the
boundary perturbation method as more appropriate start-
ing point, but a careful analysis is necessary to determine
if a consistent formalism is possible.

Finally, it should be noted that the formalism for solv-
ing the Helmholtz equation in a domain with modulated
boundaries finds application also in the study of so-called
“hydration” forces, !> which are known to play an impor-
tant role in the interactions between neutral, dipolar
membranes. Recent experimental® and theoretical'’
work has suggested that modulation of the membrane
surfaces effects the hydration force in important ways,
and vice versa.!® It is thus of interest to extend the
present calculation to treat phenomenological models of
hydration forces between modulated membranes.'® Ex-
periments have also shown that the stability?®~* and
structure'® of neutral membrane phases depend sensitive-
ly on the ionic strength of the surrounding aqueous medi-
um and the activity of the water, as modified by mem-
brane interactions. A natural extension of our results
would be a fully self-consistent treatment of the modulat-
ed phases, with an interplay between, on the one hand,
the driving forces that produce membrane modulation in
isolated bilayers and, on the other hand, the effects of
membrane interactions on the stability of the system.
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