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The evaluation of thermodynamic properties of liquid alkali metals is reexamined in the approach
based on the Gibbs-Bogoliubov inequality and using the fluid of charged hard spheres in the mean-

spherical approximation as reference system, with a view to achieving consistency with the liquid
structure factor. The perturbative variational calculation of the Helmholtz free energy is based on
an ab initio and highly reliable nonlocal pseudopotential. Only limited improvement is found in the
calculated thermodynamic functions, even when full advantage is taken of the two variational pa-
rameters inherent in this approach. The role of thermodynamic self-consistency between the equa-
tions of state of the reference fluid derived from the routes of the internal energy and of the virial
theorem is then discussed, using previous results by Htt(ye and Stell [J. Chem. Phys. 67, 439 (1977)].
An approximate evaluation of the corresponding contribution to the free energy of liquid alkali
metals yields appreciable improvement in both the thermodynamic functions and the liquid struc-
ture factor. It thus appears that an accurate treatment of thermodynamic self-consistency in the
charged-hard-sphere system may help to resolve some of the difficulties that are commonly met in
the evaluation of thermodynamic and structural properties of liquid metals.

I. INTRODUCTION

with p= l/k~ T. If one chooses a reference system in the
same thermodynamic conditions, with Hamiltonian H„f
and Helmholtz free energy F„f, the Gibbs-Bogoliubov in-
equality then puts an upper bound on F„„,as'

true — ref+ ( true Href ~ref ' (2)

The brackets ( )„tin Eq. (2) denote a statistical ensemble
average over all the ionic configurations of the reference
system.

It is clear from Eq. (2) that the inequality can be used
to advantage if a judicious choice is made of the reference
system. Two general criteria need to be fulfilled. First,
the reference system should mimic well enough, at a
primitive level, basic features of the real system such as

In the last fifteen years there has been great progress in
our theoretical understanding of the thermodynamic
properties of liquid metals. A widely used technique is
the variational approach based on the Gibbs-Bogoliubov
inequality. This inequality can be stated as follows. Let
the liquid metal, at given temperature and density, be de-
scribed by the Hamiltoniari H„„„which determines the
Helmholtz free energy F,„„,by

exp( PF„„,) =Tr[ex—p( PH„„,) ], —

the liquid structure and the interparticle interaction. The
second criterion has to do with practical aspects, that is,
all the thermodynamic quantities of the reference system
should be readily available, preferably in analytical form
or at least in a form that can be conveniently used.
Among several possible choices that are available in the
literature, the neutral-hard-sphere system, the one-
component classical plasma, ' the charged-hard-sphere
system' ' and the soft-sphere (inverse power poten-
tial) system" have been considered as appropriate
reference systems for liquid metals.

The system of neutral hard spheres (NHS) was first in-

vestigated because its liquid structure is in qualitative ac-
cord with experiment for many liquid metals and its
structural and thermodynamic functions are known in
closed analytical form (see, for example, Ref. 6). Howev-
er, the NHS system is not as successful as would be ex-
pected. It can only provide a qualitative description for
the thermodynamic properties of liquid metals. For ex-
ample, it has been found' that attempts to quantitatively
evaluate the pressure of a liquid metal by a pseudopoten-
tial variationa1 approach would often lead to unrealistic
results. Furthermore, for some liquid metals such as the
alkalis the NHS liquid structure factor fails to describe
correctly the actual interionic correlations. Such failures
are now understood and can quite generaly be attributed
to the NHS potential being too "hard" for real metals.

These defects of the NHS reference system quite natu-
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rally led to investigations of the usefulness of the one-
component classical plasma (OCP), consisting of point
particles carrying a charge Ze and embedded in a homo-
geneous neutralizing background. The OCP model has
been extensively studied both theoretically and by
computer simulation as a function of the plasma pa-
rameter I, defined as the ratio of the electrostatic energy
Z e /R, to the thermal energy k&T with R, the ion
sphere radius (see also the reviews by Baus and Hansen
and by Ichimaru ). Reliable data on its structural and
thermodynamic properties are thus readily available. In
addition, the OCP structure factor [hereafter referred to
as S(q, I')] reproduces surprisingly well the measured
structure factor of real liquid metals. ' "" However,
the use of the OCP as a reference system in variational
studies of liquid metals ' has brought to light a general
difficulty. Irrespective of the pseudopotential used in the
variational approach, the variationally determined value
of the plasma parameter for all the alkali liquid metals is
about 130, ' ' ' ' ' much less than that anticipated
from liquid structure data (I =170). Thus, although
with I =130 the numerical value of the excess entropy is
closer to experiment than that obtained from the NHS,
the quality of S (q, I ) would be appreciably deteriorated.
The apparent contradiction between excess entropy and
liquid structure factor in the OCP approach remains un-
resolved, although various critical discussions have been
offered' ' ' ' ' ' and efforts at understanding this puzzle
continue. ' One can perhaps infer from these studies that
the OCP thermodynamic functions may sti11 be inade-
quate for quantitative thermodynamic calculations on
liquid metals. Accordingly, there has been a gradual shift
of attention to other reference systems, which are some-
what more complicated than the NHS and OCP. Two
closely related and competing models have been con-
sidered very recently.

The first is the system of charged hard spheres (CHS).
This model differs from OCP in that each charge is en-
closed in a hard sphere with radius 0/2. Accordingly,
the CHS model is characterized by two disposable pa-
rameters, that is, the charge Ze and the hard-sphere di-
ameter 0. The model has been solved in the mean-
spherical approximation by Palmer and Weeks and ex-
amined by computer simulation. Much attention has
been focused on the possibility of exploiting the CHS in
the study of the OCP. ' ' Apart from early calcu-
lations on liquid structure factors, ' it is only recently
that quantitative attempts have been made to examine
the usefulness of the CHS in understanding the struc-
ture ' and the thermodynamic properties' ' ' of liquid
metals.

The second reference system that has recently been
made use of is the hard-sphere Yukawa potential mode1
in the mean-spherical approximation. Basically, this ap-
proach differs from the CHS approach in that screening
of the ions by the conduction electrons is partially includ-
ed already in the reference system. From the variational
viewpoint this approach is more flexible, but the expres-
sions involved in the mean-spherical approximation are
considerably more complex. In fact, using different non-
1ocal pseudopotentials quite different results have been

II. THEORY

In this section we summarize the main expressions
needed in the calculation. The system of charged hard
spheres consists of particles having charge Ze and diame-
ter cr, embedded in a uniform neutralizing background.
The particles interact with each other via the potential

(Ze) (r )o)
V r)=

oo (r (0) . (3)

For this hard-core-type potential treated in the mean-
spherical approximation (MSA), Palmer and Weeks de-
rived an analytical solution for the direct correlation
function and hence, after Fourier transformation, one can
easily obtain the CHS liquid structure factor S(q, l, r))
(see Ref. 29 for the detailed expression). The excess inter-
nal energy expression enters directly the Palmer-Weeks
solution and is given as a function of g and I by

obtained (see the recent work by Li, Moore, and Wang
and by Hausleitner and Hafner. ).

It can be seen from the above brief survey that there
still is a need for more detailed examination of thermo-
dynamic and structural properties of liquid metals. Obvi-
ously, with just the NHS and OCP systems it is not very
likely that one may proceed much further than our
present understanding. For more quantitative work, the
trend seems to require moving to somewhat richer refer-
ence systems such as the CHS or the hard-sphere Yu-
kawa type. In this paper we adopt the CHS model as our
reference system and examine the possibility of quantita-
tively using it in variational thermodynamic studies. For
concreteness we have chosen to focus on liquid alkali
metals, although the approach may also be useful for
polyvalent liquid metals. ' As for the pseudopotential,
we use the modified generalized nonlocal model pseudo-
potential (GNMP) of Li, Li, and Wang. In contrast to
previous work by one of us, ' we now have both the pack-
ing fraction rl =mpo /6, p being the particle number den-
sity, and the plasma parameter I as variational parame-
ters. For purposes of analysis we compare these results
with those of one-parameter variational calculations, in
which I is taken from theoretical work on liquid struc-
ture' or evaluated from the ionic valence. This will
serve to draw attention to the importance of thermo-
dynamic self-consistency in the variational theory. Mak-
ing use of earlier results by Hdye and Stell we shall dis-
cuss, in particular, the relation between thermody-
namic self-consistency for the reference system and the
variational theory, as well as the possibility of achieving
mutually consistent results for the excess entropy and the
liquid structure factor.

The layout of the paper is briefly as follows. In Sec. II
we summarily give the essential expressions needed in the
thermodynamic calculations. Section III is devoted to
the presentation of numerical results and their discussion,
leading to the discussion of the role of thermodynamic
self-consistency in Sec. IV. Finally, Sec. V summarizes
our main conclusions.
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U'" = —k T 1+ri ——ri — [(1+2'() —1]l+2g [/2
cHs B

2 ] /3
Y1 5 K

(4)

where g=(1 —g) /(1+2') and s=(12' I )' . The two quantities S(q, I', 7)) and U'" are precisely those needed in
Eq. (2). F«m Eq. (4) it is straightforward to calculate the excess Helmholtz free energy of the CHS by integration with
respect to I, yielding

F'" =F —k T 1+ —— + ( + ~) — ( + I) [(1+2 () —1]CHS NHS B ) /3 9
5

I
2' K 3g, K3~ 2

(5)

In the above FNHs is the excess free energy of the NHS,
corresponding to the case I =0, over the ideal gas free
energy. The expression for this quantity will depend on
the form of the equation of state (virial, compressibility,
or Carnahan-Starling) that one chooses and these forms
are all available in the literature (see MacGowan' ).

At this point it is appropriate to digress a moment and
make a relevant remark. Since the expression (5) for the
excess Helmholtz free energy of the CHS is obtained
from the internal energy, it is related to the radial distri-
bution function and can be expected to yield the most ac-
curate thermodynamic information. On the other hand,
from the statistical-mechanical viewpoint, one may also
determine the excess Helmholtz free energy from the viri-
al or the compressibility equations of state. In an exact

theory these three alternative methods should yield the
same value for the free energy. However, different ther-
modynamic results are obtained by the above three routes
in the MSA. This problem of thermodynamic incon-
sistency is one of the main defects of the mean-spherical
approximation and has been a subject of great theoretical
attention. In particular, Hdye and Stell made an in-
teresting study of its consequences for the general case of
hard-core, orientation-independent potentials. We shall
discuss this point further in Sec. IV. We return now to
Eq. (5).

By making use of Eqs. (2), (4), and (5) the Helmholtz
free energy of a liquid metal is readily evaluated and is
given (per ion) by

Z2
Fid+FcHs++EG+ d J dq ~cHs(q ~ ))G"(q)

7T 0

(l,n
—I )

kBT "1/3
27l

1+q
——ri2 — [(1+

2m ()' —1]
5

Here, F;d is the free energy of the ideal gas, EEG is the
ground-state energy of the degenerate electron gas, Fd is

the nonlocal contribution arising from the deviation of
the electron-ion pseudopotential from a purely Coulom-
bic form, G (q) is the normalized energy-wave-number
characteristic, and I,&=Z,trP/8, with Z, tt

= (Z
—

pd )', Z and pd being the nominal valence and the de-

pletion charge density, respectively. The explicit form
for each of these terms can be found in Refs. 5 and 51
and is therefore not given here.

A. Two-parameter case

To carry out the two-parameter variation, the
Helmholtz free energy in Eq. (6) is minimized according

to the following conditions:

az
Il, T, 'g

BF
a

n, T, z

We have denoted the charge variational parameter by z.
Using Eqs. (7) and the operator identity T(B/BT)„,„= —I ( 8/BI )„r„, the corresponding internal energy

UCHS2 and excess entropy SCHS 2 can be simplified to
read

=3 eff EC
UCHs ~

=—k~ T+EEG+Fd — dq ScHs(q, I,r) )G (q)
2 1T 0

—kB T 1+pm —
qm

9m

1+2r]
[(1+2~ g )'~ —1]

Km
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and

SCHS&2 1+29m
I 3v g [( I+2m g )'~2+ 1]k, 72

—2[(1+2~ g )' —I]]
6g —21n(1 —g ) .

1 —9 (9)

Here, q and I in a. =(12' ~ I )'~ are those deter-
mined from Eqs. (7). In the above (and in Sec. IIB),
g~=(1 —g ) /(1+2' ) . We further note that in Eq.
(9) the first term on the right-hand side is the excess en-
tropy due to charge, whereas the last two terms give the
NHS entropy derived by the virial pressure method.

B. One-parameter case

In this case I is kept fixed and the Helmholtz free en-
ergy is required to satisfy only the condition

BF

, ll, T,z

=0. (10)

X [(1+2m'g )' —
( I+a'g )]

cHS, 2+ cHs, l +ScHs, l )/kB

and, correspondingly,

UcHs )
=

UCHs 2+ U"'+ U' ' . (12)

Here, g is the minimized parameter obtained from Eq.
(10) and a'=(12' ~ I )'~, I being fixed a priori as al-

ready noted.

Since (dF/Bz)„r„%0, the corresponding excess entropy
SCHs, and internal energy UcHs &

acquire two additional
contributions. We find

s;"„,, s;"„„rz'„„as,„,(q, r, q. )

III. RESULTS AND DISCUSSION

We have applied Eq. (6) to the study of thermodynamic
properties of four liquid alkah metals. Using the GNMP
theory, we have carried out one- and two-parameter vari-
ations of F and the results are collected in Table I togeth-
er with experimental data. ' We now comment on the
results obtained.

As can be seen from Table I, there are four closely re-
lated points that merit emphasis.

(i) The values of Fobtained in the two-parameter varia-
tional calculation are lower than those obtained by
minimizing F with respect to g at a value of I fixed
theoretically by optimizing the calculated liquid structure
factor. '

(ii) The magnitude of the plasma parameter obtained in

the two-parameter variational calculation is significantly
reduced, whereas the value of g remains virtually un-

changed.
(iii) The internal energy obtained in both the one-

parameter and the two-parameter calculations is in excel-
lent agreement with experiment, but quantitatively the
one-parameter calculation yields slightly better results.

(iv) In spite of the fact that the calculated structure fac-
tors in the one-parameter case (Fig. 1) are of better quali-
ty than those obtained in the two-parameter calculations
(Fig. 2), the calculated excess entropies in the former case
are somewhat inferior to the latter when compared with
experimental data. Thus the gain in the Helmholtz free
energy obtained by using two variational parameters is
due to the improvement in the calculated excess entropy
and occurs with a slight deterioration in the internal en-

ergy and in the liquid structure factor.
In order to examine the above points in more detail, we

take Na as an example and carry out two additional one-
parameter calculations at I =209, corresponding to the
nominal ionic valence Z =1, and at I =0, corresponding
to the choice of the NHS as reference system. These re-
sults are presented in Table II along with those given in
Table I for I =179 and 45. For the purpose of illustra-
tion, further details on the internal energy and the excess
entropy as functions of I at g=g are included in a
separate Table III. We can now understand points (i) and
(ii) above if we notice from these tables that the excess en-
tropy exhibits a clear maximum near I =45, thus leading
to a minimum in F at a rather small value of I . Coming

TABLE I. Two-parameter variation results for the minimized packing fraction q and plasma parameter 1,the internal energy
UcHs „the Helmholtz free energy F, and the excess entropy SCHs, of liquid alkali metals near freezing. The entries in parentheses
are those obtained using one-parameter variation with I taken from Ref. 19. The experimental data are taken from Refs. 2 and 14.
All quantities are in atomic units.

Metal

Na

Rb

Cs

45
(179)

50
(169)

47
(167)

59
(176)

0.466
(0.467)
0.461
(0.461)
0.456
(0.456)
0.460
(0.460)

—0.2356
(
—0.2354)
—0.2009

( —0.2008)
—0.1927

( —0.1926)
—0.1809

( —0.1808)

Fexpt

—0.2360

—0.2010

—0.1930

—0.1820

UcHs, i

—0.227 215
( —0.227 254}
—0.191975

( —0.192005)
—0.183 025

( —0.183 044)
—0.170 818

( —0.170 837)

Uexpt

—0.2320

—0.1956

—0.1870

—0.1757

SCHS, I /kg

—4.12
( —4.31)
—4.06

( —4.23)
—3.96

(
—4.14)
—4.08

( —4.22)

Sexpt /kg

—3.45

—3.45

—3.63

—3.56
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10—

Cs

TABLE II. One-parameter variation results for liquid Na at
freezing point. The minimized packing fraction g is obtained
from Eq. (10). I =0 corresponds to the NHS model. All quan-
tities are in atomic units.

UCHS, 1 SCHS, 1 /kB

Rb 209
179
45
0

0.470
0.467
0.466
0.476

—0.227 262
—0.227 256
—0.227 215
—0.227 205

—4.38
—4.31
—4.12
—4.16

—0.235 35
—0.235 43
—0.235 62
—0.235 55

0
I

4

q (A')

FIG. 1. Theoretical (dashed line) vs experimental (solid line)
static structure factor near freezing for liquid Na, K, Rb, and
Cs obtained using one-parameter variation (see text). Experi-
mental data are taken from van der Lugt and Alblas (Ref. 55).

to point (iii), the results for the internal energy U are not
hard to understand if one recalls that for a given elec-
tronic pseudopotential U depends essentially on its
structure-dependent terms. Thus the fact that Uis slight-
ly superior in the one-parameter calculation can be attri-
buted to the somewhat more accurate structure factor
(compare Figs. 1 and 2). With regard to point (iv), a
purely structural interpretation of the results for the ex-

cess entropy is more difficult. However, it may suffice to
mention here that the behaviors that we have found for
S(q, I „g) (and hence for U) and for S'" in going from
one-parameter to two-parameter variational calculations
parallel the behaviors that are also found when the OCP
is adopted as reference system. In that case one also finds
that improved agreement with measured values of S'" is
generally accompanied by a somewhat inferior S(q, I )

(for further details on OCP results, see Ref. 19).
Before drawing conclusions from the results in this sec-

tion, we should emphasize two further implications that
can be inferred from the above four points. First, from
the relatively minor changes of S(q, l, .g ) with I and
the essential constancy of g, one verifies once again the
well-known fact that the microscopic structure of a liquid
metal is primarily determined by the excluded-volume
effect. Second, since large variations in I" at constant g
do not alter S(q, I, ri) to a major extent (see Fig. 3) but
have a significant effect on the excess entropy, we may
further assert that the excess entropy of a liquid metal is
sensitive to the dependence of S ( q, I,g ) on I, whereas
the internal energy is quite insensitive to global changes

10

Cs

3
I

)t
)I

1
i

l

f I
[

I t

Na

Rb

K

Na

0
0

q (A')

0

q(A ')

4

FIG. 2. Same as Fig. 1 but for two-parameter variation (see
text). Refer to Fig. 1 for notation.

FIG. 3. Structure factor of the CHS system at q=0.466 for
E'= 19 (dotted line), 99 (solid line), and 179 (dashed line).
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TABLE III. One-parameter variation results for liquid Na at freezing point. The minimized packing fraction g is obtained from

Eq. (10). Sc"„s2 and SCH's, are the excess entropy in the two-parameter variation and the corrections resulting from the one-

parameter variation, respectively [see Eq. (11) in the text]. Uc», and U" are, respectively, the internal energy in the two-parameter
variation and the corresponding corrections resulting from the one-parameter approximation [see Eq. (12) in the text]. All quantities
are in atomic units.

209
179
45
0

0.470
0.467
0.466
0.476

SCHS, 2 ~kB

—4.82
—4.66
—4.12
—4.16

ScHs, 1 ~kB

0.438
0.472
0.589
0.000

ScHs, &
/k

0.000
—0.126
—0.589

0.000

UCHS, 2

—0.227 78
—0.227 66
—0.227 21
—0.227 20

0.000 52
0.000 56
0.000 70
0.00000

U(2)

0.00000
—0.000 15
—0.000 70

0.000 00

in the structure factor of the order of those shown in
Figs. 1 and 2. We explicitly note in this connection that
the variations that we find in the values of U are less than
0.02%, whereas the variations of S'" are of order 5%.

In conclusion, it is evident from the above results and
discussion that there still are limitations in the quality of
the predicted structural and thermodynamic properties
even when one takes full advantage of the two disposable
parameters that are available in our approach. Quantita-
tively we find that the calculated structure factor and ex-
cess entropy show conAicting trends. Similar difficulties
arise also in variational calculations based on different
choices for the reference system. Since the above con-
clusion holds regardless of the pseudopotential and of the
expression used for FNHs in Eq. (5), it is quite natural to
attribute such difficulties at least partly to the approxima-
tion adopted for the excess free energy of the CHS. In
this connection, we recall a remark made previously in
Sec. II, where we emphasized that our expression for this
quantity has been derived by the internal energy route.
Although, as also mentioned there, this expression is an-
ticipated to be the most accurate, it is nevertheless not
thermodynamically consistent. This brings us then to the
problem of thermodynamic self-consistency for the refer-
ence system, to which we turn in the next section.

IV. THERMODYNAMIC SELF-CONSISTENCY
FOR THE CHS

In this section we discuss at some length the relation-
ship between thermodynamic self-consistency for the
reference system and the variational perturbative ap-
proach. As we stressed in Sec. III, our results for the ex-
cess entropy and internal energy, which enter the
Helmholtz free energy derived by the route of the inter-
nal energy, are not mutually consistent. We attribute this
conflict between S'" and S (q, I, rt) to the lack of thermo-
dynamic consistency in the excess Helmholtz free energy
of the CHS reference system. Let us now look at this
problem in some detail. Although we put emphasis on
the charged-hard-sphere system, the argument is applic-
able to any hard-core-type potential.

In an interesting paper He(ye and Stell made a general
investigation of the thermodynamics of systems with po-
tentials of the hard-core type. According to these au-
thors the equation of state derived in the MSA by the
route of the internal energy can be shown to be

NHS ) 3~P O [gMSA(O ) g NHS(O )]+ MSA&

(13)

where JMsA is the virial integral given by

JMsA cop'cr' f,«g MsA( «)r ~ V ( «)
r&o

PNHS and gNHS(o+) are the pressure and the radial dis-
tribution function at contact for the NHS system, respec-
tively. The superscript IE in the pressure in Eq. (13) re-
minds us that the internal energy method has been used.
This form of the equation of state can be compared
directly with that obtained from the virial theorem
(denoted by a superscript V), which, in terms of the
true contact excess hh(o+)=h(cr+) —hNHS(cr+), h(r)
=g(r) —1 being the total correlation function, can be
written as

(14)

p(P PNHS ) = 3 alp omah (cr+')+J (15)

Here, J has the same expression as JMSA in Eq. (14) with

gMSA(r) replaced by the true radial distribution function
g(r). Obviously, if one approximates g (r) by gMsA(r) in

Eq. (15), the result for the pressure is not thermodynami-
cally consistent with that of Eq. (13). However, self-
consistency can be imposed on these equations if one re-
places the contact excess b h ( cr

+
) in Eq. (15) by

[gMsA(cr+) —gNHs(o+)j/2, while at the same time ap-
proximating J by JMs„. This connection between
internal-energy pressure and virial pressure can alterna-
tively be viewed in the following iterative scheme, also
suggested by He(ye and Stell.

Let us denote U,', J, , and g;(o+) the ith iteration
values for the configuration internal energy per particle,
the integral J and the radial distribution function at con-
tact. The corresponding Helmholtz free energy F,' and
pressure P,' per particle can be calculated from

F' = dI 'U' /I '
l l

and

ALFIE
p IE 2

P
Bp T

(17)

With these ith iteration quantities one may define
g;+,(o+) such that

2 ~p2o3g (o+ )
—PPIE J
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TABLE IV. Two-parameter variation results calculated with correction F,'„„{seetext). All quantities are in atomic units.

Metal

Na
K
Rb
Cs

54
53
48
54

0.514
0.511
0.504
0.512

—0.2371
—0.2023
—0.1939
—0.1821

Fexpt

—0.2360
—0.2010
—0.1930
—0.1820

—0.2281
—0.1927
—0.1837
—0.1715

Uexpt

—0.2320
—0.1956
—0.1870
—0.1757

gex

—3.61
—3.56
—3.46
—3.57

~expt

—3.45
—3.45
—3.63
—3.56

Comparison of Eq. (18) with Eq. (13) immediately sug-
gests that, if we start from the MSA value for the pair
distribution function [i.e., if we set g;(r) =gMs~(r) in the
terms on the right-hand side of Eq. (18)], then in the next
iteration we shall obtain

gi+1(O ) gNHS O + p[gMSA(O ) gNHS(O

In principle this new value for the pair distribution func-
tion at contact, supplemented by other related thermo-
dynamic relations such as the inverse compressibility, can
be used to obtain the full g, +,(r) and hence the (i +1)-
iteration values for the internal energy and the integral J
(see Hs(ye and Stell for details). The iterative process
can indeed be continued until a desired degree of thermo-
dynamic self-consistency is attained. If the iterative pro-
cedure converges, thermodynamic consistency would be
achieved with the viritial pressure in the form

PP"= 32np o g(o+—)+p+J . (20)

It follows from the above approach that thermodynam-
ic consistency between internal-energy pressure and virial
pressure can be improved by explicitly considering addi-
tive corrections to the pressure and to the free energy, re-
lated by P„„=p(r)F„„/dp)T. For the CHS system,
characterized by the parameters I and g, the free-energy
correction in the first iteration can be further cast in the
form

F„,„=2k TJ dr)'[g (o+;ri', I') —g „(o+;ri')] .
0

(21)

d'g g( Hs ''g I gNHs 'g
0

(25)

t I )
f

g

l0—

is always positive. Thus there is hope of variationally ob-
taining a larger value of I, which would be consistent
with the liquid structure data, while at the same time
compensating for the somewhat too negative values of
the calculated excess entropy in Table I. This is also im-
plied by our results for S(q, I,g) in the one-parameter
calculation (see also Fig. 1).

Having pointed out the correction which should be in-
cluded in the theory in order to improve upon our
present thermodynamic study, we proceed next to the
question as to the possibility of evaluating F„„.To this
end, a preliminary study of the integral in Eq. (21) is in
order. The integral involves the difference in the contact
values of two radial distribution functions. Since S„„&0
and gCHS(o+;ri, I ) ~gNHS(o+;7)) as I ~0, we may
physically interpret their difference as disordering arising
from the charges on particles at contact. Accordingly,
such a term is absent if a NHS reference system is used.
In view of this, it is not theoretically justified to set
gCHS(o+;7), l )=gNHS(iT+;71) for this term, as was done
in a recent calculation by Joarder and Bari. However,
while there is no diSculty in the evaluation of
gNHS(o+;ri), the MSA expression for gCHS(o+;ri, I ) in

Here,

+. Q
2

gcHs(o q ~)
4 gNHs(o

+.
24'

(22)

is the CHS radial distribution function at contact in the
MSA (Ref. 42) and K

' 1/2
1+2' 2x(1 —g)

(1+2') (23)

Two points merit emphasis in the above results. First, we
notice from Eq. (22) that for any g and I we have

gcHs(o ~ 9~ ) gNHs(o (24) 0
0

so that F„„contributes negatively to the excess
Helmholtz free energy. A negative correction is con-
sistent with the variational spirit of our approach.
Second, F„„depends on both g and I and the corre-
sponding contribution to the excess entropy,

q(A ')

FIG. 4. Same as Fig. 1 but for two-parameter variation in-

cluding additional free-energy correction (see text). Refer to
Fig. 1 for notation.



41 THERMODYNAMICS AND STRUCTURE OF LIQUID ALKALI. . . 5489

TABLE V. Positions of the maxima and minima in the liquid
structure factors for Na, K, Rb, and Cs at their respective melt-

ing temperature. The first, second, and third rows in each ele-
ment refer, respectively, to experimental data and to calculated
results in the two-parameters variation without and with free en-

ergy corrections (see text). The positions of maxima are given in

the 6rst three columns and those of minima in the last two
columns. The experimental data are taken from van der Lugt
and Alblas (Ref. 55).

Metal

Na

Rb

Cs

1st

2.05
2.05
2.05
1.65
1.65
1.65
1.50
1.55
1.55
1.40
1.45
1.45

2nd

3.75
3.80
3.75
2.95
3.10
3.00
2.80
2.90
2.80
2.60
2.70
2.60

3rd

5.60
5.70
5.55
4.45
4.60
4.45
4.20
4.30
4.20
3.85
4.00
3.90

1st

2.75
2.85
2.80
2.25
2.30
2.25
2.10
2.15
2.10
1.90
2.00
1.95

2nd

4.65
4.75
4.60
3.75
3.85
3.75
3.50
3.60
3.50
3.25
3.35'

3.25

Eq. (22) is unfortunately not physically well behaved over
the full range of g, but is only accurate for q & 0.2. ' The
behavior of the contact value of the radial distribution
function in the CHS has been discussed by Hansen and
Hayter, who in their work on the static structure of a
dispersion of charged colloidal particles were also faced
with its evaluation at low values of the packing fraction.
They proposed a rescaling recipe for dealing with un-
physical negative contact values at low packing fraction.
We have examined their method, but found that it is not
appropriate for the present problem. We instead give a
crude estimation of F„„below, in order to gain insight
into the role that it plays.

As already noted, the expression for gcHs(o+;rl, I ) in
Eq. (22) is reasonably accurate when i) is larger than
about 0.2. This implies that, if we split the integral in Eq.
(21) into

(26)

c(r =0)= ——', I (27)

of the direct correlation function to determine g, as a
function of I . With this estimate for g„and ignoring the
first contribution on the right-hand side of Eq. (26), we
estimate

and are able to determine q, such that its value is larger
than about 0.2 for any given value of I, then we may ac-
count with reasonable accuracy for the second contribu-
tion to F„„, in Eq. (26). Among various possible ap-
proaches that we have tried for the determination of g„
we have found that only the procedure due to Singh
yields the desired condition. This procedure makes use of
the general property

F„,„=F,'„,=—2k, Z. "dq' g«s +-, ~', r
~$

gNHS(~ ~ I )] (28)

We have reexamined the perturbative variational
method based on the Gibbs-Bogoliubov inequality. Using
an accurate and highly reliable nonlocal pseudopotential,
we have analyzed the usefulness of the CHS system in
quantitative thermodynamic studies. Our theoretical re-
sults using the CHS are of comparable quality as those
obtained using the hard-sphere Yukawa reference system,
but, as in earlier studies using the OCP, we find that the
calculated excess entropies and the structure factors for
liquid alkali metals still exhibit conflicting features. In an
endeavor to understand this conflict and to move towards
fully quantitative calculations, we have discussed and ex-
tended our results along the line of thermodynamic self-
consistency for the CHS reference system. We find that
such considerations are important if the Gibbs-
Bogoliubov variational theory is to produce mutually
consistent thermodynamic and structural results.
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We emphasize that our estimate is not strictly justified,
but is nevertheless useful to qualitatively examine the
significance of the correction to the free energy.

The variational calculation can now be carried out by
minimizing (F +F,'„,) with respect to i) and I . The re-
sults are shown in Table IV. There are two interesting
aspects of these results that deserve attention. First, we
see from Table IV that the excess entropies are now even
closer to experiment, as is to be expected from Eq. (25).
Second, the values of g are larger than those given in
Table I, while the values of I do not change much. As
consequences of the increase in iI, we find that (a) the
calculated values of the internal energy and the free ener-

gy tend towards the measured values and (b) the calculat-
ed structure factors (see Fig. 4) predict very well the posi-
tions of peaks and minima for liquid alkali metals from
experiment (see Table V). Thus it appears from our es-
timation that there is still hope for obtaining mutually
consistent thermodynamic and structural results if F„„
can be properly considered. Clearly, this would best be
done by transcending the MSA for the CHS reference

system in a thermodynamically self-consistent approach,
such as has been developed for the OCP by means of a
Yukawa tail added to the MSA direct correlation func-
tion (see, e.g. , Ref. 33).

V. CONCLUSION
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