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Ground-state properties of a strongly coupled one-component plasma
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The ground state of a quantum strongly coupled one-component plasma, with planar symmetry,
is analyzed. The analysis was done working with the deformable jellium model and the particle-
particle interaction as a screened Coulombic potential. For the single-particle state functions, two
different periodic expansions were used. We obtained the behavior of the ground-state energy per
particle, the coupling parameter I, the particle localization, and the density of states as functions of
the interparticle distance r, .

INTRODUCTION

A homogeneous one-component plasma (OCP) is a sys-
tern consisting of charged particles of a single species in a
neutralizing background. It is a simplified model which
nevertheless manifests fundamental characteristics of a
Coulomb system. The OCP is characterized by the di-
mensionless coupling parameter I,' which is a measure
of the ratio of the average potential energy to the average
kinetic energy. The I values classify the plasma in
strongly coupled, if I ) 1, and weakly coupled, if I &1.
Examples of strongly coupled plasma are the system of
ions inside a highly evolved star, and the system of
valence electrons in the metal.

A number of special models that concentrate upon
some physical properties of the system have been
developed to bring out more clearly the physical charac-
teristics involved or to give alternative viewpoints. Esti-
mates of static and dynamic properties of a quantum
OCP have been clarified through various theoretical ap-
proaches. Among the analytic theories reported in the
literature one can mention the Green's-function method,
the dielectric formulation, the variational methods in
terms of a trial wave function, the density-functional
method, and Hartree-Fock calculations. Also, Monte
Carlo variational calculations, ' " thanks to the devel-
opment of fast computers and the rapid progress of com-
putational technique, constitute useful tools in the study
of these systems.

In the Coulombic systems at low densities, the poten-
tial energy becomes relatively more important than the
kinetic energy, and it is expected that the spatial density
becomes nonuniform to minimize the energy. Then the
particles that are nearly free at high densities are expect-
ed to form a periodic crystalline array at low densities.
Therefore it is valuable from a theoretical standpoint to
predict the properties and phases of a quantum OCP for
the complete range of densities.

Historically, Wigner' first proposed in 1934 a phase
transition in the electron gas at low densities. In this
density region the electron gas is a strongly coupled
OCP. Since this pioneering work, the phases of the elec-
tron gas have attracted a great deal of interest. The argu-
ments for lattice formation and the condition under

which it is expected to occur are elaborated in various
directions, and there are many di6'erent estimates for the
critical interparticle distance at which the electron gas
will condense into the ordered Wigner lattice. ' Almost
all these analyses were done for systems in three dimen-
sions (3D); for these systems, the exact Monte Carlo re-
sults obtained by Ceperley and Alder' provide an upper
bound to the ground-state energy. In the literature, there
are also analysis of the ground-state properties of the
two-dimensional (2D) electron gas, ' because it is a fun-
damental model in many body physics and has several
important applications. There are laboratory reports of
Coulombic systems with crystalline array in 2D and 3D:
electrons deposited on the surface of liquid helium, ' the
crystallized suspensions of polystyrene spheres, ' and col-
loidal crystals. '

In a theoretical approach to 3D systems, Overhauser'
considers a model in which the background is deform-
able, as the ions in the alkali metals might be. At low
densities this system is unstable against charge-density
waves (CDW) and this transition is considered as a pre-
cursor to the Wigner crystallization. This model, the de-
forrnable jellium model, has been extensively used. Ini-
tially in the Overhauser's model, the CDW are presented
in only one direction, and it was an important problem to
determine the optimum direction for the CDW in a par-
ticular system. Presently it is usual to find in the litera-
ture calculations which present CDW in one, two, and
three directions, ' in order to obtain an adequate descrip-
tion of systems with 1inear, planar, or three-dimensional
symmetry, respectively.

In this paper we analyze a 3D strongly coupled quan-
tum electron OCP (QEOCP) in the deformable jellium
model. We are interested in the ground-state properties
of systems with planar symmetry. The state function is
evaluated by a self-consistent Hartree-Fock (HF) method.
The single-particle state functions proposed are two alter-
native periodic expansions such that the self-consistent
calculations may produce a CDW in two directions, for
both expansions.

It is we11 known that at metallic densities, the self-
consistent HF solution for a QEOCP is the plane-wave
(PW) solution. -' If the system is unstable against a two-
dimensional CDW, there will be a phase transition at a
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characteristic interparticle distance, and the self-

consistent solution obtained in this region will be a
CDW. Therefore the particles density will be periodic
along two orthogonal axes starting at a critical interparti-
cle distance. It is interesting to see how the particle lo-
calization changes as the interparticle distance increases
from the transition point.

The ground-state energy and the coupling parameter I
are calculated as functions of the interparticle distance.
The behavior of both are very useful to determine the
plasma stability. A discontinuity in the function I as
well as the energy criterion are used to characterize the
fusion point for the Wigner crystal. ' '

The electronic density of states, specially near the Fer-
mi level, is essential to obtain transport properties of the
system: therefore it is convenient to remove the patho-
logical logarithmic zero found for Coulombic systems
with a PW solution ' in the HF approximation. In order
to analyze the system behavior for different interaction
ranges and to remove the divergence in the density of
states at the Fermi level, the proposed interaction is a
screening Coulombic potential.

THE MODEL

The Hamiltonian for a 3D strongly coupled QEOCP
has the general form

H=T+ Ve e+Ve b+ Vb b

T is the kinetic energy of the electrons, V, , is the
electron-electron interaction, V, b is the electron-
background interaction, and finally Vb b is the
background-background interaction. The deformable jel-
lium in the single-particle approximation is defined by the
condition

«, )+(v, „)+(v„)=o,

where ( Vd ) is the energy contribution from the direct
term of the electron-electron interaction.

In this work, the single-particle state functions in the
Slater determinant have the general form

where g& is the spin function, V is the volume in which
normalization conditions are imposed, and F„(r) is a
function with the symmetry of the system. As a first ap-
proximation we propose Fo(r), and the specific form is
determined by means of the HF equations with the ortho-
normalization condition included. All the calculations
are performed for the two following alternative periodic
expansions, proposed for the single-particle state func-
tions:

4k z=yzV ' exp(ik r)
N

X g g C„„cosqo(n„x+n y),
x y

n =On =0x y

4k &=y„V ' ~ exp(ik r)
N N

X g g C„„cos(qon„x)cos(qon~y ) . (2)
x y

n =On =0
x y

The C„coefficients are determined by means of the HF
equations, with the orthonormalization condition includ-
ed. In order to satisfy the HF equations, the parameter

qp must be equal to or greater than 2kf,' here it is selected
as the energetically favored value qp =2kf.

If the system is unstable against a CDW, then it is pos-
sible to obtain in the low-density region, a CDW in two
directions, with each of the proposed expansions, i.e.,
periodic particle density along the X and Y axes, and
homogeneous density along the Z axis. The HF equa-
tions to be solved are

g &n&k)ITln3k]) —gg(n, k„nzkeczlvln4k2, n3k~)C„"C„' C„=e„C„
l13 n2 n4

where the orthogonality condition of the spin-orbitals is
included, the g„replaces g„g„and the coefficients C„

x

are used instead of C„n .
x y

These coefficients are self-consistently determined with
an approximation of 10 with respect to the last itera-
tion. The plasma density is characterized by the inter-
particle distance r, in Bohr radius, and the self-consisting
calculations can be performed for every r, value. In this
work we are interested in the density range 1~r, 100.
The screened Coulombic potential used in the calcula-
tions is the following:

V(r)=e exp( —pr)/r,
where p is the screening parameter in units of 2kf. With
the self-consistent state functions other physical proper-
ties of the corresponding ground states can be calculated.

RESULTS AND DISCUSSION

The behavior of a strongly coupled QEOCP with pla-
nar symmetry at the intermediate and low densities was
analyzed. These systems are characterized by the state
function and by their interaction ranges. The analysis in-
dicate that the behavior of some properties are qualita-
tively equivalent, for both expansions and for every value
of the screening parameter p. The analysis also indicates
that all these systems are unstable against a two-
dimensional CDW in the low-density region, but the en-

ergy gain and the transition point from PW to CDW are
characteristic for each system.

As it is usual, we take as energy reference the corre-
sponding PW ground-state energy per particle in ryd-
bergs. In this work, the melting point for the Wigner
crystal is determined by means of the unstability against
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TABLE I. I and r, values for the melting point of the
%igner crystal, obtained for expansion (1) with p=0, 0.1, and
0.3; p in units of 2k&.

lO'
0
0.1

0.3

31.5
32.3
37.3

13.02
9.28
5.85

5
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FIG. 1. The coupling parameter I corresponding to expan-
sion (1) as a function of the interparticle distance r, for p =0,
0.1, and 0.3; IM is in units of 2kf.

a CDW, and this is characterized by the following cri-
teria: (a) the singular coupling parameter behavior, (b)
the ground-state energy gain with respect to the PW,
b E=E(CD W) E(PW), an—d (c) the particle localization.

The self-consistent calculations were performed with
state functions for which the upper limit in the expan-
sions is N =6, because with this value the convergence in
energy is reached. It means that starting with N=6 the
properties evaluated are independent of the value N. As
it is expected, we obtain the PW as the self-consistent
solution in the high-density region, up to a characteristic
interparticle distance r, . Starting at this critical density
the HF solution is a periodic function, therefore the ener-

gy difference bE=E(CDW) —E(PW) is different from
zero. This freezing density is different for each expan-
sion, and it is found that the critical r, value increases
with the screening parameter p.

In Fig. 1 we show the coupling parameter I as func-
tion of the interparticle distance r, for the complete range
of densities. The results corresponding to expansion (1)
for p=0, 0.1, and 0.3, p in units of 2kf, are reported. In
the high-density region the 1 (r, ) functions obtained, for
each p value, are linear functions, as it is expected for
PW. The figure shows that the slope of these curves de-
creases as the screening parameter p increases. The
singular point in each curve determines the melting point
of the corresponding Wigner crystal, this criterion is very
useful because as it can be seen in the figure this critical
point is precisely determined.

In Table I we display the critical r, and the I" values
for the melting point obtained with expansion (1) for sys-
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FIG. 2. Energy gain AE per particle for the screening param-
eter @=0,0.3, and 1. The continuous curves correspond to ex-
pansion (2) and the dashed curves to expansion (1). In both
cases the upper limit in the expansions is N=6, and p is in units
of 2kf.

tems with screened potentials corresponding to p=0, 0.1,
and 0.3. The I behavior for expansion (2) is qualitatively
equivalent. In Fig. 2 we show AE in rydbergs for the two
expansions and for three different values of the screening
parameter @=0,0.3, and 1.0. It is found that for all the

p values, expansion (2) with 4(N+1) terms is energeti-
cally more stable than expansion (1) with 2(N+1)
terms, as expected. The Fig. 2 also shows that for both
expansions, the energy gain obtained is greater for the
long-range interactions, i.e., for small screening parame-
ters.

The anisotropy of the systems here analyzed is mani-
fested in the resulting particle density variation. The
density is homogeneous along the Z axis for every r„but
along the X or Y axes, the particles are localized after the
melting point. This localization is more pronounced for
greater values of r, . This behavior is qualitatively
equivalent for every p and for both expansions. In Fig. 3
we show the particle localization for expansion (1) in the
XY plane, in Fig. 3(a) at r, =60 and in Fig. 3(b) at
r, =100.
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A very important result for the electronic density of
states near the Fermi level is obtained. The pathological
logarithmic zero found for the density of states with a
Coulombic potential in HF calculations and PW solu-
tions make this approach inadequate to evaluate trans-
port properties or any other properties that are sensitive
to the number of states at the Fermi level.

It is known that for Coulombic systems in the HF ap-
proach this divergence cannot be removed by means of a
state function different from the PW one, but it can be re-
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moved by means of a screened interaction because the
logarithmic form of the density of states is a signature of
the long-range interaction. Thus with the state functions
here proposed and p=0, the divergence in kI remains;
nevertheless, the density of states goes to zero more slow-
ly than with the PW solution. For any other values of
the screening parameter as small as 10 the logarithmic
divergence at k =k& is removed because the p depen-
dence of the density of states appears in terms of the form
1n[tt /(1+iM )].

In order to show this logarithmic behavior we follow
the approximations suggested by Harrison in Ref. 25 for
the calculation of k /~VEk~. The curvature of the func-
tions obtained for small p values is similar to the corre-
sponding p=O curve, but as p increases the curvature
changes slowly, up to a p value of about 0.03. Starting
with this value of the screening parameter, the slope of
the curve and consequently the behavior of the density of
states change drastically. The curves corresponding to
expansions (1) and (2), for @=0.01, and 0.03 at r, =35,
are shown in Fig. 4.

The behavior for p=0.03 or greater is the same as re-
ported in the literature when the local-spin-density ap-
proximation (LSDA) is used, because in this approxima-
tion the electron gas is subjected to an effective screening
of the interparticle interaction.

For p &0.03 our results are qualitatively equivalent to
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FIG. 3. Particles localization in the XY plane for expansion
(1), (a) at r, =60, and (b) at r, = 100.

FIG. 4. Qualitative behavior of the density of states for
r, =35 corresponding to the state functions (1) and (2). The
lower curves show the results with expansion (1) and the upper
ones with expansion (2). The continuous curves correspond to
p=0.03 and the dashed curves to 0.01;p is in units of 2k&.



41 GROUND-STATE PROPERTIES OF A STRONGLY COUPLED. . . 5477

the one obtained with the orbital self-interaction correc-
tion (SIC) to the LSDA because it has a reduction of the
effective screening that is introduced in the LSDA.

In summary, we obtained some ground-state properties
of a strongly coupling QEOCP with planar symmetry.
The localization of the particles shows the characteristic
symmetry of the system. The more stable state function
corresponds to expansion (2). The best results, for both
expansions, are obtained for those systems described by

means of a screening Coulombic potential, but with p
near zero.
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