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Fast sound in binary fluid mixtures
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The calculations and the results that predicted a fast-sound mode in low- as well as high-density
binary fluid mixtures are presented in detail. Kinetic theory was used, which allowed a detailed dis-
cussion of the microscopic dynamics of the fluid in terms of eigenmodes. The Bhatnagar-Gross-
Krook approximation method extended to binary mixtures was employed to solve the appropriate
kinetic equation and to obtain approximate eigenmodes of the mixture. The fast-sound mode ap-
pears far beyond the hydrodynamic regime as either an extension to higher wave numbers of the hy-
drodynamic sound eigenmode or as a kinetic eigenmode. Some recent and possible future experi-
ments are discussed.

I. INTRODUCTION

In three recent publications the presence of an ex-

perimentally observable propagating mode, with a veloci-

ty considerably in excess of that of sound, was predicted
for low- as well as high-density binary noble-gas-like Quid

mixtures. This fast propagating mode was called fast
sound as in the original work by Bosse et al. on the pos-
sible existence of such a mode in liquid Lio ~Pbo 2 alloys,

suggested by computer simulations of these alloys. In
these papers it was suggested that this fast propagating
mode would appear far outside the hydrodynamic regime
and would be associated with the dynamics of the light
component only and would give a visible pronounced
shoulder or peak in the partial dynamic structure factor
S»(k, co) of the light component 1. No shoulder would
appear in S»(k, co) and S»(k, to), where 2 refers to the
heavy component of the mixture. This shoulder in

S~, (k, to) leads, for a proper choice of the two com-
ponents, to a shoulder in d 0. /d~dQ, the dN'erential
cross section for light or neutron scattering, which is pro-
portional to a weighted average of the S, (k, co)

(i,j =1,2). This new phenomenon is most pronounced in
disparate mass mixtures, where the ratio of the mass of
the light component to that of the heavy component is
small. Since tl': characteristic length for low-density
gases, the mean free path I, is the order of 10 cm, light
scattering must be used to detect the fast mode in such
mixtures. On the other hand, in dense mixtures the
characteristic length is of the order of the size of the par-
ticles, i.e., 10 cm, so that neutron scattering must be
used to detect the fast mode in this case. In addition, in
light scattering experiments the polarizabilities of the
molecules of the two components should be comparable,
while in neutron scattering experiments the nuclear
scattering lengths for neutrons should be comparable in
order to have a distinguishable contribution from the
light component to d o /dcodO [cf. (2.7)]. Thus the pos-
sibility of detecting fast sound was predicted for dense
He-Xe mixtures, where the mass ratio is mx, /mH, =33
and the scattering length ratio bx, /bH, =1.49 and low-

II. THE REVISED ENSKOG THEORY

A. N-particle time correlation functions

The quantities of interest here are the partial dynamic
structure factors

+~
S„(k,co) =—f dt e'"'F„{k,t ),

2 7T
(2.1)

which are the time Fourier transforms of the partial in-
termediate scattering functions F, (k, t). These are
defined by

density Hz-Ar mixtures, where the mass ratio is
m„„/mH --20 and the polarizability ratio is a~, /aH =2.

2 2

It was pointed out in Ref. 2, that even for mass ratios
closer to 1, fast sound might still be observable.
Montfrooij et a1. confirmed this prediction by molecular
dynamics as well as by neutron scattering for dense
mixtures of 80% helium-20Fo neon. In addition, Weg-
dam et al. very recently observed a fast propagating
mode in low-density H2-Ar mixtures by light scattering
experiments, in agreement with Ref. 3.

The details of the calculations that led to the theoreti-
cal predictions in the three publications' mentioned
above will be reported here. In addition, a few comments
on the subsequently carried out experiments ' will be
made. The theory is based on a hard-sphere model of the
mixture, for which an approximate kinetic theory (the re-
vised Enskog theory) is available at all densities, so that a
detailed discussion of the dynamical processes in the
fluid, in particular its (approximate) eigenmodes, can be
made. The revised Enskog theory used here is a generali-
zation by de Schepper of that for a simple hard-sphere
Quid to binary Quid mixtures. The paper is organized as
follows. In Sec. II we give the basic formulas of the
theory. In Sec. III we present results for low-density
mixtures, while Sec. IV contains results for dense mix-
tures. Section V discusses the main results of the paper,
the recent experiments, and some possible future experi-
ments as well as some open problems.
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F,, (k, t)=(5n,"(k)e' 5n (k)))q . (2.2)
2

xlc lS))(k, co) xzczS22(k, co)

Here k is a wave vector with length k = ~k~WO, the
brackets ( ))q indicate an equilibrium average over a
canonical ensemble of N, particles of species 1, with mass

m, and N2 particles of species 2, with mass m 2

(N=N, +Nz), in a volume V at temperature T, with par-
tial number densities n, =N, /V (i=1,2); the asterisk
denotes complex conjugation. The dynamical variable
5n;(k) is (for i =1,2) the fluctuation of the number densi-

ty of the ith component, which for kPO is given by

(2.3)

where r" is the position of particle p of species i In . (2.2)
L is the pseudo-Liouville-operator for hard spheres,
which, for binary mixtures, is given by

+2(x,xz)' c)czS(2(k, co), (2.7)

where x, =n; /(n, + nz ) is the relative number concentra-
tion in the mixture of particles of species i. For light
scattering c; =a„ the polarizability of a particle of
species i, while for neutron scattering c, =b,-, the effective
scattering length of a nucleus of species i.

B. One-particle expressions

The correlation functions F; (k, t ) in (2.2) can be com-
puted approximately on the one-particle level using the
revised Enskog theory. We first introduce a linear (real)
space whose elements are two-component functions
f(vi, vz):

X "p' ()+ X X X XTpq
'=lp=l ()r i=l j=lp=lq=l

(2.4)
fl(vi)

f(Vl, V2) —f („) (2.8)

where v" is the velocity of particle p of species i. The
first term in (2.4) describes the free streaming, while the
collision operator Tpq describes a binary collision be-
tween particle p of species i and particle q of species j.
Tpq

' is given by

T(!,J)—~2 d& 5(r(l, j)+o{{,j) )Ij
X [f,(v, )+fz(vz)), (2.9)

where f, (v, ) and fz(vz) are the components of the func-
tion f(v„vz). In this space we introduce the average
( ( f(v„vz) ), )z, defined by

(( f(v»vz))) )2= J dv)dvzpo (v))(t)0 (vz)

X e(v " & ) ~v"" &
~

[b""(&) 1] . —
pq pq

(2.5)
where $0')(v) is the Maxwell distribution for particles of
species i,

b(', j)( )
( ) —(')' —(')

2 (
(,j).

)pq p p p
I

b "j'(& )v' '=v" =v"'+2 ' (v"" & )o
m J

(2.6)

with the reduced mass ((z,j =m, mj/(m;+mj ). By
definition, the operator b "j)(&), acting on any function
of v'" and/or v'j', transforms these velocities into those
given by (2.6). In (2.4) we make the convention that
Tpp"=0 (i.e., a particle does not collide with itselI), and
in addition we have that Tpq Tqp This follows from
(2.5), when we use b "j'(o ) =bpq

"(—& ) =b' (j& ), as can
be checked in (2.6). The 5 function and the step function
in (2.5) assure, respectively, that the two particles collide
only when they are at a distance cr,- and are moving to-
wards each other.

The S, (k, co) in (2.1) and the F, (k, t) in (2.2) depend
only on k because of the isotropy of the equilibrium state.
In classical fluids all the S,"(k,co) are real, even functions
of co, and symmetric in i and j: S»(k, co) =Sz((k, cu). As
mentioned before, the differential scattering cross section
d o. /dcod0 for light or neutron scattering is proportion-
al to a weighted average of the S, (k, co),

Here r" '=r"—r' ' v"j'=v "—v' ' cr" '=0."o where
pq p q ' pq p ij

o;j=(cr, +o, )/2, with o; the hard-sphere diameter of
particles of species i; cr is a unit vector and e(x) is the
Heaviside step function. The substitution operator
bpqj'(&) transforms the precollisional velocities into the
postcollisional velocities

p"( )=
' 3/2

Pm( pm. .2gz

2m'
(2.10)

X [f,(vl)f ', (vl)+ fz(vz)f z(vz)] . (2.1 1)

This scalar product can also be interpreted as the average
(2.9) for the product of the two functions f(v„vz) and
f'(v„vz). Here the product of two functions is defined
component by component, and is also obtained by the
usual multiplication of the row (bra) )(2( f(v„vz)~ with
the column (ket)

~f'( v „vz ) ), )z.
Having made these definitions, the functions Fj (k, t)

in (2.2) are approximated by F, (k, t ), which are obtained
from (2.2) by going from the N-particle to the single-
particle level and making the following replace-
ments, ' ' ' the details of which can be found in Refs.
8 and 10: (i) The N-particle average ( ))v is replaced by
the average ( ( ), )z. (ii) The N-particle pseudo-
Liouville-operator is replaced by a single-particle kinetic
operator LE(k), which depends parametrically on k and
acts on the Hilbert space of two-component functions
f(v„vz). (iii) The N-particle functions 5n;(k) (i=1,2)

with P= 1/k& T, k j) being Boltzmann's constant. Our
linear space becomes a (real) Hilbert space once we define
the scalar product between two functions f(v, , vz) and

f (vl, vz) as

((f( .. .), f'( .. .)),),
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are replaced by two suitable two-component functions
pI'(v„v2,'k ) (i = 1,2), which depend parametrically on k.
Then

F (k t ) FE(k, r)
7 ij

« )l'I (vl V2 k)e 41 (vl V2 k}&1&2

(2.12)

The two functions p'('(V„V2; k ) (i = 1,2) we need are

« 0I"(v) v»k)fi"(vi V2 k) &) &2=Sij(k» (2.16)

The meaning of the subscript 1 in the functions in (2.13)
and (2.15) will become clear in Sec. II C. The operator
LE(k), acting on a general vector function f(v„v2),
transforms this function into f'(v, , v2)=LE(k)f(v, , v2)
according to the following matrix relation:

f', (v, ) LE'"(k) LE" (k) f, (v, )

f'(v ) L""(k) L""(k) f (v )

Vl V2', k )=

pI '(vl, v2, k)=

where

[S„(k ) ]' ~'cos[a( k ) ]

[S„(k)]' 'sin[a(k }]

[S22(k)]' 'sin[a(k)]

[S22(k)]' cos[a(k)]

S,2(k)
a(k) =

—,'arcsin
[S„(k)S22(k )1

(2. 13)

(2.14) L" '(k)= iku 5—+A" '+ A 'i
F. iz Ij k k (2.18)

The 2X2 matrix nature of LE(k) applies of course only
to the component indices i,j of LE'1'(k); each operator
LE('2)(k), and thus also LE(k), if expressed as a matrix, is

an oo X ~ matrix. LE"J'(k) acts on functions of vj and

yields functions of v;. In the following we will take for
convenience k parallel to the z axis since F~ (k, t) . and

S2(k, co) depend only on k. The four "elements" LE"J'(k)
in (2.17) of the kinetic operator LE(k } are given by '

We note that these pI' are actually independent of v„v2,
but we keep the formal dependence on v1, v2 for the sake
of mathematical generality. Here the S;J(k)=F, (k, 0)
are the partial static structure factors of the mixture.
The two functions pI'(vl, v2', k ) (i =1,2) are linear com-
binations of the two basic orthonormal functions [in the
scalar product (2.11)],

y(1)(v )

Pl (Vl, V2)

(2.15)

The first term in (2.18) represents free streaming. The
second term contains the collision operators given by

A'„' 'f (v ) =A„"~'f(v )
—f dv;Q')(v, )A„"J'f(v ),

(2.19)

with, for i =j,

A(ii) —(1) ,A(i i)+(2)A(i, i)
k k' l—

and for i Wj,
0

Pl ( V )i V2) (2)(
(2)

1 V2

and are such that

0
g (i,j) (2)p(i, j)

k k

Here, fori =j,

(2.20)

2

'"A"'h(v, )= g n, yo f.der dv3' 'Po' '(v3' ')~v', 3' '.&~6(v', 3' ) &)[b"' '(&)—1]h(v") (2.21)

with y;~ =g,j(o,j ) the radial distribution function at contact, while for i =j or i Wj,

' 'A" )h(v )=(n n )' g o d& dv(~'e "P' '(v' ')~v" ' o ~e(v" ' &)[b" '(&)—1]h(v ')
k j i j ij Ij 3 0 3 i3 i3 i3 3 (2.22)

The superscripts (1) and (2) on the left of the A's correspond to parts which are independent of k or dependent on k, re-
spectively. The third term in (2.18) represents the mean field operators

g""h(v )= dv'J y'~'(v'")[g "~'(k)y"(v" )q )(v"))+.g "(k)q"(v")y '(v' )]h(v )) . (2.23)k j j 0 j 2 i 1 1 i 2 j

In (2.23) we have

q(i)( )
—

1

g2'(v)=(13m, )' u, (i =1,2) (2.24)

and

(2.25)
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with

g(1, 11(k)— ik $22(k)

(pm, )' S„(k)S22(k)—S,2(k)

1/2

cos[a(k )],

g (1 2)(I )
ik S (k)

(pm, )' S,1(k)S22(k) —S,2(k)

B' '"(k)= S (k)11

(pm 2)' S„(k)S22(k)—S12(k)

1/2

sin[a(k)],

sin[a(k)],

(2.26)

(2 2)(k) Ik 11S (k)

(pm 2)' S„(k)$22(k)—S12(k)

1/2

cos[a(k)] .

We note that in (2.13), (2.14), and (2.26) S»(k) and

S22(k} are positive and that the Schwarz inequality

S„(k)S22(k)—S,2(k) ~0 holds.

C. The BGK method

for n =1,2 . For n =1, i.e., (r, l)=(0,0), we recover
the two functions (2.15), while for n =2, i.e., (r, I ) =(0, 1),
we recover for the components of tpz''(v„v2) (i =1,2) the
two functions (2.24). The set (2.30) is orthonormal:

The time dependence of the F; (k, t ) in (2.12), governed

by the evolution operator exp[tLs(k)], is evaluated here
using the Bhatnagar-Gross-Krook (BGK) method. In the
BGK method' "' the operator Lz(k) is first converted
into an ~ X ao matrix, using a complete set of functions,
after which the Laplace transform of the evolution
operator exp[tLE(k)], i.e., the resolvent operator
[z —Lz(k)], is inverted explicitly. Here we need a
complete set of functions depending only on U, = ~v, ~, U „,
U2=~V2~, and u2, . Such a complete set is constructed in
the following way.

The set of functions (2.15) is extended to an orthonor-
mal set [in the scalar product (2.11)], which is complete
for functions depending on U „U1„u2, and U2, . We first
introduce the two reduced (dimensionless) velocities
c, =(pm, /2)' v, and c2=(pm2/2)' v2, and the func-
tions

q(il(v )
—y(iI( v )

I YIO)( / )S(I +1/21( 2)

[i = 1,2; n = (r, I ) ] . (2.27)

Here c, = ~ c; ~; n stands for the pair of indices r, I, where r
and 1 =0, 1,2, ; YI0'(x) is the spherical harmonic
YI™(x)with m =0; Sl' ' '(x) is the Sonine polynomial
of degree r and index I+1/2,

(i,j =1,2; l, m =1,2, ) . (2.31)

(i,j =1,2; l, m =1,2, . . . , M), (2.33)

while all other matrix elements are set equal to zero, ex-
cept for the diagonal elements with l=m )M and i =j,
which are all set equal to a constant d(k), which is
chosen to be

xl ( PM+i(vl}Ak 0M+i(vl })1

+x2(/M+1(V2)Ak PM+1(V2))2 (2.34)

The operator Lz(k) is now represented by the infinite
matrix with elements

[Lz(k)]&~ '=((tp&'(v„v2), LF(k)tt/'~'(v»v2)), )2 . (2.32)

In the BGK approximation of order M to Ls(k) the
free streaming and the mean-field terms are taken into ac-
count exactly. Of the collision operator Ak, whose "ele-
ments" Ak'" are given by (2.19)—(2.22), the first 2M X 2M
block of its matrix representation is taken into account
exactly; these 2M X 2M matrix elements are

QI'Jl(k) = ( ( yI'1(v, ,v, ), A„i/llj'(v, , v, ) ), ),

S(l + 1/2)(
)

—I —1/2 x a
rI

and X, &
is a normalization constant

—x r +I +1/2 (2.28)
Here A&" is the single Auid collision operator, "' and the
average ( ), is given by ( ), = J d v, P~"( v, }( ). Then,
in the BGK approximation of order M, we have

I1I„&=m. / [2I (r+1)/I (r+I +3/2)]'/, (2.29)
with I (x) the gamma function. Next we introduce the
following two-component functions:

P'„"(v
1 )

y( I 1(v v )—

L~(k) =f(k)+F(k), (2.35)

f""(k)=[—ikv„+d(k))6, , (2.36)

where the elements of the operators f(k) are given by

0
(Vl&U2) 12)(

(2)

n V2

(2.30) so that f(k) is a multiplicative operator. F(k) is a finite-
dimensional 2M X2M matrix operator that acts on a gen-
eral two-component function h(v, , v2) as
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F(k)h(v, , v~)

2 M 2 M= X X X X ~A"(vi vz) &i}2HI""(k)
i =11=1j=1 m =1

X t(2( tP~'(v»v2), h(v» v2) ), )

(2.37)

first the functions

F&"J' (k, t ) = ( (fI'(v„v2)e P'J'(v„v2) ), )z, (2.39)

and their Laplace transforms

S"&"(k,z)

dr, — F ~ (k r)lm

with

Hi~ (k) —((QI (v]) vz))(Ak+ Ak)t4'(vi) v2) },)
( t~ )

t ~LE ~
(mI~ )1

V1~ V2 ~ V1, V2
z LF —k (2.40)

—d(k)51 5;,

(i,j =1,2; l, m =1,2, M) . (2.38)

Here the term —d(k )5I 5," was obtained by first adding

d(k ) to the diagonal matrix elements with l, m ~ M and
i =j [and combining this with the other diagonal ele-

ments to obtain (2.36)], and then subtracting it, as shown
in the last term of (2.38).

We now use the BGK approximation for LE to com-
pute the partial structure factors S; (k, co). We consider

The functions (2.40) are the ones actually computed by
inverting the operator z —Lz(k) with the BGK method,
as will be shown in the next paragraph. Then, from the
SI",~' (k,z) one can compute the partial dynamic struc-
ture factors S, (k, co), given in (2.1). In fact, if we write

S",,
" (k, co) =—ReS", ,

' (k, ico),
7T

(2.41)

we have from (2.13) for our kinetic approximation to the
partial dynamic structure factors

S»(k, co)=S»(k)tS", ,
'" (k, co)cos [a(k)]+Sf, ' (k, co)sin [a(k)]+2S",, ' ' (k, co)sin[a(k)]cos[a(k)]I,

Szz(k, co) =Szz(k ) IS'&'&'" (k, co)sin [a(k)]+SI,' ' (k, co)cos [a(k)]+2SII' ' (k, co)sin[a(k)]cos[a(k)]],

S&2(k, co)=Sz&(k, co)=[S»(k)S22(k)]' I[SII" (k, co)+SI&' ' (k,co)]cos[a(k)]sin[a(k)]+SI'&' ' (k, co)I .

(2.42)

In the BGK approximation of order M the inversion of the operator z —Ls (k) is accomplished in the following way.
With Lz(k) given by (2.35), we use the operator identity

1 1 + 1
F(k)

1

z —[f(k)+F(k)] z —f(k) z —f(k) z —[f(k)+F(k)]
to get, for I, m M and i,j=1,2,

(2.43)

S"" (k,z)=lm

1

I—A (k, z )H(k )
A(k, z)

Im

(2.44)

In the 2M X 2M matrix on the right-hand side of (2.44), we have the 2M X 2M unit matrix I, the 2M X 2M matrix H(k ),
with elements H,""(k)given by (2.38) and the 2M X 2M matrix A (k, z ), with elements

1AI'"(k, z)=6,, ((gj'(vl, v2) ~ k
(k"(vl, v2) ll2z+tkv;, —d k

(i,j=1,2; l, m=1, 2, , M} . (2.45}

D(k, z ) =det[I —A (k, z }H(k )]=0 .

Then, the "exact" expression (2.44} is replaced by

2M MI"J„'(k)S"i' (k,z}= g
, z —z„(k)

(2.46)

(2.47}

D. Discrete BGK eigenvalues

Alternatively, it is also possible to evaluate the func-
tions S~'~' (k,z) in terms of the eigenmodes of LE(k)
with discrete eigenvalues. These eigenvalues are associat-
ed with the poles of the resolvent operator [z —Lz(k)]
viz. , with the 2M values z =z„(k) (n =1,2, , 2M}
which satisfy the equation' ""

where 6 is the transpose of the matrix of cofactors of
I-AH and

D,(k (k ) )
c}D(k,z )

n z=z (k)
(2.49)

The difference between (2.44) and (2.47) is that in (2.47)

where the z„(k) are the discrete eigenvalues of Lz(k) and
the MI"1„'(k ) are the corresponding amplitudes, given by

MI"'„'(k )=, [G(k,z„(k )) A (k,z„(k })],"",1

D' k, z„k
(2.48)
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z, 2(k) =+ic,k —I zk2,

z3(k ) = D,Fk', —

z4(k ) = —D2~k

(2.50)

The first two eigenvalues describe sound propagation (in
opposite directions parallel to k), with c, the adiabatic
sound velocity, while the other two eigenvalues describe
purely diffusive (nonpropagating) processes. The
coefficients I z (the sound damping), D, F, and DzF can
be expressed in terms of the transport coefficients, viz. ,
the diffusion coefficient, the thermal conductivity, and
the thermal diffusion coefficient, as well as thermodynam-
ic quantities of the mixture. ' In the Enskog theory, indi-
cated by a subscript E, they are obtained explicitly in
terms of the diameters and masses of the two components
and the thermodynamic state of the mixture, character-
ized by three independent thermodynamic variables such
as the pressure, temperature, and concentration of one of
the components.

' The extensions of the hydrodynamic
modes to larger values of k, as obtained by kinetic theory,
are called extended hydrodynamic modes.

E. Evaluation

The expressions that have to be evaluated are (a) for
the "exact" evaluation of the S,"(k,co), the expression
(2.44) together with (2.38) and (2.45) for the matrix ele-
ments; (b) for the S; (k, co) in terms of the eigenmodes

the essential singularity of Si"" (k,z) for Rez = —oo has
been neglected.

The eigenvalues can be divided into real and complex
eigenvalues. All eigenvalues have negative real parts. '
The complex eigenvalues come in complex conjugate
pairs. The complex eigenvalues describe propagation;
their real part represents the damping, while their imagi-
nary part represents the propagation. Two complex con-
jugate eigenvalues represent propagation in opposite
directions. The real eigenvalues represent purely damped
(diffusive) processes. As will be seen later, in all the cases
studied in this paper, the computation of the density-
density correlation functions using only the discrete ei-
genvalues gives results which are indistinguishable from
those given by the "exact" expression, the matrix inver-
sion formula (2.44). Therefore the dynamical processes
that determine the S, (k, co) can be understood in terms
of the eigenmodes with discrete eigenvalues of Lz(k)
only. In the following we will use the term propagating
(eigen)inode to denote the two oppositely propagating
(eigen)modes together.

The description in terms of discrete modes is a general-
ization of Landau-Placzek's theory of light scattering of
fluids in terms of hydrodynamic modes, '" in that it makes
a connection between the macroscopic properties of the
fiuid, as expressed by the S, (k, co), and the microscopic
properties of the fluid, as expressed by the modes ob-
tained from a kinetic representation of the Lz(k). Of all
the eigenvalues of Lz(k), only four eigenvalues go to zero
when k goes to zero. They reduce to the four hydro-
dynamic eigenvalues that can also be derived from the
hydrodynamic equations for binary mixtures:

with discrete eigenvalues, besides (2.38) and (2.45), the ex-
pressions (2.47) —(2.49), after the computation of the
discrete eigenvalues themselves from (2.46). All these
calculations have been carried out by computer. The
nontrivial parts in these computations have been the ma-
trix elements of H(k) in (2.38), of A(k, z) in (2.45), and
the solution of (2.46). In the matrix eleinents of H(k),
the nontrivial contributions from the collision operator
Az have been obtained using generating functions for the
f'i'(v„vz). ' The matrix elements of A(k, z) have been
determined using a method introduced in Ref. 17, while
the solutions of (2.46) were found with a computer sub-
routine.

III. LO%-DENSITY MIXTURES

A. Light scattering and polarizabilities

In hard-sphere mixtures the only relevant variables are
the reduced (dimensionless) partial number densities n; cr;
(i =1,2), since the temperature scales out. The reduced
(total) number density n'=n, o, +n20z is for low-density
(gas) mixtures of the order of 10 —10,while the mean
free paths l, (i=1,2) of the molecules of the two com-
ponents given by

I/1;=&2nn;cr;+(I+m, /m )'~ nn oz . (i' =1,2),
(3.1)

are of the order of 10 cm. The range of values of the
wave vector k for which the fast mode is present is such
that kl, and kl2 are of the order 1, which is well outside
the hydrodynamic regime, where kl, «1 (i=1,2). Thus
the relevant wavelengths are in the range of visible light
and the differential scattering cross section is given by
(2.7), with c; =a, . Since the fast-sound mode is expected
to be most prominent in disparate binary mixtures, where

m, «mz, one would in general have a, «a2, as is the
case for noble gases, the most natural example for using a
hard-sphere approximation for the interaction of the Quid

particles. However, as follows from (2.7), if a, «a2, the
only significant contribution to d 0 ldcodQ will come
from S22(k, co) (assuming that x, and xz are of the same
order). Therefore in order to have a visible contribution
of the fast mode to S»(k, co), and d cr/dcod 0, we have
to look for binary mixtures, where m, « m2 but a& =a2.

We chose, as a model mixture for our study of dilute
binary mixtures, a H2-Ar mixture. In this case we have

mz, /m H =20» 1 (in atomic units these two masses are

mH =2.002 and m~, =39.944), but the polarizability of
2

Ar is only about twice as much as that of H2. '

The equivalent hard-sphere diameters that we took for
our H2-Ar mixture are, respectively, o.

H
=0 &=2.760 A

and o.«=o.2=3.659 A. We note that the equivalent
hard-sphere diameter o; (i =1,2) of a given molecule in

the gas phase at a given temperature is usually chosen
such that the experimental value of the second virial
coefficient or the viscosity agrees with the corresponding
theoretical value for hard spheres. The same values are
then used for the mixture, with o,z=(a, +o 2)/2.
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B. Results for H2-Ar mixtures

In Fig. 1 we show eight eigenvalues, obtained in the
BGK approximation with 2M =10, for the two relative
concentrations x„=0.6 and 0.8. These are the least"2
damped eigenmodes, i.e., those with the smallest absolute
value of their real parts. Figure 1 and the following

figures should be interpreted as follows. On the horizon-
tal axis k is given in the dimensionless combination ko. &z',

on the vertical axis the real parts of the eigenvalues are
plotted on the negative side of this axis, while the abso-
lute values of their imaginary parts are plotted on the
positive side. The eigenvalues are made dimensionless by
multiplication with a characteristic mean free time tE,

0.75-
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4 8 12 $6 20 24 0 4 8 12 &6 20 24
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FIG. 1. Real part and absolute value of imaginary part of re-
duced eigenvalues of eight lowest eigenmodes for H&-Ar mixture
in the BGK approximation with 2M=10 at n =0.005, (a)
x H =0.6, and (b) x„=0.8, as a function of the reduced wave

number. Labeling of eigenmodes is fast propagating kinetic
mode =kf, (extended) sound mode =s; slow propagating kinetic
mode=k1, no label=nonpropagating mode. In (a), kf begins to
propagate fast at ko» =0.006, where two real eigenvalues, only
one of which is shown, coalesce at arrow. In (b), a propagation
gap in k 1 near ko»=0. 009 is clearly visible.

We remark that for low-density mixtures the density is

an irrelevant variable since it comes in only via the mean
free paths I& and I2. For, when n &10 and I; —10
cm, kl; =O(1), but ko; «1 (i =1,2). Then the k depen-
dence of the collision operators AI,

'~' can be neglected [cf.
(2.22)] and the mean-field operators A I,

'" can be neglect-
ed altogether. This means that the kinetic operators
LE'J'(II} reduce to the corresponding operators in the
Boltzmann approximation. In that approximation, the
matrix elements of the collision operators are all inversely
proportional to the mean free paths I;, i.e., proportional
to n ' [cf. (3.1)],so that the ratio of the matrix elements of
the streaming terms (-k) to those of the collision terms
is kl, (i=1,2). From this follows that all properties, in

particular the S;,(k, co) and the eigenvalues z„(k},have a
simple scaling behavior with respect to the density, via
the 1;. All this obtains at fixed concentrations x, and xz
and allows a variation of kl, not only via a variation of k
through the scattering angle, but also through the density
n. Therefore we will present results for one reduced den-

sity only, viz. , n*=0.005, and we will only vary the con-
centrations of the two components.

2'tE—
4~ -,~„ (3.2)

3.2

2.4
8

i.e
Ch

0.8

Q~
p c
o+
'D

0.0 ~-
I I I I I I I
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(OtE

2.0
I

0.0 0.5 1.0 1.5 2.0
mtE

FIG. 2. (a) Reduced S„(k,co) and (b) d'o. /dcod 0 in arbitrary
units for H2-Ar mixture at n

*=0.005, x H =0.8, and"2
ko. 12=0.02, as a function of the reduced frequency. The curves
in (a) are labeled by the corresponding ij values.

where p=m, mzl(m, +m2) is the reduced mass and tF
reduces to the simple fiuid mean free time' when the two
components are identical. Since complex eigenvalues
come in complex conjugate pairs, each curve in the posi-
tive part of the vertical axis actually represents two eigen-
values, and so does the corresponding real part. At the
value of k where two complex conjugate propagating ei-
genvalues appear (indicated by an arrow in Fig. 1), two
real (nonpropagating) eigenvalues become equal.

We see in Fig. 1 that for both concentrations there is a
fast kinetic mode, which propagates with a group veloci-
ty considerably greater than that of the (extended) sound
mode. The eigenvalue corresponding to the fast propaga-
ting mode is indicated with kf.

We will now discuss some of the details of the behavior
of the eigenvalues as a function of ko&2. In the case
xH =0.8 we have a propagating kinetic mode which ap-

2

pears at ko. ,2=0.0025 and changes its slope markedly at
ko. ,&=0.005, where it becomes a fast propagating mode.
Its damping, for the values of k for which it propagates
fast, is larger than that of the other modes. In the case
xH =0.6 a propagating kinetic mode begins to propagate

2

at about k0. ,2=0.006, and propagates fast immediately.
Also in this case the damping of the fast propagating
mode is larger than that of the other modes.

Because of these large dampings, it is not obvious to
what extent the fast mode is important in the density-
density correlation functions. We have computed the
S~(k, co) in the k range, where the eigenvalue associated
with the fast mode has an imaginary part much larger (in
absolute value) than those of the other complex eigenval-
ues. As an example we plot in Fig. 2 the S;J(k,co) and the
differential scattering cross section d 0. /dcodQ for the
case x„=0.8, for k0. ,2=0.02. The picture is similar for"2
xH =0.6. We have used matrix inversion, as given by

2

(2.44). In this and in the following figures, concerning
the S;J(k,co) and d o /dcodQ, we show only positive fre-
quencies co, since each S; (k, co) is symmetric in co; also,
the frequency co is made dimensionless by multiplication
with the mean free time tF [cf. (3.2)], while the S;-(k, ro)
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are made dimensionless by dividing by tz. Since for the
differential scattering cross section we neglect multiplica-
tive factors [cf. (2.7)], we use arbitrary units in the corre-
sponding figures for them. %'e see from Fig. 2 that the
range of S» (k, co) in co extends, with a pronounced shoul-

der, well beyond that of Szz(k, co) and S»(k, co), and that
the range of this shoulder is the same as that in which the
fast mode occurs. This strongly suggests that the fast
mode contributes only to S»(k, co). The shoulder in

S, i(k, co) is directly related to a shoulder in d o /dcod 0,
although this shoulder is much less pronounced.

To verify directly the contribution of the fast mode, we
have computed again the S; (k, co) using only the discrete
eigenvalues. From (2.41), (2.42), and (2.47) it follows that
in this approximation the S; (k, co) are given by a sum of
Lorentzians,

A; „(k)
S,"(k,co)= —g Re .

iso z„—(k )
(3.3)

The A,, „(k) are those combinations of the M"
, „'(k) ob-

tained from (2.42) by replacing on the left-hand sides the
S; (k, co) by A; „(k) and on the right-hand sides the
Si'i ' (k) by Mi'i '(k). Using only the eight eigenvalues,
plotted in Fig. 1(b), the S,,(k, co) are indistinguishable
from those of Fig. 2. Therefore the contributions of the
other two discrete eigenvalues and of the essential singu-
larity (cf. Sec II.D) are negligible. Also, if we leave out
the fast mode and compute the S;J(k,co) using only six
discrete eigenvalues, S,2(k, co) and S22(k, co) are indistin-
guishable from those of Fig. 2, while S, i(k, co) and, con-
sequently, d cr/d cod 0, change appreciably, in particular,
in that their shoulders have disappeared. In Fig. 3 we
show S»(k, ccrc) and d cr/dcod Q computed by matrix in-

version (like in Fig. 2), and with six discrete eigenvalues.
This is a direct demonstration that the fast mode contrib-
utes only to S» (k, co) and involves mainly the dynamics
of the light component. This is also shown in Table I
where the amplitudes corresponding to the eight eigen-
values used in the calculation of the S; (k, m) are listed.
From this table we can see that the dynamics of the two
components appear to be approximately separated. In
fact, the major contributions to A» and 322 come from
different sets of modes: from kf and d2 to A» and from

k, and d, to A zz. We note that the group velocity of the

fast mode is very close to the sound velocity in a corre-
sponding pure H2 Quid, i.e., a pure H2 Auid, obtained by
removing all the heavy particles from the mixture. The
picture that we have just described concerning the
S,"(k,co), holds for a broad range of relative concentra-
tions, although the detailed behavior of the eigenvalues
changes somewhat with concentration [cf. the differences
between Figs. 1(a) and 1(b)].

We now turn to the problem of the range of concentra-
tions for which a fast mode with an observable effect on
d 0/dcodQ is present. We have plotted, in Fig. 4, eight
eigenvalues for the two concentrations xH =0.3 and 0.9."2
We first discuss the latter [cf. Fig. 4(b)]. For xH =0.9, it"2
is the extended sound mode, rather than a kinetic mode,
that, for a value of ko. ,z around 0.005, increases its slope
and begins to propagate fast. Correspondingly, the
damping of the extended sound mode becomes larger
than that of the other modes. In the region where this
mode propagates faster than the other modes the group
velocities of the extended sound mode is very close to the
(ordinary) sound velocity of a pure low-density H2 gas
under similar conditions in analogy with previous cases.
The difference in slope for the extended sound mode, be-
tween the hydrodynamic region (k ~0) and the region
where it propagates fast, is smaller than in the previous
case because the difference between the sound velocity of
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FIG. 3. (a) Reduced Sll(k, co) and (b) d o. /dcodQ in arbi-
trary units for H2-Ar mixture at n*=0.005, xH =0.8, and

ko»=0. 02 as functions of the reduced frequency. The dotted
lines are computed without the fast kinetic mode contribution.
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tK

-0.4-
8 12 16 20 24

1lP ka, 2

FIG. 4. Same as in Fig. 1 for (a) x„=0.3 and {b)x„=0.9.
(a) Fast mode (kf) is kinetic mode; k, is a slow propagating
mode; (b) fast mode (s) is extended sound mode; kl and k2 are
propagating kinetic modes. As in Fig. 1, nonpropagating modes
are not labeled.
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TABLE I. Amplitudes at ko»=0. 02 of the eight eigenvalues plotted in Fig. 1(b) for H, -Ar mixtures. kf and k] are propagating
kinetic modes, s is the sound mode; d] and dz are purely diffusive modes.

Mode

kf
S

k]
d]
dz

Eigenvalue

—0.450+0.724i
—0.159+0.263i
—0. 124+0.094i
—0. 176
—0.338

0.254+ 0.254i
—0.011+0.018i
—0.008+0.006i
0.034
0.500

Azz

—6x 10-'+3x 10-'r
—0.051 T 0.095i
0.464 +0.431i
0.175
5 x10-'

—0.011W 0.005i
0.048+7 X 10 i
0.004+0.082i
—0.077
—0.005

the pure H2 gas and that of the H2-Ar mixture with

xH =0.9 decreases with increasing xH, so that this
2 2'

difference will eventually disappear somewhere beyond
xH =0.9. We take xH =0.9 as an upper limit for which

2 2

a fast mode exists.
Next we turn to the case xH =0.3. We see from Fig.

2

4(a) that the eigenvalues behave similarly as for xH =0.6
2

[cf. Fig. 1(a)]: there is a kinetic fast mode that is fast as
soon as it begins to propagate, and its group velocity is
very close to the sound velocity of the corresponding
pure Hz gas. We now consider the S;.(k, co) for xH =0.3

2

and ko, 2=0.02. They are plotted in Fig. 5. As in Fig. 2
matrix inversion and eight discrete eigenvalues give the
same curves. However, there is no visible shoulder now
in S»(k, co), only a very slow decrease of S,~(k, co),
which is practically not reflected in d cr /dcod Q since x„

2

is smaller than in the previous cases so that the relative
weight of S&~(k, co) in d cr/dcodQ is smaller. Therefore
we take xH =0.4 as a lower limit for xH, for an observ-

2 2'

able fast mode to be present.

C. Improved approximations

If we compute the S; (k, co) for the k values of interest,
where the fast mode is present, in the BGK approxima-
tion with 2M=20 instead of 2M=10, we Snd curves
practically identical to those obtained with 2M=10. In
particular, the shoulder in S„(k,co) is unchanged. This
gives some confidence that the S;,.(k, co) have already
reached their asymptotic dependence on M at 2M=10
for these k values, so that they are stable with respect to
an increase of the number M, when 2M ~ 10.

D. Experimental observability

As to experimental observation, the presence of the
fast mode can be deduced from the presence of an extend-
ed shoulder in d o /dcodQ. Although one can measure
only d o/dcodQ, and not the individual S; (k, co}, it is
still possible to deduce that the fast mode contributes
only to S»(k, co) in the following way. If we remove the

Hz molecules from the mixture and compute d cT/dead Q
for the pure Ar Quid so obtained at the same k values as
those of Figs. 2 and 3, we get a curve, shown in Fig. 6,
which has a range practically identical to that of
Sz2(k, co) in the mixture. This is consistent with what
was observed earlier, viz. , that the dynamics of the two
components appear to be approximately separate. If one
conjectures that the same would happen in a real mix-
ture, then performing an experiment on pure Ar would
give roughly the range of Szz(k, co) in the Hz-Ar mixture;
if this range does not include the values for which
d cr/dcodQ has a shoulder, one could deduce that this
shoulder must be due to S»(k, co). As far as S&2(k, co) is
concerned, we see that it is much smaller in absolute
value than S&,(k, ~) and S2z(k, co }. This is to be expected
since the integral of S~z(k, co) over the frequency gives

S,2(k), the static cross structure factor, which is a small

quantity at low densities, since it is then proportional to
n'. Finally, that the extended shoulder is due to a fast
mode can be deduced also from the fact that its "center"
is at a position, in co, well above co=c,k, where c, is the
velocity of sound of the mixture.
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FIG. 5. Same as in Fig. 2 for x H
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FIG. 6. d cr/dcod 0 in arbitrary units as a function of the re-

duced frequency for a pure Ar Quid obtained by removing the

Hz molecules from the mixture represented in Figs. 2 and 3.
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FIG. 7. Reduced eigenvalues of the fast kinetic sound mode

(kf ) and the extended sound mode (s) are plotted for He-Ne

mixtures as a function of the reduced frequency in the BGK ap-
proximation 2M=10 at n =0.005 and xH, =0.6.

E. Other mixtures

In this section we consider mixtures with a mass ratio
closer to 1. We show that a fast mode is present also for
these cases, although the effect is less dramatic.

As an example, in Fig. 7 we show the eigenvalues cor-
responding to the extended sound mode and to the fast
mode, obtained with the BGK approximation 2M =10,
for a He-Ne mixture. The reduced density is n '=0.005,
and the relative concentration of the light component is
0.6. In atomic units the mass of He is 4.003, and the
mass of Ne is 20.183 so that the mass ratio is about S.
Their (equivalent hard-sphere) diameters are taken to be
o.H, =2. 17 A and oN, =2.602 A, while for the polariza-
bilities we have nN, =2aH, .

We see that a kinetic mode (kf) begins to propagate
faster at a certain value of k. Its group velocity is then
very close to the velocity of sound of a pure low-density
fluid obtained by removing the particles of the heavy
component. Therefore still for a mass ratio around 5 a
fast mode exists, although the difference in slopes be-
tween the fast mode and the sound mode is smaller than
for larger mass ratios. In Fig. 8 we show the S;~(k,co)

and the d crldcodQ for He Ne for kyar&2=-0 04 Now. , a. s

expected, the difference in range between S»(k, co) and

Szz(k, co) is smaller; moreover, the position of the shoul-
der in S»(k, co), attributed to the fast mode, is close to
the position of the peak in S,2(k, co), indicating that the
fast mode also makes a sizeable contribution to S,2(k, co).
We will see that for higher densities the fast mode does
not appear at all for hard-sphere mixtures with such
small mass ratios.

IV. DENSE MIXTURES

A. Introduction

As mentioned before, for dense mixtures, where
n'=n~cr&+n2o. 2 is of the order 1, the relevant lengths
are in the range of the wavelengths of thermal neutrons,
so that the appropriate experiments are with neutron
scattering. The differential scattering cross section is
then given by (2.7) with c, =b;. For noble gases, the
scattering lengths are all of the same order of magnitude,
so that we do not have the problem of widely different
scattering strengths as for the polarizabilities in the case
of light scattering. In particular the scattering length of
Xe is 1.488 that of He. We remark that with neutron
scattering it is, in principle, possible to determine the
S; (k, co) separately.

For dense mixtures no simple scaling behavior with the
density obtains, as at low densities, since the k depen-
dence of the collision operator can now not be neglected.
This k dependence is through kcr„ko2, and ko. , z (cf.
Sec. II), which are all of the order 1. Similarly, the
mean-field operator is important at these densities.

In IVB we will present as an illustrative example re-
sults for dense He-Xe mixtures, for which extensive cal-
culations have been carried out. The mass of Xe in atom-
ic units is 131.30, so that the mass ratio mx, /mH, is
about 33. The diameters of He and Xe in a dense mixture
are taken to be 2.21 and 3.91 A, respectively.

Since there is no good theory for the thermodynamic
as well as the transport properties of dense gases or
liquids, one chooses the equivalent hard-sphere diameters
here in a different way than for dilute gases. In fact, one
chooses them such that the first maximum in the static
structure factors for the pure components at the given
temperature of the mixture coincide with that of the cor-
responding hard-sphere fluids. The same values are then
used for the mixture.

0.8
(a) b)

B. He-Xe mixtures
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FIG. 8. (a) Reduced S,j(k, co) and (b) d o. /dcodQ in arbitrary
units as a function of the reduced frequency for He-Ne mixtures
at n *=0.005, x H, =0.6, and ko. 12 =0.04. Symbols as in Fig. 2.

Like at low densities we found also at high densities
that the dynamic structure factors S, (k, co) are quite in-

sensitive to an increase in the number M, the order of the
BGK approximation when 2M~10. In Fig. 9 we plot
the eigenvalues, corresponding to the propagating modes
with the smallest damping, obtained in the BGK approxi-
mation with 2M=16, for mixtures with n*=0.4 and
xH, =0.6 and xH, =0.8, respectively. The eigenmodes
corresponding to 11 eigenvalues give, with (3.3), S;,(k, co)

that are indistinguishable from those obtained by matrix
inversion. We note the following: (a) For both relative
concentrations there is a fast propagating kinetic mode.



41 FAST SOUND IN BINARY FLUID MIXTURES 5461

O.6 -(
2.0

0.4-
E

0.2-

0—

0
CO

1.0

Q~
EO

p i
i~ee1

~h

-0.2

0 04

-06-

0.6 -
( b )

0.4-

0.5 1.0 1.5
t~

2.0 0.5 1.0
mt&

1.5 2.0

FIG. 10. (a) Reduced S„(k,co) and (b) d o/dcodQ in arbi-
trary units as a function of the reduced frequency for He-Xe at
n =0.4, xH, =0.6, and ko. i&=1.8. The dotted curves for
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( k, ct) ) and d o /d cod 0 are computed without the fast-sound
mode contribution. Symbols as in Fig. 2.
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FIG. 9. Reduced eigenvalues, including the kinetic fast mode

and the extended sound mode, are plotted as a function of the
reduced wave number in the BGK approximation 2M=16 for
He-Xe mixtures at n*=0.4, (a) xH, =0.6 and (b) xH, =0.8.
Symbols as in Fig. 1; k& and k& are kinetic propagating modes.
In Fig. 9(a), a propagation gap for the fast kinetic mode near
ko» =0.75 is clearly visible.

(b) For xH, =0.8 the fast mode is a kinetic mode that be-
gins to propagate for a rather small value of ko &z, and
then starts to propagate faster at a value of kyar &z around
0.6. (c) For x H, =0.6 the fast mode is a kinetic mode that
begins to propagate fast immediately, for a value of ko, z
around 0.65. (d) The group velocity of the fast mode is
very close to the velocity of sound in the pure fluid ob-
tained by removing all the heavy Xe atoms. (e) The fast
mode always has the largest damping among all the plot-
ted eigenvalues. However, like in low-density mixtures,
this does not prevent a visible contribution of this mode
to S»(k, co) and d o/dcodQ (cf. Fig. 10).

In Fig 10 we p. lot the S, (k, co) and the differential
scattering cross section d o /dcodQ for the relative con-

centration xH, =0.6 and ko. &p=1.8 ~ The shoulder in

S~t(k, co) is clearly visible. In the same figure we have
also plotted S»(k, co) and d o /dcodf1 obtained from the
discrete eigenvalues of Fig. 9, except the fast mode. This
does not affect S,z(k, co) and Szz(k, co), but it does affect
S»(k, co). In Table II we show the amplitudes of the con-
tributions of the various modes to the S;~(k,co), and we

see that the fast mode only contributes to S»(k, co).

For other relative concentrations, we Snd that with an
increasing concentration of He the fast mode tends to
disappear. However, it is then the extended sound mode
rather than a kinetic mode that has a sharp increase in its
slope and will propagate fast, until at a concentration of
xH, =0.9 this sharp increase disappears. Thus we can
take this value as the maximum concentration of He for
fast sound to occur. With decreasing concentration of
He the visible shoulder in S»(k, co) tends to disappear
and only a very slow decrease in S»(k, co) with co occurs,
not refiected in d cr/dcodQ. This happens for concentra-
tions somewhat lower than those for low-density mix-
tures, viz. , at about xH, =0.3. Thus this is the lower lim-

it of the He concentration for which fast sound can be
observed in dense mixtures. As a function of density n *

we found that the fast mode tends to disappear with in-
creasing density and, in fact, has disappeared for
n '=0.8.

C. Other mixtures

We briefly consider here other mixtures. We have
found a fast propagating mode in He-Kr, where the mass
ratio is about 21, but not in He-Ar, where the mass ratio
is about 10. This in contrast to low-density mixtures,
where we found a fast mode still for a mass ratio of about

TABLE II. Amplitudes at ko, &=1.8 of the eight eigenvalues plotted in Fig. 9(a) for He-Xe mixtures. kf, kl, and k~ are propaga-
ting kinetic modes, s is the sound mode.

Mode

kf
S

kI
kq

Eigenvalue

—0.575+0.585i
—0.243+0.257i
—0.371+0.295i
—0. 189+0.079i

AII

0.220+ 0.253i
—0.035+0.007i
0.001+6X 10 i
—0.215 W 0.088i

Azz

4 X 10-'a3 X 10-'i
—0.025+ 0.047i
5 X 10 %0.001i
—0.298+0.273i

A IP

—0.005 W 0.011i
0.036+0.025i
—9X 10 T0.001i
0.258+0. 164i



5462 A. CAMPA AND E. G. D. COHEN 41

5 (He-Ne mixtures). This seems to suggest that with in-

creasing the density, a larger mass ratio is necessary to
find fast sound in hard-sphere mixtures. This behavior
differs from real mixtures in that Montfrooij et al. did
find a fast propagating mode in He-Ne mixtures for a re-
duced density that in our hard-sphere model is estimated
to be n *=0.2. In the following section we will discuss
the reason for this difference.

In the general case the various Lorentzians that compose
the S(k, ra) overlap, so that they mix in a complicated
manner and no contribution from any single one can be
ascertained. However, for the fast mode coQ is well above
the corresponding values of the other eigenvalues, and
the equality b = —a is approximately satisfied in all cases
considered (cf. Tables I and II). Then the extrema of the
corresponding Lorentzian are at

V. DISCUSSION co=a)o+y(1+&2), (5.3)

A +ib ay+b(co coo)—
Re

l(co coo)+y (~—~o) +y
(5.1)

The extrema of this curve are at the values

co=co ++[—a+(a +b )' ) .0 b
(5.2)

The main subject of this paper has been the study of
the characteristic behavior of disparate-mass binary fluid
mixtures. In this class of fluids we find a new
phenomenon far outside the hydrodynamic regime: one
of the decay modes of the density fluctuations is a very
fast propagating mode involving only the light com-
ponent. This implies an effective separation of the dy-
narnics of the light from the heavy particles. The pres-
ence of this fast propagating mode can be detected in
light and neutron scattering experiments by a shoulder or
peak in S, i (k, co) as well as in d cr /deed Q

One can argue that the presence of a fast mode, which
propagates only through the light particles, is due to the
fact that its frequency is too high for the heavy particles
to follow. However, the nature of the detailed physical
mechanism that gives rise to this mode is not clear at
present. In this connection it may be relevant that both
at low and high densities, the group velocity associated
with the fast mode has a value very close (about 1%
diff'erence) to the value of the sound velocity of the corre-
sponding light particle fluid.

It is worthwhile to note that the mass ratio need not be
very large in order to have an observable fast mode in di-
lute mixtures. On the other hand, in dense mixtures we
found that, below a mass ratio of about 10, like in He-Ar,
there is no fast mode anymore.

We found stability of the S,"(k,co) with respect to the
change of the number M, which determines the order of
the BGK approximation in our kinetic theory, as long as
M & 10. This means that for a not very large value of M
the corresponding approximate kinetic operator selects
all the "effective" modes that are necessary to describe
the dynamics of the density fluctuations. "

We now want to argue why the fast mode causes a
shoulder in S(k, co) in spite of its large damping. To this
end we will use the discrete eigenmodes of Lz(k) and
write a given eigenvalue (ignoring the subscript n and the
dependence on k) as z

=irido

y, where —y )0 and is of the
same order as co0& 0. Similarly, we write the correspond-
ing amplitude A =a +ib. Then the corresponding
Lorentzian contribution to S(k, co) is given by

where the smaller value is a maximum. Therefore we
have a maximum at, approximately, co=coQ —0.4y, which
is reasonably displaced from the origin co=0 and from
the maxima of the other modes if their imaginary parts
are well below coQ. This explains why we are able to see a
shoulder corresponding to the fast mode, and why this
shoulder is generally somewhat displaced towards the ori-
gin co =0 with respect to the value ~=coQ.

To the extent that the eigenmodes of the hard-sphere
fluid correspond to those of a real fluid, the experimental
observation of the fast mode in H2-Ar (Ref. 7) and He-Ne
(Ref. 6) mixtures implies that for the first time a nonhy-
drodynamic mode can be evidenced via the spectrum of
the density fluctuations. In addition, they provide infor-
mation on the extent of the validity of the hard-sphere
approximation for real binary mixtures. In fact, the neu-
tron scattering experiment on dense He-Ne mixtures
shows that in real mixtures the damping of the fast mode
is smaller than in hard-sphere mixtures, resulting in a
peak or shoulder in S»(k, co) and d2o/dmdQ, where
none was predicted by the hard-sphere model.

The experiments of Wegdam et al. appear to be con-
sistent with a separation of the dynamics of the two com-
ponents of the mixture. It is interesting to note that for
values of kl; =1.87 a Gaussian behavior is found. This
behavior appears in simple hard-sphere fluids only for the
higher values kl & 3, where l is the mean free path in the
simple fiuid. "

A number of open problems that deserve further inves-
tigation are the following. Since a fast mode has been
found both for dilute and dense fluid mixtures, one could
wonder whether such a mode would not also exist in
disparate-mass solid mixtures. One would then have fast
phonons propagating via the light component with a ve-
locity greater than the velocity of sound of the solid mix-
ture. A preliminary model calculation of a damped pho-
non propagation' in solid mixtures would indicate that
the above conjecture has some ground.

The physical situation of forced sound propagation in
fluids due to an external macroscopic driving force is
difFerent from that of (fast) sound propagation due to
internal microscopic density fluctuations, although the
modes follow in both cases from the same dispersion rela-
tion F(k, co)=0. ' In fact, both types of modes are ob-
tained by looking for plane-wave solutions of hydro-
dynamic or kinetic equations; for forced modes one solves

then the dispersion relation for k in terms of a real co,
while for the study of (fast) sound one solves for eigen-
modes, i.e., for co in terms of a real k. The precise con-
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nection between these two type of modes is unclear.
Finally, a more complete discussion of the behavior of

the various eigenvalues as a function of k would be in-

teresting. Looking at Fig. 1, we see that the slowest

propagating mode has a propagation gap at kcr, 2=0.009,
similar to propagating gaps found in simple hard-sphere
fiuids" ' at values of k o close to where S (A:) has a max-
imum. It would be interesting to investigate the
relevance of this phenomenon in more detail in binary
mixtures and its possible connection with the behavior of

the static structure factors at the corresponding k values.
This could then suggest a relation between the spatial or-
dering of the particles and the trapping of sound, which
gives rise to these propagation gaps.
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