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The period-M (M =1 and 2) scaling pattern of period doubling in a symmetric four-dimensional
volume-preserving map'is studied. The period-doubling sequence repeats itself asymptotically from
one bifurcation to the next in a period-1 bifurcation route, and to every other one in a period-2 bi-
furcation route. The parameter-scaling factors y& and y& in a bifurcation route depend on the bifur-
cation path. They are some combination of 5& and 5z (divergence rates from the period-M map of
the renormalization transformation) and 5', and 52 (convergence rates to the period-M map). There-
fore each bifurcation route is characterized by these four scaling factors. The values of 5&, 52, 5&,

and 5& are obtained by a numerical calculation and a renormalization analysis. We find that there
are three kinds of period-1 scaling patterns and one kind of period-2 scaling pattern. 5& and 5& in

any bifurcation route are the same as those in area-preserving maps; however, 5& and 5& depend on
the bifurcation route.

I. INTRODUCTION

The discovery of universal scaling behavior of period
doubling in one-dimensional (1D) maps by Feigenbaum
inspired several authors " to study the scaling behavior
of period doubling in area-preserving maps. Although
the universality results for period doubling in 1D maps
extend to higher-dimensional dissipative maps, the scal-
ing behavior of area-preserving maps is distinctly
different. An interesting question is whether the self-
similar period-doubling pattern of area-preserving maps
carries over to higher-dimensional conservative maps.
Consequently, period doubling in four-dimensional (4D)
symplectic maps has been studied. ' Clear evidence for
an infinite period-doubling sequence in a 4D symplectic
map has been reported by Mao, Satija, and Hu. ' The
infinite period-doubling sequence was determined by fol-
lowing a special bifurcation path. Many additional bifur-
cation paths and their scaling behavior in symmetric 4D
volume-preserving maps have been found. ' ' However,
only the period-1 scaling pattern has been studied.

The purpose of this paper is to report on the period-M
(M = 1 and 2) scaling pattern of period doubling in a sym-
metric 4D volume-preserving map. By generalizing the
concept of a bifurcation route and a bifurcation path, we
find that there are infinite kinds of bifurcation routes. In
this paper, we study the scaling pattern in the period-M
(M =1 and 2) bifurcation route. The period-doubling se-
quence repeats itself asymptotically from one bifurcation
to the next in a period-1 bifurcation route, and to every
other one in a period 2 bifurcation route. The
parameter-scaling factors y& and yz (y, ' and y2

' are the
period-doubling convergence rates) in a bifurcation route
depend on the bifurcation path. Their values for "almost
all" bifurcation paths (called "regular" paths) in a bifur-
cation route are different from those for exceptional bi-
furcation paths (called "special" paths). However, it is

shown that the two parameter-scaling factors for any
(regular or special) bifurcation path are some combina-
tion of the four scaling factors 5& and 52 (divergence rates
from the period-M map of the renormalization transfor-
mation) and 5,' and 5z (convergence rates to the period-M
map). The divergence rates 5& and 5z are the parameter-
scaling factors y, and y2 for regular paths, and 5', and 52
are the rates at which the stability indices' of the
daughter orbits converge geometrically to the critical sta-
bility indices. Hereafter, we call 5&, 52, 5'„and 5z the
"fundamental noncoor din ate scaling factors, " in the
sense that the two parameter-scaling factors for any bi-
furcation path can be expressed in terms of them. There-
fore each bifurcation route is characterized by its own
four fundamental noncoordinate scaling factors. The
values of these four fundamental noncoordinate scaling
factors are obtained by a direct numerical study and a re-
normalization method. We find that there are three
kinds of period-1 bifurcation routes and one kind of
period-2 bifurcation route.

This paper is organized as follows. We begin by recap-
itulating some useful properties of a symmetric 4D
volume-preserving map in Sec. II. We then generalize
the concept of a bifurcation route and a bifurcation path.
We also introduce the "route sequence" of a bifurcation
route to classify all the scaling patterns of period dou-
bling. In Sec. III the scaling patterns of all three kinds of
period-1 bifurcation routes are given. We obtain in Sec.
IV the fundamental noncoordinate scaling factors for the
period-2 scaling pattern. Section V gives a summary.

II. BIFURCATION ROUTE,
BIFURCATION PATH, AND ROUTE SEQUENCE

We review some useful properties of a symmetric 4D
volume-preserving map in the Sec. IIA. We then gen-
eralize in Secs. II B and II C the concept of a bifurcation
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route and a bifurcation path. In Sec. II D, we define the
"route sequence" of a bifurcation route.

A. Symmetric 4D volume-preserving map

We study the period-M scaling pattern in a symmetric
4D volume-preserving map. The symmetric 4D volume-
preserving map T is of the following form:

F(X, U) =2[PX+X +F, U ],
6 (X, U) =2[(P 2—E)U +6,XU],

P =C+E,
F, =(1+EF EG—)/R,

6, =2(1 EH—),
H =(2F+G)/R .

x'= —y+f (x, u),
y'=x,
u'= —U+g(x, u), (2.1)

X'= —I'+2(PX+X ),

Y'=X .
(2.4}

Then, the in-phase orbit of the old map (2. 1) becomes the
orbit of the new map with U = V =0. Moreover, the new
coordinates (X, Y) give the 2D Henon map,

where f (x, u)=2[(Cx+x )+E(u+Fu +Gxu)] and

g (x,u)=f (u, x). The term Cx+x in f (x, u) is a quad-
ratic function of x, and C a parameter. The term
u +Fu +Gxu in f (x, u) contains all the couping terms
up to quadratic terms. E is their common coefficient,
called the coupling parameter. F and 6 are parameters;
however, we will fix their values to perform a two-
parameter search. ' Since g(x, u}=f(u,x), the map T
(2.1) is called "symmetric. "'

There are two kinds of orbits in the map T. ' One is
the "in-phase" orbit,

—20 L

where 0 is the 2 X 2 null matrix, and

(2.5)

L1=
2P +4X —1

1 0

2(P 2E) +2G—
i X —1

The Jacobian matrix L of the new map at the in-phase or-
bit can be decomposed:

L 0—1

1y ~ ~ ~ yN

where N is the orbit. The other one is the "opposite-
phase" orbit,

r r

Qi Xi +N/P

yi+N/2

In this paper, we consider only the in-phase orbit.
For the in-phase orbit, the Jacobian matrix L of the

map (2.1) decomposes into two 2X2 matrices under a
coordinate transformation

R (x+u)
2

R (y+U)
2

Here the matrix L, is just the Jacobian matrix of the 2D
Henon map (2.3).

The map T (2.1) is symplectic' only if

ag
Bu Bx

(2.6)

The stability of an orbit of period N in a 4D symplectic
map is determined by the Jacobian matrix M of T which
is symplectic. As is well known, ' if A, is an eigenvalue of
M, so are A,

' and A, '. Therefore the eigenvalues A, 's
come either in reciprocal pairs which are real or of
modulus unity, or in a complex quadruplet with

A&3 Ar4 ~ These eigenvalues of M are called
the multipliers of the orbit. Following Broucke, ' Ho-
ward and MacKay' associate with each eigenvalue A, a
stability index

U= R (x —u)
2

V= R (y —v)

2

(2.2)
(2.7)

Then, the reduced characteristic polynomial of a 4D sym-
plectic matrix is quadratic

where R =1+EF+EG. T thus becomes
P —T1P+ T&

—2=0,
where

(2.8)

X'= —I'+F(X, U),
Y' =X,
U'= —V+6(X, U),
V'= U,

(2.3)

4

T) = g A,; =TrM=p)+p~,

T~ = g 1;A,, =[(TrM } —Tr(M )]/2=p, pz+2 .

where Therefore the two independent quantities (T„Tz) or
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(p„p2) determine the stability of the periodic orbit. ' '
A periodic orbit is spectrally stable if and only if all sta-
bility indices are real with ~p~

~ 2, and a period-doubling
bifurcation occurs when two eigen values coalesce at
A, = —1 and split along the negative real axis (a stability
index decreases through —2). '

The map T (2.1) is a volume-preserving map since
Det(L ) = 1; it is symplectic only if G =2F. However, for
the in-phase orbit, Eq. (2.6) is always satisfied because of
the symmetry of the map g(x, u) =f (u, x). Therefore the
stability diagram in the T, -Tz plane for the orbits in a
4D symplectic map is the same as that for the in-phase
orbit in a symmetric 4D volume-preserving map. ' Since
the Jacobian matrix of the new map (2.3) at the in-phase
orbit is decomposed as shown in (2.5), the stability index

p& of a periodic orbit is a function of only one parameter
P, and pz a function of the two parameters P and E. We
fix the values of F and G to perform a two-parameter
search

P2=P2(P, E} .
(2.9)

/
~ ~ ~

FIG. 1. A schematic stability diagram in the PE-parameter
plane for the period-l, —2, —4, etc., orbits of the map C'2. 3).
The period-doubling bifurcation line is denoted by the solid line,
and the tangent bifurcation line is denoted by the dashed line.

B. Bifurcation route

A remarkable observation of Mao and Helleman' is
that a "mother" stability region bifurcates into two
"daughter" stability regions in the parameter plane as
shown in Fig. 1. Therefore the stability diagram in the
parameter plane can be regarded as a kind of "binary
tree. " We denote the upper branch of the two daughter
stability regions by U, and the lower branch by L. We
call the direction of the upper branch, "U direction"; the
direction of the lower branch, "L direction. " A bifurca-
tion route is then uniquely determined by its address,
which is an infinite sequence of U and L. Therefore there
are infinite kinds of bifurcation routes.

A bifurcation route is called "period M" (M a positive
integer) if the period-doubling sequence in it exhibits
asymptotically a period-M scaling pattern. In this paper,
we consider only period-M (M =1 and 2) bifurcation
routes. It is found that there are three kinds of period-1
bifurcation routes and one kind of period-2 bifurcation
route. The three kinds of period-1 bifurcation routes are
as follows. The first one is the "S route, " whose address
is [a, (U, )"] or [b, (L, )"], a and b being arbitrary finite
sequences. An S route is formed if one follows asymptot-
ically only the upper branch or the lower branch. Since
one goes asymptotically in the same direction (U or L
direction), we call it an S route. The second one is an "A
route, "whose address is [c,(L, U, )]. Since the address of
an A route is [c, ( L, U, )"], the direction of the route
asymptotically alternates between the L direction and the
U direction. Therefore we call it an A route. The third
one is the "E route, " whose address is [(L,U, )"]. Since
the address is unique, there is only one E route. The
differences between an A route and the E route are as fol-
lows. The value of the coupling parameter E' at the ac-
cumulation point (P',E'}in the E route is zero, whereas
in any A route it is nonzero. In these three kinds of
period-1 bifurcation routes, the period-doubling sequence
exhibits a period-1 scaling pattern. As mentioned above,
there is only one kind of period-2 bifurcation route in
which the period-doubling sequence exhibits asymptoti-
cally a period-2 scaling pattern. The address of a period-
2 bifurcation route is [d, (L,L, U, U, )"].

C. Bifurcation path

A,
&

is any real number (i.e. , A,
&
EIR),

O~L9~m;

p)ER,
Ip2=2cosgl ~2 .

(2.10)

Similarly, a period-2 bifurcation route is defined as fol-

In this section we define the period-M bifurcation path
and compare our period-1 bifurcation path with those
previously defined in Ref. 14.

Before defining a bifurcation path, we explain some
terms and notations that will be used later. We call an
orbit born by the nth period-doubling bifurcation in the
map (2.3) an orbit of level n Then, .the period N of an or-
bit of level n is 2", and there are 2" orbits of level n. As
explained in Sec. II A, the stability of an orbit of level n is
determined by its multipliers (A, , „,A,2 „,A, 3 „,A,4 „),its sta-
bility indices (p, „,p2 „), or (T, „,T2 „). The values of
the two parameters P and E in the map (2.3) at which an
orbit of level n has some given multipliers, or, equivalent-
ly, stability indices, will be denoted by P„and E„.

Let us choose a period-1 bifurcation route. Then, a
period-1 bifurcation path which belongs to the chosen bi-
furcation route is formed by following in the chosen bi-
furcation route P„and E„at which the orbit of level n

has some given multipliers (A, „A,, ',e', e '
) or stability

indices (p, ,p2), where
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lows. Choose a period-2 bifurcation route whose address
is [d, (L,L, U, U, )"]. Then, a period-2 bifurcation path
that belongs to the chosen bifurcation route is formed by
following in the chosen bifurcation route P„and E„at
which the orbit of level n has some given multipliers

(A.„A., ', e ', e ') for n even, and (A.„)(,, ', e ', e ')
for n odd, where

A, )ER,
0~8, , 8~~m'.

(2.11)

The period-1 scaling pattern has been studied previous-
ly,

' and three kinds of bifurcation routes were found ("L
route, " "U route, " and "E route"). We compare our
period-1 bifurcation route with that found by Mao and
Helleman. Their bifurcation path is formed by following
asymptotically P„and E„at which the orbit of level n

has some given multiplier (
—1, —l, e'e, e '

), which cor-
respond to a bifurcation point lying on the period-
doubling bifurcation line in the T, -T2 plane. A bifurca-
tion path with 0~ 8~ m l2 is called an L& path (or L path
if 8 is not specified). ' Then, an L route is formed by a
particular L path and all Le paths in its neighborhood.
Its address is [a, ( U, )"] or [b, (L, )"], which is the same
as that of our S route. However, they considered only
the case A,

&

= —1 and 0~ 8~ n /2, whereas we consider
the case A, , ER and 0~8~@ in the S route [see Eq.
(2.10}]. In this sense, their L route is a proper subset of
our S route. Similarly, it is easy to see that their U and E
routes are proper subsets of our A and E routes, respec-
tively.

D. Route sequence

In this section we define the "route sequence" of a bi-
furcation route. The route sequence of a bifurcation
route is uniquely determined by its address as follows. If
the nth element in its address is the same as the next
(n + 1)th element, we assign a 0 to the nth element of the
route sequence; otherwise we assign a 1. Therefore the
route-sequence is an infinite sequence of the two numbers
0 and 1.

The route sequence of the period-M bifurcation route
is as follows. We first consider the period-1 bifurcation
route. The route sequence of an S route is [a', (0, )"]
since one goes asymptotically in the same direction (U or
L direction) in the S route. On the other hand, the route
sequence of an A or E route is [b', (1,)"], since the direc-
tion of the A or E route alternates between the L direc-
tion and the U direction. Here, b is a finite nonempty se-
quence for an A route, whereas it is empty for the E
route. Note that the route sequence of any period-1 bi-
furcation route exhibits eventually a period-1 pattern.
Second, let us consider a period-2 bifurcation route
whose address is [c,(L,L, U, U, )"]. Then the route se-
quence of the period-2 bifurcation route is [c',(0, 1, }"].
Note also that the route sequence of any period-2 bifurca-
tion route exhibits a period-2 pattern. From the period-
M pattern of the route sequence for the period-M bifurca-
tion route, it may be conjectured that in a bifurcation
route whose route sequence exhibits a period-M (M any

positive integer) behavior, the period-doubling sequence
exhibits asymptotically a period-M scaling pattern, and,
in a bifurcation route whose route sequence is random, it
exhibits a "chaotic" scaling pattern.

III. PERIOD-1 SCALING PATTERNS

In this section the results of period-1 scaling pattern in
the three kinds of period-1 bifurcation routes (S, A, and
E routes) are given. In Sec. III A, we obtain the
parameter-scaling factors y, and yz by the scaling-matrix
method. ' The values of y, and yz depend on the
period-1 bifurcation path, and it is found that there are
more "special" bifurcation paths than those found in Ref.
14. It is shown in Sec. IIIB that the two parameter-
scaling factors for any bifurcation path in a bifurcation
can be expressed in terms of the four "fundamental non-
coordinate scaling factors" of the bifurcation route, 5„52
5', , and 5z. In Sec. III C, we review the orbital scaling be-
haviors which have been studied in Ref. 14.

lim (P„,E„)=(P',E')
g —+ QO

(3.1)

for all bifurcation paths. Furthermore, at the accumula-
tion point (P*,E'), the stability indices p, „and p2 „
converge geometrically to the critical stability indices p,
and p2, respectively,

lim p, „(P')=p,',
ff ~ 00

lim p2 „(P',E')=p~ .
n~oo

(3.2)

Note that p, „ is a function of only one parameter P [see
Eq. (2.9)]. The critical stability indices are shown in
Table I. If the given values of stability indices p& and p2
in Eq. (2.10) are not the critical values (p&&p, and

pz&pz), then we call it a "regular" path; otherwise, we
call it a "special" path.

The scaling behavior of the period-doubling sequence
[(P„,E„),n =0, 1,2, . . . ] can be determined by the
scaling-matrix method developed by Guckenheimer, Hu,
and Rudnick' (refer to Ref. 13 for details). The 2X2
scaling matrix of level n, I „,is defined as follows:

P„—P„ P„+)
—P„=r—n En+1 n

(3.3)

A. Parameter-scaling factor

To perform a two-parameter search, ' we consider the
case that the values of (F,G) are (1,2), (2,4), (1,3), and
(2,3) and follow the orbit up to level 17. The parameter-
scaling factors are independent of the values of F and 6
within numerical accuracy. This is expected as we are
considering a codimension-two problem.

We first define a "regular" path and a "special" path as
follows. Choose a period-1 bifurcation route. Then, for
any period-1 bifurcation path that belongs to the chosen
bifurcation route, (P„,E„) converges to the same accu-
mulation ponts (P', E*)
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Route Pl pz

TABLE I. The critical stability indices pl* and pz in a

period-1 bifurcation route.
verge to the critical stability indices p*, and pz, respec-
tively. The convergence is asymptotically geometric at
rates 5', and 5z, respectively,

S
A

—2.543 51020
—2.543 51020
—2.543 51020

2.000 00000
—1.000 000 00
—2.543 51020

pi, .(P'}—
pi -5i"

pz „(P',E" )
—

pz -52" .
(3.&)

Then, I „approaches a constant matrix I as n ~~:
(3.4)

The eigenvalues of I, y, , and y2, are just the parameter-
scaling factors. The parameter-scaling factors in the
three kinds of period-1 bifurcation routes are shown in
Table II. The values of y& and yz in each bifurcation
route depend on the bifurcation path. Regular paths
have the same values of y, and y2, whereas each kind of
special path has different values of y, and yz from those
of regular paths. In the S and A routes, there are three
kinds of special paths. On the other hand, in the E route,
there are two kinds of special paths since pz for any bifur-
cation path [see the range of pz in Eq. (2.10)j cannot be pz
(see Table I). No yz exists for the first type of special
path in the E route, since E„ is zero for all n. In Ref. 14,
they found only one special path in each bifurcation
route (I., U, and E route) which belongs to the first type
of special path in each bifurcation route (S, A, and E
route}. Therefore, by generalizing the bifurcation route
and the bifurcation path as explained in Sec. II, we find
that there are more special bifurcation paths than those
found in Ref. 14.

B. Fundamental noncoordinate scaling factor

In this section we find that there are four "fundamental
noncoordinate scaling factors, " 5, and 5z (divergence
rates from the fixed map of the renormalization transfor-
mation} and 5', and 5z (convergence rates to the fixed

map).
At the accumulation point (P', E') in a bifurcation

route, the stability indices pi „(P') and pz „(P',E' }con-

Pl, (P E ) Pl, + I(P

pz „(P',E' }=p2 „+1(P*,E') .

(3.7)

By linearizing Eq. (3.7) about the accumulation point
(P*,E'), we obtain

This implies that the fixed map has two stable directions
under the renormalization transformation with eigenval-
ues 5', and 5z. Therefore 5' and 5' are convergence rates
to the fixed map. The values of 5& and 5z are shown in
Table III. Since ~5z~

~ ~5',
~

(equality holds only for the
E-route), 5z is the "essential" convergence rate which is

the largest noncoordinate eigenvalue inside the unit cir-
cle.'

By comparing the analytic formulas of 5, and 5z (diver-

gence rates from the fixed map) with those of the parame-
ter-scaling factors y, and yz, we show that 5, , 5z, 5'„and
5z are "fundamental noncoordinate scaling factors. "
First, we obtain the analytic formulas for 5, and 5z by us-

ing the eigenvalue-matching renormalization method.
The basic idea of Derrida et al. is to associate, for each
(P,E), a value (P', E') such that TI~+E"i locally resembles

TIz'z~', T'"' is the 2"th iterated map of T (i.e., T'"'= T }.
An approximate way to do it is to equate the stability in-
dices of level n, p, „(P,E) and pz „(P,E), to those of level

(n +1),p, „+,(P', E') and pz „+,(P', E'),

pi, .(P E}=pi,.+ i(P' E')
(3.6)

P2 „(P,E)=P2 „+,(P', E') .

The accumulation point (P',E'} is a fixed point of the
recurrence relation (3.6),

TABLE II. The parameter-scaling factors y, and yz for a
period-1 bifurcation path in a period-1 bifurcation route. In the
second column, we denote a regular path by R and a special
path by S. The ranges of p, and pz are given in Eq. (2.10).

BP BP
BP' , BE'

BE BE
aE',

hP'
hE'

Route Path

p&Wp» pzWpz (R)
pi&pi pz pz (S)
pl=pl* pz~pz (S)
pl=pl' pz=pz (S)
PI&Pl PZ&P2

Pl —Pl Pz+Pz
p*, , p =p* (s)

PIMP, (R)
p, =p E[—2, 2] (S)
PI =pl (S)

pl

8.721
8.721

—74.78
—74.78

8.721
8.721

—74.78
—74.78

8.721
8.721

—74.78

rz

4.000
—15.08

4.000
—15.08
—2.000

—15.08
—2.000

—15.08
—4.404

nonexistent
—4.404

AP'
~n (3.8)

Route

8.721 4.000
8.721 —2.000
8.721 —4.404

—0.1166
—0.1166
—0.1166

6z

—0.2653
0.1326

—0.1166

TABLE III. The four fundamental noncoordinate scaling
factors 5&, 5z, 5& and 5z in a period-1 bifurcation route.
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where AP =P —P*,
AE'=E' —E', and

=A 'B—n —n —n

BP l, n

BP

AE =E —E', 4P'=P' —P*,

BP l, n

BE

Gpl=pl +~pl Pl, (

GPl =Pl +~pl Pl, +1( +1 +1)

Pz=P2 + Pz Pz, n n ~

GPz P2 + ~pz Pz, n+1(Pn+1&En+1

(3.13)

A„=
BP2, n

BP

apl, n+1
BP'

Bp2, n +1
BP'

BP2, n

aE

BPl, n +1
BE'

BP2, n+1
BE'

By linearizing Eq. (3.13) about the accumulation point
(P', E') and using Eq. (3.5), we obtain

hP„AP„+,
QE„—n (3.14)

where hP„=P„—P*, EE„=En—E', and
I „=3 „'C„,where 2 „ is defined in Eq. (3.8), and C „
depends on the values of Gpl and GP2 as follows.

(1) Gp, ep] aild Gpzxpz (AP, WO alid bpzeo),

g(n)
Trb, „+[(Trh„) —4Det(b, „)]'~

2
(3.9)

Note that p, =pl(P) and pz=pz(P, E) in the map (2.3) [see
Eq. (2.9)]. After some algebra, we obtain the analytic for-
mulas for 5',"' and 52"'.

where the asterisk denotes the accumulation point
(P',E'}. Then, the eigenvalues 5'1"' and 5z"' of the ma-

trix 6 „are

C„=B„.

Cn=

Pl, n+1
BP'

P2, n +1

BP

BP1,n +1
BE'

Pz, n+1B

BE'

(3) Gpl =pl »d Gpz&pz (Ap, =0 and bpz+0),

(2) Gp, &pl and Gpz=pz (bp, AO and bpz ——0),

g(n)
1

dPl, n+1
dp'

dPl, n

dP
(3.10)

Cn=

Pl, n+1a

ap'

BP 1, n + 1

ap'

Pl, n +1a

BE'

BPl n +1
aE'

g(n)
2

Pl, n +1
El

BP1,n

BE

As n ~~, 5',"' and 5z"' approach 5, and 5z, which are
just the divergence rates from the fixed map,

Cn=

Pl, n +1B,
ap'

P2, n+1a,
BP'

Pl, n+1B,
BE'

P2, n+1a,
BE'

(4) Gp, =pl »d Gpz=pz (bp, =0 and bp2=0),

51= lim 5',."', i =1,2 . (3.11) Then, the eigenvalues y', "' and y2n' of the scaling matrix
I „ are

GP1 P 1 +~Pl

GP2 —P2+~P2-
(3.12)

Then, by the definition of a bifurcation path, we obtain

Secondly, we obtain the analytic formulas of yl and y2
(parameter-scaling factors) by using the sealing-matrix
method. ' Note that a bifurcation path is formed by fol-
lowing in the chosen bifurcation route (P„,E„)at which
the orbit at level n has some given stability indices pl and
pz [see Eq. (2.10)]. Let us denote the given stability in-
dices p, and p2 by Gp, and Gp2 and write them in the fol-
lowing form:

r'n'= TrI „+[(TrI „) —4Det(I „)]'
(3.15}

dpi + 1/dP p2 „+1/BE'
y(n) y(n) (3.16a}

dP1 „/dP Bp2 „/BE

Note also that p, =p, (P) and pz(P, E) in the map (2.3}
[see Eq. (2.9)]. Therefore we obtain the analytic formulas
for y', "' and y2n' which depend on the values of Gp, and

Gp2 as follows.
(1) Gp, &pl »d Gpz@pz,



41 SCALING PATTERN OF PERIOD DOUBLING. . . 5437

(2) Gp, &pi and Gp2=p2,

dp, „,/dP'I„,
, ap, „„/aE ~.

dp, „/dPI. ' '
Bp, „/BE[.

(3.16b)

(4) Gp, =p; and Gp =p',

dpi, n+i/dP li

dp, „/dP~,

Bp2 „+&IBE I „
(3.16d)

As n ~ Do, y', "' and yz"' approach y, and y2 which are
the parameter-scaling factors,

lirn y';"'=y;, i =1,2 . (3.17)

By comparing the analytic formulas of 5'&"' and 52"' in Eq.
(3.10) with those of y'i"' and y2"' in Eq. (3.16), one can ex-
press the parameter-scaling factors y& and y2 for any bi-
furcation path in terms of 5, , 5z, 5', , and 52 as follows.

(1) Gp, p", and Gp2p2 (regular path),

y, =5, and y, =5, (3.18a)

(2) Gp, @p', and Gp2=p2 (the first type of special
path),

y, =5, and ye=52/5~ . (3.18b)

(3) Gp, =pi and Gp

dp. ,. ./dP'I. , . .„, ap, „„/aE ~„

dp, „/dP, ' ' '
ap, , „/BE(,

(3.16c)

After making the linear transformation in Eq. (2.2), the
old map (2.1) becomes the new map (2.3). Then, the first
two coordinates X and Y in the new map (2.3) of the in-

phase orbit with U=V=O are determined by the 2D
Henon map (2.4). Therefore X and Y scale with the
2D orbital scaling factors a = —4.018. . . and
P=16.36. . . . Furthermore, according to the definition
of the linear transformation (2.2), the coordinates x and y
(or u and v) of the in-phase orbit also scale with the same
2D orbital scaling factors a and P.

IV. PERIOD-2 SCALING PATTERN

In this section the results of the period-2 scaling pat-
tern in the period-2 bifurcation routes are given. There is
only one kind of period-2 bifurcation route whose address
is [d, (L,L, U, U, )"]. To perform a two-parameter
search, ' we consider the case that the values of (F, G} are
(1,2), (2,4), (1,3), and (2,3) and follow the orbit whose level
n is up to 19. The parameter-scaling behavior is indepen-
dent of the values of F and 6 within numerical accuracy.
This is expected as we are considering a codimension-two
problem. We numerically obtain the four fundamental
noncoordinate-scaling factors 5„52, 5'„and 5z. Further-
more, we analytically obtain the value of 52 and the criti-
cal stability index p2 by an extremely simply renorrnal-
ization method. '

We first explain the meaning of period-2 scaling pat-
tern. The period-doubling sequence repeats itself asymp-
totically from one bifurcation to every other one in a
period-2 bifurcation route, whereas the period-doubling
sequence repeats itself from one bifurcation to the next
one in a period-1 bifurcation route. As an example, let us
consider the period-2 route whose address is
[(L,L, U, U, )"] when F=l and G =2. The accumula-
tion point (P', E') in this period-2 route is

(3) Gp, =p', and Gp2/p2 (the second type of special
path),

P *= —1.266 311276 922 099 113716 3675,

E = —1.157 360 600056928 496 228 813 .
(4.1)

y, =5, /5', and y~=5~ . (3.18c)

(4) Gpi=pi and Gp2=p2 (the third type of special
path):

At the accumulation point, the stability indices p, „(P }
and p2 „+i(P ', E') are shown in Table IV. As shown in
Table IV, (pi „,p2 „)exhibits a period-2 pattern and con-
verges to the critical stability index (pi, pz ),

yi=5(/5I and y2 52/52 (3.18d)

Therefore 5„5z, 5'„and 52 are the "fundamental non-
coordinate scaling factors, " in the sense that the two-
parameter scaling factors for any bifurcation path can be
expressed in terms of them. Their values are shown in
Table III. The values of 5, and 5& are the same for all bi-
furcation routes; moreover, these values are the same as
the values of 5 and 5' for period doubling in area-
preserving maps (the value of 5' was found in Refs. 8 and
9). However, the values of 52 and 52 for the three kinds
of bifurcation routes are different.

C. Orbital scaling factor

In this section we only review the orbital scaling be-
havior of the in-phase orbits.

(pi p2 ) lim (pl, p2,
pf —+ co

(p', ,p2, ) for n even

(p', ,pz, ) for n odd.
(4.2)

Here, we denote the critical stability index p2 by pz, for
n even and by pz, for n odd. The values of p&, p2 „and
p2, are shown in Table V. This implies that there exists
a period-2 map of the renorrnalization transformation.

Second, we obtain the four fundamental noncoordinate
scaling factors 5„52, 5&, and 5z. At the accumulation
point (P', E*) in a period-2 bifurcation route, p, „(P')
and pz „(P',E') converge to the critical stability indices

p& and p2 with rates 5& and 5z, respectively.
(1) n even,
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TABLE IV. The stability indices p, „(P*)and p~ „(P,E*)
of a periodic orbit of level n in a period-2 bifurcation route
whose address is [(L,L, U, U, )"] for F = 1 and G =2.

Third, we obtain analytically the values of 52 and p2 by
an extremely simple renormalization method. ' The sta-
bility index p2 of a periodic orbit of level n is

pl „(P*) p, „(P*,E')
P2=A, 2+F2 ', (4.&)

5

6
7
8

9
10
11
12
13
14
15
16

—2.543 510411332
—2.543 510 172 372
—2.543 510200 259
—2.543 510 197008
—2.543 510 197 387
—2.543 510 197 343
—2.543 510 197 348
—2.543 510 197 347
—2.543 510 197 347
—2.543 510 197 349
—2.543 510 197 305
—2.543 510 197478

Pin Pf 57

—1.619 112861 583
0.617 979 560 460

—1.618035 334 750
0.618034 639 559

—1.618034 073 156
0.618033 975 676

—1.618033 987 845
0.618033 988 971

—1.618 033 988 769
0.618033 988 746

—1.618 033 988 750
0.618033 988 750

where A.2 is a multiplier of the periodic orbit. Since we are
considering the period-2 scaling pattern, we next obtain
the stability index p2 of a periodic orbit of level n +2,
where

p2=A, 2+F2 (4.6)

By expressing p2 in terms of p2, we obtain a recurrence
relation for p2

p2
—

p2
—4p2+2 (4.7)

The critical stability index p2 is a fixed point of the re-
currence relation (4.7). That is, p2 is a root of the follow-
ing equation:

gin .
P2, n P2, e ~2

(4.3a) p44 4P42 PC +2 0 (4.8)

(2) n odd,

Pin Pf 57
g, in

P2, n P2, 0 ~2

whose roots are

p2 =2, —1, (
—1 +&5)/2, and ( —1 —v'5)/2 . (4.9)

(4 3b) The divergence rate 52 can be determined by the equation

The values of 5', and 52 for n even are the same as those
for n odd, and they are shown in Table VI. The value of
5', for the period-2 scaling pattern corresponds to the
square of the value of 5', for the period-1 scaling pattern
since p, „(P ) itself exhibits a period-1 pattern as shown
in Table IV. Since ~5&i ) i5', i, 52 is the "essential" con-
vergence rate. The divergence rates 5, and 52 from the
period-2 map can be obtained by the scaling-matrix
method. ' For the period-2 scaling pattern, the 2 X 2 scal-
ing matrix I „ is defined as follows:

P„—Pn 2 Pn+2 —P„
En En —2

" En +2 En
=r„ (4.4)

Then, r „approaches a constant matrix I as n~oo.
The eigenvalues of the constant matrix I, y, and y2, are
the parameter-scaling factors. As shown in III B, the
scaling factors y I and y2 for the regular paths are just the
divergence rates 5, and 52 [see Eq. (3.18a)]. The values of
5& and 52 for n even are the same as those for n odd, and
they are shown in Table VI. Note that the value of 5& for
the period-2 scaling pattern corresponds to the square of
the value of 5& for the period-1 scaling pattern. There ex-
ist three kinds of special bifurcation paths. However, as
shown in Eqs. (3.18), the scaling factors y, and y2 for any
special bifurcation path are some combination of the four
fundamental noncoordinate scaling factors.

BP2
5,=

r)P2 ~&

The values of 52 are as follows:

16 for p2 =2,
52= 4 for p2

= —1,
—4 for p2 =( —1+&5)/2 or (

—1 —&5)/2 .

(4.10)

(4.11)

The values of p2 in the S and A routes, which are
period-1 bifurcation routes, are equal to 2 and —1, re-
spectively. Moreover, the values of 52 in the S and A

routes are 4 and —2, respectively. Thus, if one compares
the period-doubling pattern of level n with that of level
n +2, then the values of 52 become 16 and 4. Therefore
the two values of pz (p2 =2 and —1) in Eq. (4.9) must be
excluded, as these are just the values of pz in the period-1
bifurcation routes (S and A routes). Then, there remain
only two values of pz and one value of 5z..

52= —4 for p2 =( —1+&5)/2 or ( —1 —&5)/2 .

(4.12)

These values of p2* and 52 in Eq. (4.12) agree very well

TABLE V. The critical stability indices p&, pz „and pz, in a period-2 bifurcation route.

Route

Period 2

Pl

—2.543 510 197347

pz, e

0.618033 988 750

pz, o

—1.618033 988 750
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TABLE VI. The four fundamental noncoordinate scaling

factors 5I, 5„5Iand 52 in a period-2 bifurcation route.

Route

Period 2 76.06

5l

0.013 60

52

—0.017 59

with the numerical values (see Tables V and VI).
Finally, we mention briefly the orbital scaling behavior

of the in-phase orbit in the period-2 bifurcation route. As
reviewed in Sec. III C, the coordinates x and y (or u and
U) scale with the same 2D orbital scaling factors
a = —4.018. . . and P= —16.36. . . . Therefore, in a
period-2 bifurcation route, although the parameter se-
quence exhibits a period-2 scaling pattern, the orbital se-
quence exhibits a period-1 scaling pattern.

V. SUMMARY

By generalizing the pattern bifurcation route and bifur-
cation path, we have studied the period-M (M = 1 and 2)
scaling pattern of period doubling in a symmetric 4D
volume-preserving map. The parameter-scaling factors

y& and y2 depend on the bifurcation path. However, it
was shown that the two parameter-scaling factors can be
expressed in terms of the four "fundamental noncoordi-
nate scaling factors" 5„52,5I, and 52. Therefore each bi-

furcation route is characterized by its own four funda-
mental noncoordinate scaling factors. For the period-1
scaling pattern, there are three kinds of period-1 bifurca-
tion routes (S, A, and E routes). There are three kinds of
special paths for the S and A routes, and two kinds of
special paths for the F. route. Although the period-1 scal-
ing pattern was previously studied, ' ' the four funda-
mental noncoordinate scaling factors were not found, and
only one special path for each bifurcation route was
found. Furthermore, we have found a new scaling pat-
tern in the period-2 bifurcation route, called the period-2
scaling pattern. The period-doubling sequence repeats it-
self from one bifurcation to every other one in a period-2
bifurcation route. We have obtained the four fundamen-
tal noncoordinate-scaling factors for the period-2 scaling
pattern by a numerical method. Moreover, we have ob-
tained the values of 5z and pz by a simple renormaliza-
tion method. The values of 5I and 6& in any period-M bi-
furcation route are the same as those in area-preserving
maps. However, the values of 52 and 5z depend on the bi-

furcation route. Moreover, since
i 52 i

)
i
5',

i in any
period-M bifurcation route (equality holds only for the E
route), 5z is the "essential" convergence rate of a critical
map in the scaling coordinate.

We introduced the route sequence of a bifurcation
route in Sec. II D. The route sequence of a period-M bi-
furcation route exhibits eventually a period-M behavior.
From this fact, we conjecture that in a bifurcation route
whose route sequence exhibits eventually a period-M (M
any positive integer) behavior, the period-doubling se-
quence exhibits asymptotically a period-M scaling pat-
tern. In a bifurcation route whose route-sequence is ran-
dom, it exhibits a "chaotic" scaling pattern. Note that
for an invariant circle in area-preserving maps, if the
continued-fraction representation of its rotation number
has a "period-M" tail, then it exhibits a period-M scaling
pattern; otherwise, it exhibits a "chaotic" scaling pat-
tern. ' Therefore we conjecture that the route se-
quence plays the same role as the continued-fraction rep-
resentation. Thus all the scaling patterns of period dou-
blings could be classified by the route sequence.

Note that we have studied only symmetric 4D
volume-preserving maps. The period-1 scaling patterns
in nonsymmetric 4D volume-preserving maps is the same
as those in symmetric 4D volume-preserving maps. ' ' '

We conjecture that the period-2 scaling pattern in non-
symmetric 4D volume-preserving maps is also the same
as those in symmetric 4D volume-preserving maps. This
is because the simple renormalization analysis for the
period-2 scaling pattern in Sec. IV can be applied to any
(symmetric or nonsymmetric) 4D volume-preserving
maps and gives the same results. Therefore it would be
desirable to check the analytic results of the simple renor-
malization analysis for the period-2 scaling pattern by
studying numerically the scaling pattern in a nonsym-
metric 4D volume-preserving map.
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