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Approximate scattering wave functions for few-particle continua
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An operator identity which allows the wave operator for N particles interacting pairwise to be
expanded as products of operators in which fewer than N particles interact is given. This identity
is used to derive approximate scattering wave functions for N-particle continua that avoid certain
diSculties associated with Faddeev-type expansions. For example, a derivation is given of a
scattering wave function used successfully recently to describe the three-particle continuum occur-
ring in the electron impact ionization of the hydrogen atom.

I. INTRODUCI ION

The treatment of scattering processes involving more
than two particles at high energies often involves approxi-
mations in which the exact many-particle transition or
Green's operator is expanded in terms of operators in
which only two particles at a time interact. The simplest
example of this is an expansion of the full Green's opera-
tor G, involving a total of m N(N —1)/2 pairwise in-

teractions among N particles, in terms of the pairwise po-
tential operators and Go, the Green's operator for N free,
noninteracting particles. Such a Born series is of limited
value since it contains disconnected terms and, particular-
ly for Coulomb interactions, it is slowly convergent (if at
all). The situation is improved somewhat by Faddeev-
type expansions' in which certain pair interactions are
summed to infinite order. However, these theories still
represent the transition operator as sums or differences of
individual terms whose interference may lead to spurious
structures in the resulting cross sections. This feature is
particularly a problem when dealing with Coulomb forces
of infinite range, since then the interference effects persist
even in high-energy collisions. To eliminate such
difficulties in multiple-scattering theories, an approxima-
tion scheme is suggested here in which the full N-particle
transition operator (or more exactly, the corresponding
wave or MtSIler operator) is expanded not as a sum but as
a product of operators involving the interaction of fewer
numbers of particles. The approximation scheme is based
on a simple operator identity.

The expansion of the full wave operator in product form
leads to a product form of the resulting approximate
scattering wave function. In fact, this investigation was
prompted by a recent successful application of a product
wave function to the three-body problem of electron im-
pact ionization of the hydrogen atom.

II. THE TRANSITION OPERATOR

The T-matrix element for N-body scattering can be
written in two different forms

TJt-&eJ I vf I
et+)-&eJ

I vf(I+6+v;) let),

H I It'f ) Ef I vtf &; 0 I II &-E (2)

with E EJ E;. The initial and final states are defined

by

and

0, Ie;&-(H —v;) le &-E le &

Hf I ef& (H vf) I ef) Ef I ef) ~

(3a)

(3b)

Since the final state resulting from a collision is often
"more complicated" than the initial state, the approxima-
tion of the scattering state I 0J & will be considered. The
same method is readily applied to I

+;+). More precisely,
since

I+I ) (1+G vf) lef&,

an expansion of the operator (1+G Vf) will be con-
sidered.

The interaction between the kth pair of particles will be
designated vt, and the totality of interactions

V gvk,
k 1

where m N(N —1)/2 for m particles. We then define
Green's operators

G, E —K —gvk —ib
k~1

in which K is the total kinetic energy operator but only the
first n pairwise interactions are taken into account. In this
notation G =G is the full Green s operator and Go is
the free N-particle Green's operator. Green's operators
involving only one specific interaction, say vk are designat-
ed

Qk (E—K—va i8)— (7)

If the final state I eJ) is such that HJ contains the first i

or

TJi &8f I v I e & &eJ I (1+vJG ) tvt
I et&

Here G — (E—H ~ih) ' is the full Green's operator
corresponding to the total Hamiltonian H,
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interactions, then

(1+G Vf) 1+G g vk
k i+1

The following development rests on the simple identity

1+G g vk (1+G v )(I+G:~v —~) . . (I+G;+~v;+~).
k i+l

(9)

This identity is readily established by operating with
(G ) ' (E—K —gk-~vk ib)—from the left and using
the definition (6). The case i 0 in (9) is especially in-

teresting since it corresponds to N free particles in the
final state. This N-particle breakup case will be discussed
further.

For N free particles the final-state wave function is

I ~f &-(1+G

and the expansion (9) can be written, for i -0,
(io)

with

0 +Qk
k 1

0; =(1+G; v ). (i2)

If one also defines two-body wave operators

(I+9; v;),

it can be shown that 0; satisfies the equation

n; -rp; +n; (n; ~

—1)co; .

Then the expansion (11)has a lowest-order term

(14)

For example, for N 3 this reads explicitly

(1+G V) = (I+93 V3)(1+92 v2)(1+9~ v~), (16)
or

I+I &=~i ~2 rp3 lef).

t

which is to be contrasted with (17).
In applications in atomic physics the Faddeev approxi-

mation (20) has various shortcomings. For example, it
was first used by Macek to calculate the electron capture
to the continuum (ECC) process where electrons are ion-
ized into states of low momentum with respect to the mov-

ing projectile positive ion. Although describing the essen-
tial dynamics of this process correctly, due to interference
between the various terms in (20), the predicted cross sec-
tion shows oscillations which appear to be spurious. If the
positive-ion projectile is replaced by an electron, it is clear
that the cross section for two electrons to emerge with ex-
actly equal momenta must vanish. However, only one
term in (20) vanishes, namely, that involving the elec-
tron-electron interaction. The remainder does not vanish
and yields a spurious finite cross section for two electrons
to emerge with equal momenta. In addition, the wave
function (20) does not satisfy the correct boundary condi-
tions on the three-body Coulomb problem. 3 A wave func-
tion based on the approximation (17) removes all of these
difficulties, i.e., it is of product form and therefore does
not show interference, if one factor is zero then the whole
wave function vanishes and it satisfies the exact boundary
condition for an N-body free Coulomb wave function.

The wave function (16) could be evaluated exactly but
a particularly transparent and readily calculable form
emerges from the further approximation that all two-body
interactions occur "on shell. " It suffices to consider only
three particles. Here (k;,K;), i 1,2, 3 will denote the
final-state momenta conjugate to each set of Jacobi coor-
dinates describing the internal motion of the three-body
system. Consider

From (10), the wave-operator expansion corresponds to
an expansion of the wave function +f . In the Faddeev
approach this expansion is

(2 I ) I ~ f& -„dkdK rp2 I k, K&&k, K I &

(2i)
m

I+I )- X I+~')+ I+I&j
(is)

and IW&, the column vector composed of the elements
I
%'~ &, satisfies the integral equation

where I k~) is a plane wave describing relative motion of
the two particles interacting in co~ and K~ is the momen-
turn of the third particle relative to their center of mass.
Then one can write

le') (m —1) l&f)+Gp Tle&,

where

(i9) I 0'&i K&&

—=
I fg, ,ki, Ki&, (22)

Tgj vg'cog, JW7,

T;J 0, j i,
are two-body T operators for interaction v;. For example,
for N 3, the first-order term is

where yr, , is a two-body eigenfunction for potential v&

alone. In the second line the plane-wave part has been
factored out, i.e., fk, represents the distortion due to v~.
Similarly, by choosing k to be a momentum conjugate to
the interparticle coordinate in v 2 one has

l~f &=(~i +~2 +co3 2) ICf), (2o) co2 I k, K) I fg, k, K) . (23)
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The factor f in (22) is on shell, but that in (23) is off shell.

However, if the factor fk in (23) is approximated by its
on-shell value, i.e., k k2, K K2 in fk, then

(nil 2 ) I ki, Ki) = Ifk, ,fk, kiKi)

This process can be continued to give

I r02 3 I kl K2) Ifk( fk2 fk3 klKI) .

(24)

(25)

~hen applied to Coulomb potentials, (25) is precisely
the wave function used recently to describe with great
success the triply differential cross section for electron im-

pact ionization of the hydrogen atom. There the deriva-
tion was performed by a method due to Pluvinage. 7 Here
the essential approximation is seen to be the assumption
that all two-body interactions occur on the energy shell.

There is, however, a fundamental difficulty in applying
the foregoing to Coulomb potentials. For short-range po-
tentials the analysis is applicable as it stands. However,
for Coulomb potentials the T-matrix elements and wave

operators must be suitably renormalized " or the
asymptotic plane waves modified by Coulomb distortion
factors. ' ' The rigorous application of the product ex-
pansion of the wave operator for Coulomb potentials
remains to be developed. Here, to keep the analysis sim-

ple, the expedient approach is adopted of assuming cutoff
Coulomb potentials. Taking a limit of infinite cutoff ra-
dius after the formal manipulation leading to (25) then

introduces a divergent overall phase factor, but this does
not affect cross sections calculated from the modulus
squared of the matrix element (I ). This procedure is also
justified by the close agreement of the calculations of Ref.
3 with experiment, even though the expression (25) was
used in (I) to calculate scattering due to pure Coulomb
interactions.

This method can be extended to approximate an N-

body continuum wave function as a product of N(N
—I)/2 two-body distortion factors and (N —1) three-
dimensional plane waves. For charged particles, unlike

any approximation based on operator sum expansions, this
wave function will give a vanishing cross section when two
particles approach in velocity space and has the same limit
as the exact wave function when the distances between all
particles tends to infinity.

In conclusion, an operator-product expansion has been
given of the wave operator for N-body scattering via
pairwise potentials. In specific applications involving
Coulomb potentials this expansion avoids certain inade-
quacies of Faddeev operator-sum expansions.
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