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Quantum Kramers model: Solution of the turnover problem
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The quantum-mechanical version of the Kramers turnover problem is considered. The multidi-
mensional character of the problem is taken into account via transformation to normal modes. This
eliminates the coupling to the bath near the barrier top allowing the use of a simple harmonic
transmission coefficient for the barrier dynamics. The well dynamics is described by a continuum
form of a master equation for the energy in the unstable normal mode. Within first-order perturba-
tion theory, the equations of motion for the stable normal modes have the form of a forced oscilla-
tor. The transition probability kernel is found using the known solution for the quantum forced os-
cillator problem. An expression for the quantum escape rate is derived. It encompasses all previ-
ously known limiting results in the thermally activated tunneling regime. The depopulation factor,
which accounts for the nonequilibrium energy distribution is evaluated. The quantum transition
probability kernel is broader than the classical and is skewed towards lower energies. Interplay be-
tween these two effects, together with a positive tunneling contribution, determines the relative
magnitude of the quantum rate compared to the classical one. The theory is valid for arbitrary dis-
sipation. Its use is illustrated for the case of a cubic potential with Ohmic (Markovian) dissipation.
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I. INTRODUCTION

Fifty years ago, Kramers formulated the problem of es-
cape of a particle trapped in a potential energy well,
separated from a continuum by a barrier.! The particle is
coupled to a heat bath which exerts on it a friction and a
random force. Kramers showed that the escape mecha-
nism is qualitatively different in the weak and strong cou-
pling limits. Strong coupling leads to a thermal equilibri-
um within the well. Consequently the passage over the
barrier is the rate determining step. In the weak-
coupling limit there is depopulation of particles with en-
ergies close to the top of the barrier, so that the rate is
determined by the exchange of energy between the parti-
cle and the bath.2® In the former limit the rate decreases
with increasing coupling while in the latter case it in-
creases with the coupling strength. Kramers solved the
classical problem in both limits, noted the existence of a
turnover region, but did not derive a uniform expression
valid for all coupling strengths. In Kramers’s work, the
fundamental equation describing the dynamics was a
Langevin equation. Recently it has been replaced by the
generalized Langevin equation (GLE) which includes
memory effects.>*~¢

During the last decade the quantum version of the
Kramers problem, namely, the tunneling decay of a meta-
stable state in the presence of coupling to a thermal bath
(dissipation),” has become very popular. Interest was
stimulated by an increasing amount of experimental data
on the decay of the zero voltage state in current biased
resistively shunted Josephson junctions® (RSJ) and on the
transitions between the fluxon states in superconducting
rings interrupted by low capacitance junctions® (SQUID).
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These experiments span a large temperature domain from
a few mK, where quantum effects are extremely impor-
tant, to higher temperatures, at which the system can be
described classically. There is also a possibility of vary-
ing the damping in a controlled way, spanning a wide re-
gion, from the extremely underdamped limit to the over-
damped limit.'°

The quantum Kramers problem is formulated by re-
placing the GLE with an equivalent Hamiltonian in
which the system is coupled linearly to a bath of harmon-
ic oscillators.'""!? Initial work on the quantum problem
was implicitly based on the assumption of thermal equi-
librium within the well, allowing the use of methods of
equilibrium statistical mechanics. Caldeira and Leggett'?
have shown that at zero temperature dissipation leads to
an exponential reduction of the tunneling rate. Note that
at T =0 the equilibrium assumption is valid for arbitrary
coupling strength. Coupling to the bath leads to an ex-
ponential enhancement of the rate at low temperatures
compared with its zero temperature value as shown by
Larkin and Ovchinnikov!® and by Grabert, Weiss, and
Hinggi.!* The expression for the high-temperature es-
cape rate derived by Wolynes!® assuming parabolic bar-
rier was divergent at the so-called crossover temperature
T,. This divergence originates from the extrapolation of
the lower limit of integration to — o in the calculation of
the flux. Larkin and Ovchinnikov,!® Grabert and
Weiss,!” and Riseborough, Hinggi, and Freidkin'® have
shown that the artificial divergence can be eliminated by
taking into account the deviation of the barrier shape
from a parabolic one. It should be noted that the har-
monic approximation to the barrier is justified only at
high temperatures, when the escape occurs close to the
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top of the barrier. At lower temperatures the actual
shape of the barrier is important. Wolynes’s result has
been shown subsequently to be the quantum analog of the
classical multidimensional transition state theory'®?°
(TST).

Within the harmonic approximation for the barrier, it
is possible to eliminate the coupling to the bath by a nor-
mal mode transformation. This observation was used by
Pollak and by Dakhnovskii and Ovchinnikov to show
that the tunneling rate in the presence of dissipation can
be derived from TST both below?! and above!®2® T,
Adapting the procedure of Affleck,”? Hinggi and
Hontscha have shown?’ that a unified expression for the
rate, valid at all temperatures, may be derived from the
Miller formulation?* of multidimensional semiclassical
TST.

If the coupling of the particle to the bath is weak, the
thermal equilibrium assumption is no longer valid. This
limit has been treated for the classical escape prob-
lem.!*2526 The first attempt to solve the quantum Kra-
mers problem without the equilibrium assumption has
been made by Mel’nikov.?” He formulated and solved an
integral equation for the steady-state energy distribution
in the presence of tunneling. The dynamics in the energy
space may also be approximated by the diffusion equa-
tion. This has been solved for a parabolic barrier in Ref.
27 within the WKB approximation and by Rips and
Jortner?® using the exact expression for the transmission
coefficient. Mel’'nikov’s integral equation is a steady-state
solution of the master equation, which describes the well
dynamics. The diffusion equation can be derived from it
as shown recently by Griff et al.?

The original description of the well dynamics?’ was
classical, since it was based on a Gaussian transition
probability kernel for the energy of the particle. Larkin
and Ovchinnikov®® generalized Mel’nikov’s approach,
and derived an approximate expression for the quantum
transition probability for a system, coupled to a bath,
whose spectrum is modeled by the Johnson-Nyquist
quantum thermal noise. In the paper of Mel’'nikov and
Siit3*! the method was applied to the case of the tilted
cosine (washboard) potential. This is of practical impor-
tance as it describes the decay of the zero-voltage state in
a RSJ.%!0 The results in these papers were complementa-
ry to that based on the thermal equilibrium assumption
as they were limited to a low damping region.

Mel'nikov’s work was at the same time an important
step towards the solution of the Kramers turnover prob-
lem (the early attempts®>33 were based upon the mean
first-passage time approximation and consequently unex-
tendable to the quantum case). He derived an expression
for the rate which went continuously from the extremely
underdamped limit, to the TST formula for the particle
in the absence of friction. Mel’'nikov and Meshkov**
have also written an ad hoc product form for the classical
escape rate which leads to the multidimensional TST lim-
it for large damping. The main elements missing from
their theory are a derivation of their expression and its
being limited to Ohmic (Markovian) dissipation.
Memory effects,>® which can be extremely important as
demonstrated in the numerical simulations of Straub,

5367

Borkovec, and Berne®® were not included in their treat-
ment.

The first systematic solution of the classical Kramers
turnover problem was recently given by Grabert®’ and by
Pollak, Grabert, and Hinggi*® (PGH). It was based upon
two new elements. The first one was the observation that
escape does not occur along the original system coordi-
nate, but along the unstable normal mode of the com-
bined system and bath.?*2! The second was a systematic
perturbative treatment®’ of the nonlinear part of the po-
tential which couples the unstable mode with the bath of
stable modes.

The purpose of the present paper is to provide a con-
sistent solution of the quantum Kramers turnover prob-
lem. The method is a synthesis of the quantum theoreti-
cal treatment of the well and barrier dynamics of
Melnikov and Larkin and Ovchinnikov, and the
normal-mode approach to the classical Kramers turnover
problem of PGH. Using the equations of motion for the
stable normal modes we derive a new quantum-
mechanical expression for the transition probability ker-
nel. The latter is employed in the solution of the integral
equation for the stationary energy distribution function
for the unstable normal mode and derivation of the quan-
tum escape rate. The main physical results of our
analysis (which can be extended below T) is that the
quantum transition probability kernel is asymmetric and
broader than the classical one. The quantum broadening
leads to an equilibration of the system at weaker damping
values relative to the classical case and to an enhance-
ment of the quantum rate. The skewedness, however, is
biased towards lower energies and causes depopulation at
energies close to the barrier top and reduction of the rate.

In Sec. II we review briefly the turnover theory>”3? for
the classical case. The expression for the quantum transi-
tion probability kernel is derived in Sec. III. It is used in
Sec. IV to obtain a closed expression for the quantum es-
cape rate. The leading quantum correction is analyzed in
Sec. V via the high temperature expansion of the rate
(depopulation factor). Finally, in Sec. VI we provide a
detailed study of the particular case of a cubic potential
with Ohmic (Markovian) dissipation. Limitations of the
theory, its possible extensions and applications are dis-
cussed in Sec. VII.

II. TURNOVER THEORY FOR THE CLASSICAL
KRAMERS PROBLEM

The general physical model to be studied in this paper
is that of a particle with mass M moving along the system
coordinate g in a potential V(q). The interaction of the
particle with a thermal bath is described by the time-
dependent friction function y(¢). The classical equation
of motion for the particle is the GLE

.o, 1 3V(g) G Falt)
d0+ 373, + [ary(e =g =—r (2.1)

F () is a stochastic Gaussian force whose autocorrela-
tion function is related to the friction function by the
classical fluctuation-dissipation theorem
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The brackets denote a thermal average at temperature 7.
The potential V(q) is assumed to have a local minimum
at ¢ =gq,, with frequency Q. This well is separated from a
continuum by a barrier, located at ¢ =0 with height V
(cf. Fig. 1). The problem to be considered is the deter-
mination of the quantum-mechanical escape rate of the
particle, which is initially trapped in the well. Before
proceeding to the quantum problem we review the theory
for the classical limit derived in Refs. 37 and 38.

Zwanzig''® has shown that a GLE can be derived
from the Hamiltonian

(F (t)F(t"))=MkgTy(t —t')=—y(t—t') . 2.2)
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in which the system coordinate g is coupled linearly via
the coupling constant c; to a bath of harmonic oscillators
with frequencies ;, masses m;, and coordinates x;. The
time-dependent friction of the GLE, which follows from
the Hamiltonian is expressed in terms of the bath fre-
quencies and the coupling constants

1N (_'.2

v(=—73 : 2

M=) mo;

cos(w;t) . (2.4)

An alternative description of dissipative properties of the
bath is based on the spectral density J(w) defined as'>**

2

r X ¢
J(w)=mi§1 o [lo—w;)—8lotw;)]. (2.5)
The latter is related to the friction function y(z) by
J@)=w [ “dt y(t)cos(wt) . (2.6)

V(q)

Y9 9w q

FIG. 1. Schematic representation of a metastable potential.
The figure corresponds to a cubic potential V(q)
=—21V,(q/q0)(1+q/q,). For the notations see text.
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Equations (2.4)-(2.6) give the connection between the
continuum GLE, Eq. (2.1), and the Hamiltonian (2.3).

In the following we shall mostly work in the frequency
domain. The Laplace transform of a function g(¢) is
defined as

g(p)= [ “dtg(texp(—pt) . @7

In the vicinity of the barrier top (¢ =0) one can write the
harmonic expansion of the potential V(q) as

V(g)=V (q)=—1iMw}q? (2.8)

where o, is the bare frequency of the barrier. The total
potential is then separated into the linear part, Eq. (2.8),
and the nonlinear term Vyy (q):

V(@) =V(g)+iMao}q? (2.9)

Substitution of the linearized potential V| (q) into Eq.
(2.3) leads to a quadratic Hamiltonian which can be diag-
onalized by an orthogonal transformation. The technical
details of this normal mode transformation can be found
in Refs. 20, 21, and 40. Here we give only the important
relations required for the development of the quantum
theory.
The linearized Hamiltonian H; in the normal mode
representation has the form
N
H =1p?—1A\p*+ 3 Ly 2+Al}) (2.10)
i=1
where p and {y;})_, are the mass-weighted coordinates
of the unstable normal mode (with frequency A,) and the
stable normal modes (with frequencies {A;}"_,). Trans-
formation to the normal mode coordinates is specified by
the orthogonal matrix u;;. The mass-weighted system
coordinate g’ is expressed in terms of the normal modes
as follows:

N
q’EMl/zq:uoop-f- 2 Ui -

i=1

2.11)

The normal mode frequencies and matrix elements u;; are
readily expressed in terms of the parameters of the mod-
el, namely, the spectral density or the friction function.
We shall be particularly interested in the expressions for
the frequency of the unstable mode (the Grote-Hynes re-
lation*!)

@}

M=t
14+ 7(Ag) /g

(2.12)
and the diagonal matrix element u,, which gives the pro-

jection of the system coordinate onto the unstable normal
mode:

—-1/2

2, = 1+$f°° do—L(@) (2.13)

—=  (0?+A3)?

Note that A, is always smaller than the bare barrier fre-
quency w,. The orthogonal transformation diagonalizes
the Hamiltonian only locally (at the barrier top). The
modes are coupled by the nonlinear part of the potential
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Vni(q). However, if the matrix element u,, is close to
unity then the deviation of the unstable normal mode
from the system coordinate may be taken as a small pa-
rameter of the problem?®’

(2.14)

where g, =u,, /u,,. The small parameter o can be also
expressed in terms of the friction function as*®

7(Ro) 4 37(p)
Ao ap

o=

(2.15)

1
2 P=iy
The existence of the small parameter justifies a perturba-
tive approach to the solution of the equations of motion
for the normal modes.’” Grabert and co-workers have
shown that the zero-order equation of motion for the un-
stable normal mode has the form>”

p—Aip=F(1) . (2.16)

The equation of motion for the ith stable mode to first or-
der in the small parameter g; is

J,+Aky, =g, F(1) . 2.17)

Here F(t) is the time-dependent (zero-order) force acting
on the unstable normal mode

VnL(q)

- -1/2
F(t) u,,M 3 =M

(2.18)

The solution of the forced oscillator equation of
motion for the ith stable normal mode, Eq. (2.17), de-
pends on the initial conditions. It is assumed that at the
initial time the stable modes are in thermal equilibrium.
As a result, any physical observable which is a function
of the initial conditions and, in particular, the energy E;,
acquired by the ith stable mode during one period of the
unstable normal mode is a stochastic Gaussian variable.
The same is true also for the energy E, lost by the unsta-
ble normal mode, which is simply given by the sum of all
energies E;. This leads to the conclusion®’ that the prob-
ability P (g;e’)de that a system leaving the barrier re-
gion with energy €' in the unstable mode, will return to
the barrier with an energy between € and €¢+de has a
Gaussian form?’

P (e;e")=P (e—¢')
(e—¢'+8)?
45

Here and in the following € is the dimensionless energy
variable e =BE. Furthermore § is the average energy loss
per period of the unstable normal mode

=(478)" 2exp

(2.19)

SEB<AE)01=gf_°° dt, [ © dt,K(t,— 1, F(t))F(1,) .

(2.20)
The force F(t) [cf. Eq (2.18)] comes from the classical
conservative trajectory for the unstable mode at the bar-

rier energy (e=0). K(t) is the classical dissipation ker-
nel:3738
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N
K()=3 glcos(A;t) .

i=1

(2.21)

Its Laplace transform can also be expressed in terms of
the friction function3®4

1
Rip)y=— F -
P pr—el  (pP—A)

(2.22)

As shown in Refs. 37 and 38 the classical escape rate of a
particle factorizes and can be written as

A
=8 —S Y exp(—BV,) .

2.
o @, 2.23)

The classical depopulation factor Y, is given in terms of
the average dissipated energy as?”3*

ln(l_e—a(f?+1/4))
?+1

= 1 o=
Ya=exp |-~ ] T dr (2.24)
The information about the potential enters the final rate
expression via the well (2) and the barrier (w, ) frequen-

cy of the potential V(q) as well as the barrier height ¥,
(cf. Fig. 1).

III. THE QUANTUM TRANSITION PROBABILITY
AND ENERGY LOSS

A. The transition probability

In the classical theory the depopulation factor is evalu-
ated using the Gaussian transition probability P (g;€’)
that the energy of the unstable mode changes from €’ to €
during one period of motion. In this section we derive a
quantum-mechanical expression for this transition proba-
bility. The basic assumption is that the motion of the un-
stable normal mode is classical and can be approximated
by the zero-order equation of motion, Eq. (2.16). The
stable normal modes are treated quantum mechanically.
Their classical equation of motion is that of a forced os-
cillator. The general quantum expressions for the time-
dependent transition probability from the initial oscilla-
tor state n to the final state m has been derived by Feyn-
man*? and by Schwinger.*> The result for the ith stable
mode is*

W, (t)=W,,i*,,,,‘,(t)

m,«—n,.

nic! gn—m In;
= vi o exp(—w)[L, "
1

n;.!

—m

PR,

(3.1

where n;, =max(m;,n;) and n; . =min(m;,n;); L}(x) is
the generalized Laguerre polynomial and v; is

g iz

i 2
[ are™"Fiy) (3.2)

i

where the time-dependent force starts acting upon the os-
cillator at t=— o and is switched off at time ¢. [Note
that the M ~!/2 term is incorporated in the definition of
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the force, Eq. (2.18), and therefore does not appear in Eq.
(3.2)].

To obtain the quantum-mechanical transition probabil-
ity P(g;€’) for the unstable mode we shall have to make
some further assumptions.

(i) The stable normal modes are statistically indepen-
dent. This assumption is implicit in the classical deriva-
tion®” and is true in the first-order approximation with
respect to the parameters g; when there is no coupling be-
tween different stable modes.

(ii) Energy distribution in all of the stable modes at the
initial time (¢ — — 0 ) is a thermal one, namely,

pn=e "PPi(1—e M) (3.3)
Here the only difference with respect to the classical limit
is the use of the exact quantum distribution function for
the harmonic oscillator instead of the classical.

(iii) The unstable mode can accommodate any amount
of energy that the bath of stable modes can supply and
vice versa. This assumption is actually the most severe
one. It implies neglect of quantization of the energy lev-
els of the unstable normal mode and has been already in-
troduced implicitly by the classical treatment of this
mode. It is justified because we are interested in the tran-
sition probability at energies that are very close to the top
of the barrier. This is the energy interval in which the
density of (resonance) states of the unstable mode is
highest. Classically the density of states diverges at e=0.

(iv) Finally, the force F(t) is independent of the energy

in the unstable mode in an energy interval of ~kyT

around the barrier top (¢=0).273%37:38 Thjs assumption
leads to the transition probability P(e;€’) which is a func-
tion of the energy difference e€—¢’ only, ie.,
P(g;e')=P(e—¢';0). This property of the transition
probability will be fully exploited in Sec. IV. Here we
note that the assumption allows us to use the force for
the conservative trajectory of the unstable mode at the
barrier energy €=0. This asymptotic trajectory starts at
t— — oo at the barrier top, reaches the turning point at
t =0 and returns to the barrier at t — .

The transition probability P(e)=P(g;0) that the unsta-
ble mode acquires energy € during the period of conserva-
tive motion is

m; —n; )BAA,;

N
XTI W (3.4)

i=1

P, -

This expression is obtained by noting that the energy
gained by the unstable mode is equal to the sum of ener-
gies lost by all the stable modes. One must then simply
sum over transition probabilities for all states of the
stable modes, weighted by their initial distribution. Note
that the time dependence of W, myen, has been removed.
The upper limit in Eq. (3.2) for the asymptotic trajectory
tends to infinity.

The next step is to simplify Eq. (3.4) by performing the
summation over all bath states. This is achieved by
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studying the Fourier transform of P(¢)

ﬁ(‘r)=f_oc deexp(ite)P(e) (3.5)
Using Eq. (3.4) we find
_ © o )Wl
B(r)= S [[ npr - (3.6)
{m;}=0{n;}=0i=1

Explicit evaluation of this expression is facilitated by
defining a generating function

G(&,v,x)=(

uM8

E l§(m~n)Wm‘_n n 3.7

This generating function is simplified by using
Schwinger’s result*

i exg'(m—n)W

=exp[(e*—1WIL((e "¢ —1)(e/s—1)v)

Eexp(y)L,?(z) , (3.8)

where the last expression on the right-hand side defines
the variables y and z. Substitution of Eq. (3.8) into Eq.
(3.7) gives

G(&,v,x)=(1—x)exp(y) 3 LAz)x"
n=0

=exp (3.9

Xz
+—
y 1],

where we have used the expression for the generating
function of Laguerre polynomials.**

Inserting Egs. (3.1)-(3.3) into Eq. (3.6), using Eq. (3.9)
and straightforward manipulation we derive a compact
expression for the Fourier transform of the transition
probability function

N
P(r)=]I G(&,vi,x;)

(3.10)
i=1
where
;= —1BAA; (3.10a)
and
x; =exp( —pB#ik;) (3.10b)

Using the result for the generating_ function G(&,v,x) we
can obtain a closed expression for P(1):

—iTBAA —BAr (1—iT)

l][l_

‘Bﬁ}‘i

~ N v,-[l—e ]
P(r)=exp |— 3,

i=1 [1—e

]

However, as will be shown in Sec. IV, what is actually re-
quired for the calculation of the quantum-mechanical es-
cape rate is the function P(7—i/2). For the latter we
derive the following expression
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N v;[cosh(BAL; /2)—cos(TPFL;)]

P(r—i/2)=exp |— 3

i=1

sinh(B#A, /2)

Equation (3.11) is the central result of this section. Later
on we shall express it in terms of the macroscopic param-
eters of the model (i.e., the friction function). In Sec. IV
it will be used to derive the quantum expression for the
escape rate.

B. The quantum energy loss

The result for the generating function [cf. Eq. (3.9)] can
be used to derive analytic expressions for the moments of
the energy dissipated by the unstable mode. The (dimen-
sionless) energy acquired by the ith stable normal mode
per period of the asymptotic trajectory of the unstable
mode is given by

(Ae;)=3 3 Bak(m;—n) )W, _,p, . (3.12)
m, =0n,=0
Using Eq. (3.9) one finds that
aG(§;,v;,x;)
<A€,->=Bﬁ?»,-—§'. =B#iv; . (3.13)
a(ig;) £,=0

The average energy lost by the unstable mode is equal to
the total energy acquired by the system of stable normal
modes. Using the definition of v;, Eq. (3.2), we obtain

N
(Ae)=§2g,«2 (3.14)
i=1

0 i 2
[ dre A"F(t). =5,

which coincides with the classical energy loss [cf. Egs.
(2.20) and (2.21)].

Following a similar reasoning it is straightforward to
derive expressions for the moments { Ae”) and cumulants
(8", ) of the energy acquired by the ith stable mode.
Using the statistical independence of stable modes we ob-
tain the cumulants* of the energy loss of the unstable
mode. As an example we present below the expressions
for the second- (dispersion) and the third-order cumu-
lants

N
(8%)= ((Ae?)—(Ae)?)

i=1

N
=S (B#iA,Pv;coth(BA,2) (3.15)
i=1
and
N
(8%) =T ((Ae}) —3(Ae})(Ag;) +(Ag;)?)
i=1
N
= 2 (Bﬁki )3V,‘ . (3.16)

i=1

Note that the third-order cumulant as well as the leading
quantum correction to the dispersion are of order #°. In
the limit #—0 the expression for the dispersion reduces
to the classical result (828)c]=28. Furthermore, since
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=exp[—R(7)]. (3.11)

f

coth(x)>1 the quantum dispersion is greater than the
classical result. The fact that the third-order (and
higher-order) cumulants do not vanish demonstrates that
in the quantum case the transition probability function
P(¢) is no longer Gaussian.*°

C. The continuum limit

Thus far, the transition probability, its Fourier trans-
form, and the moments of dissipated energy have been
given in terms of the parameters of the normal modes.
These expressions are appropriate if the bath consists of a
finite number of modes or, equivalently, that their spec-
trum is discrete. Below we derive closed expressions for
these quantities in terms of parameters of the continuum
model, namely, the Laplace transforms of the friction
function 7(w) or, equivalently, the classical dissipation
kernel K (w). For this purpose we introduce the spectral
function I(A) of the bath of stable normal modes
N gi2

_T
=723

2 [8(A—A,)—8(A+A,)] .

(3.17)

i=1 "

This function provides a complete description (within the
first-order perturbation approximation) of the dissipative
properties of the bath of stable modes, to which the un-
stable mode is linearly coupled. In this respect it is
analogous to the spectral density J(w) of the bath to
which the system coordinate is coupled. As we shall see
the dissipative properties of the two baths can differ con-
siderably.

The spectral function I(A) can be expressed in terms of
the parameters of the continuum model. For this pur-
pose we use the integral representation of the 8 function
together with the definition of the classical dissipation
kernel K(?), Eq. (2.21), to recast Eq. (3.17) in the form

— i * i L) ’
IM==2 [ die™ [ drKir) .

Since K(t) is an even function of time, the relaxation
function \l/(t)'—‘f(')dt’K(t') is an odd function of time.
As a result we obtain

1(x)=1m[f0°°dte"“\1/(t)]= Re[R(iM)]  (3.18)

1
A

where Re and Im denote the real and imaginary part of
the function, respectively. The expression for the R (p)
function in terms of the parameters of the continuum
model has been given in Sec. II [cf. Eq. (2.22)]. It now
remains to express the relevant physical quantities
(Fourier transform of the transition probability, the aver-
age energy loss, etc.) in terms of the spectral function
I(A).
From Eq. (3.11) it follows that
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- 1 I(L)f (LX) cosh(B#HA /2)— cos(TBHAN)]
RN=7 2 [ dn sink (B#ir/2)
_B [~ an Re[f(ik)]f(x)[co§h(ﬁm/2)~cos<rﬁm)] (3.19)
27 7~ (BAL)sinh(B#A /2)
—
where where P (7—i /2) is the classical Gaussian kernel:?’
f= ’f_‘” dte"“F(z)!Z:f(—m. (3.192) Py(r—i/2)=exp[ —8(7"+{)] . (3.24)

In a similar fashion one derives results for the average en-
ergy loss of the unstable mode 8§ and for the second-
(dispersion) and the third-order cumulants [cf. Egs.
(3.14)-(3.16)]

=£ ® 1
8=-—J " dARe[R(MIf () (3.20a)

<528)=2% I 7 dnBhircoth(BaA/2)Re[ R (iM1F (1)
(3.200)
B r~ .
(8%e)=-—[" dMBALR[RGMIF(A) . (3.20¢)

These results, combined with the expression for the La-
place transform of the classical dissipation kernel, Eq.
(2.22), constitute the solution of the problem. It should
be pointed out that the classical dissipation kernel de-
pends only on the barrier frequency and the friction func-
tion. The detailed form of the potential enters the final
results via the Fourier transform of the zero-order force,
Eq. (3.19a). The force F(t) depends explicitly upon the
classical asymptotic trajectory. For certain potentials
(e.g., the cubic potential to be studied in Sec. VI) the ana-
lytic form of this trajectory is known, and a closed ex-
pression for the f(A) function can be derived.

The third-order cumulant (8%) is a measure of the
skewedness (asymmetry) of the quantum transition prob-
ability kernel. This skewedness is a quantum effect. The
classical transition probability is symmetric. To em-
phasize the quantum nature of the skewedness we shall
write it in the form

<a3e>=<3ﬁx0)2—% [ 7 /Ao R[R(MIF(R)

(3.21)

where A is a frequency scale, which we shall take to be
the unstable normal mode frequency. The skewedness is
closely related to the lowest-order quantum correction to
the dispersion (8% ):

(8% ) =28+ 1(8%) . (3.22)

In a similar manner we obtain the lowest-order quantum
correction to the Fourier transform of the transition
probability kernel

P(r—i/2)

~P(r=i /2)exp | 12(8%) (P+ 12

(3.23)

Explicit results for these quantities for the particular case
of a cubic potential with Ohmic dissipation are presented
in Sec. VL.

IV. THE QUANTUM-MECHANICAL ESCAPE RATE

The starting point for the evaluation of the quantum-
mechanical expression for the escape rate is a kinetic
equation for time-dependent energy distribution function
of the unstable mode 7i(g;t). As already mentioned, this
mode is treated (semi) classically unlike the stable modes,
which are treated quantum mechanically. We denote by
fi(e;t) the nonstationary probability to find the system
with a (dimensionless) energy between € and € +de in the
unstable mode at the barrier turning point. The kinetic
equation for 7i(g;t) is

dri(eg;t)

i f de[wee )R (") (€’;t)

—w(e';e)R(e)A(e;t)]

T(e) _

- 2nhB
In this equation w(e;e’) is the transition rate between the
states with energy €’ and €. It is related to the transition
probability P(e;e’) determined in Sec. III via
w(e;e’)=(1/2mAPB)P(g;e'). The transition rates satisfy
the detailed balance condition. R(e) is the quantum-

mechanical reflection coefficient for the parabolic barrier
of the unstable mode

R(e)=1—T(e)=[1+exp(ae)] !
with
a=2rw /BAAg=d,/X

f(e;t) . (4.1)

(4.2)

where @, is the first Matsubara frequency.

A particle at the barrier turning point may either be
transmitted through the barrier with a rate T'(g)/27#f3 or
it may be reflected. The transmission is taken into ac-
count by the sink term in Eq. (4.1). The reflected particle
undergoes an energy redistribution process which is de-
scribed by the integral term in the kinetic equation. This
term is simply the continuum form of the Pauli master
equation and implies physically that the phase of the par-
ticle is destroyed during the excursion in the well. The
use of a continuous energy which implies the neglect
of energy quantization is consistent with the (semi) classi-
cal treatment of the unstable mode. Note that
(1/72m#HB)A(e;t)=f(e;t) is the flux of particles per unit
(dimensionless) energy incident on the barrier and, once
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again, implies semiclassical treatment of the unstable
mode. The stationary energy distribution function for
the unstable mode n(g) is given by the steady-state solu-
tion of the kinetic equation, Eq. (4.1):

n(e)= [ “ de'P(e;e)R(en(e)) . .3)
This integral equation is formally identical to the one
suggested by Mel’nikov.?” However, the physical mean-
ing as well as the method of calculation of the transition
probability P(e;e’) is different. Equation (4.3) refers to
the unstable mode, while the Mel’nikov original equation
was for the system coordinate. This has a number of im-
plications, both qualitative and quantitative.

(i) The most important qualitative aspect is that in
Mel’'nikov’s original theory?’ the use of the quantum-
mechanical reflection (transmission) coefficient, Eq. (4.2)
for the system coordinate is an approximation which
neglects the effect of dissipation on the tunneling.?® How
good this approximation is is not clear a priori. In this
treatment we are dealing with the dynamics of the unsta-
ble mode. Consequently, these coefficients are exact as
long as the harmonic approximation for the barrier is val-
id.2! In other words, we neglect the nonlinearity of the
barrier but we account for the effect of the thermal bath
upon the tunneling. From this discussion, it is clear that
the treatment will break down when deviations from
linearity become important. This is the case for tempera-
tures substantially below the crossover temperature T,
between tunneling and thermal activation.'®!” However
at such low temperatures the escape is dominated by tun-
neling close to the bottom of the well, where the devia-
tion of the energy distribution function from the equilib-
rium one (depopulation) is not important.

(i) The most important quantitative difference is that
the barrier frequency for the unstable mode A, may be
substantially smaller than the bare barrier frequency for
the system coordinate w,.*' It is A, which appears in the
expression for the reflection (transmission) coefficient of
the barrier, Eq. (4.2). This leads to reduction of the es-
cape rate and tends to make the escape dynamics more
classical.

(ii1) Finally, one has to determine the transition proba-
bility P(e;e’). Mel’nikov?’ has employed a Gaussian ker-
nel, which is appropriate only in the classical limit.*® In
Section III we derived an exact expression for the quan-
tum transition probability kernel.

The quantum-mechanical escape rate is given by the
steady-state total probability flux of particles out of the
well:

_ 1 © _ ©
F—wade T(en(e)= [~ deT(e)f(e).  @4.4)

Determination of the rate reduces to solving the integral
equation, Eq. (4.3), for n(e). The appropriate boundary
condition is obtained by noting that for energies below
the barrier top the energy distribution function n(g) ap-
proaches the equilibrium one:

Z*({yi))

Z, (4.5)

Reqle)= exp(—BV,—e)=Cexp(—¢) .
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Z, is the canonical quantum partition function for the
particles in the well. It is evaluated by replacing the
Hamiltonian of the system, Eq. (2.3), by a harmonic one
near the bottom of the well. Diagonalization of the har-
monic Hamiltonian leads to a familiar expression for the
partition function:

N
Z,=[2sinh(B#iAy/2)] ' [2sinh(B#A, /2)] !

i=1

(4.6)

where A; (i=0,1,2,...,N) are the normal mode fre-
quencies near the bottom of the well. The partition func-
tion Z*({y;}) is associated with the stable barrier modes
and is given by an analogous expression

N
Z*({y;})= ][ [2sinh(B#A, /2)]"" .

i=1

4.7)

The normalization constant C defined in Eq. (4.5) can be
recast in the form

c= i—gsin(BﬁAO/Z E exp(—BV,) 4.8)
b

where Z is defined as

__ o, sinh(B#iAy/2) N sinh(B#A,;/2) 4.9)

T Q sin(Bfirg/2) [ sinh(B#A,; /2) ‘
This factor can be rewritten in an equivalent form'%2%(®
in terms of the friction function 7(p):

> [VP+oite,P(@,)
== & 7@, )l 4.10)

n= [0l +0i+e,7(@®,)]

with &, =2mn /3% being the Matsubara frequencies.

The integral equation, Eq. (4.3), has been solved by
Mel’nikov?’ for the particular case of the Gaussian kernel
and by Larkin and Ovchinnikov? in the general case via
application of the Wiener-Hopf method. An alternative
solution is given in the appendix. As already em-
phasized, an important point in the solution?’ is that the
transition probability kernel P(g;€’) is a function of the
energy difference (e—e’) only, so that Eq. (4.3) is a
convolution-type integral equation. The final result for
the quantum-mechanical escape rate I has the form

 4msin(Bhirg/2)
BAAsin(BAirg/2)
2w

Xexp

o In[1—-P(1—i/2)]
X[ dr cosh(7B#iky)—cos(BAirg/2) | -

(4.11)

A similar result employing the classical Gaussian transi-
tion probability kernel, (3.24), has been derived indepen-
dently by Hanggi, Talkner, and Borkovec.* The rate ex-
pression can be recast in the more illuminating form

Q Ao

=———EYexp(—BV,)

27 o (4.12)
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where Y is the quantum-mechanical depopulation fac-
30
tor:

Bfirgsin(Bfiry/2)
2w

Y =exp

w In[1—P(r—i/2)]
x [ dr cosh(7B#ikg) —cos(Bhiry/2)

. (4.13)

The quantum-mechanical rate expression, Eq. (4.12), is
the central result of this section. It is valid in what may
be called the activated tunneling regime, which corre-
sponds to temperatures above the crossover temperature
T,.'®!" In this regime the escape is dominated by the en-
ergy region close to the top of the potential barrier. This
accounts for the appearance of the Arrhenius factor in
Eq. (4.12).

The final expression for the quantum escape rate fac-
torizes into a product of a few terms. The first term is
the classical TST result in the limit of vanishing friction.
The second term is the Grote-Hynes*' factor, which is a
generalization of the intermediate friction Kramers re-
sult! to the case of non-Markovian dissipation. The third
term is the equilibrium quantum correction and accounts
for the quantum-mechanical transparency of the barrier.
It has been derived by Wolynes'® and others.!671%:20(®)
Finally, the fourth term in the expression for the rate ac-
counts for the depopulation due to the weak interaction
of the unstable mode with the stable ones and leads to a
substantial reduction of the rate in this limit. This term
approaches unity exponentially fast with increasing in-
teraction between the unstable mode and the stable nor-
mal modes.

Summarizing, the rate expression, Eq. (4.12), reduces
to the known results in appropriate limits and contains
them as particular cases. In this sense it constitutes a
solution of the quantum Kramers turnover problem for
temperatures 7 > T,. Extension to temperatures below
the crossover is possible and is outlined in Sec. VII. In
Sec. V we shall use the explicit expression for the escape
rate to determine the leading quantum correction to the
classical result.

V. QUANTUM-MECHANICAL CORRECTION
TO THE DEPOPULATION FACTOR

In this section we determine the first-order quantum-
mechanical correction to the depopulation factor Y.
Qualitatively quantum mechanics affects the depopula-
tion factor by modifying both the well and the barrier dy-
namics.

(i) Modification of the well dynamics expresses itself in
the broadening and skewing of the transition probability
kernel, P(g;e’), compared with the classical one.

(i1) The barrier dynamics is modified by the quantum
tunneling through the barrier. In the parabolic barrier
approximation it is taken into account via the transmis-
sion (reflection) coefficients for the unstable mode barrier.

It should be pointed out that quantum corrections to
the rate enter also via the equilibrium factor = and have
been extensively studied by Wolynes!® and others.!6™!°
We shall focus our attention on quantum corrections to
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the depopulation factor, which reflects the nonequilibri-
um well dynamics. The quantum effects will be analyzed
by employing the high-temperature expansion for the
depopulation factor Y in terms of the dimensionless pa-
rameter 6,=p#A, The general expression for Y, Eq.
(4.13), can be written as

Y=exp [f_"" d1f (857 f4(60;7) | =exp[Q(6,)]  (5.1)
where
f10g;7)=In[1—P(r—i/2)], (5.2a)
6,sin(6,/2)
FalOgm)=—— i— (5.2b)

27 cosh(16,)—cos(6y/2) °

The classical limit corresponds to 6,—0. The leading
quantum correction is obtained by keeping terms up to
order 63 in the expansion. Straightforward manipula-
tions give
YT=Yy{1+1[Q7(0)+Q5(0)]63+0(6})} . (5.3)

Here Y, is the classical depopulation factor, Eq. (2.24),
while

" — 1 *® B .
o} (O)——Ef_wdﬂn[l—Pc](r—t/Z)] (5.4a)
and
G P (t—i/2)
Y(0)=——— dr(r?+1)————— | (5.4b)
2 127 f—oo B Y 1=Py(r—i/2)

P_(t—i/2) is the Fourier transform of the classical tran-
sition probability, Eq. (3.24), and the parameter G is
defined as

_ (&%) _

G
0%

B = .
o7 dMA/APR[RGMIF(A) . (5.5)

The first term Q' (0) gives the tunneling correction to
the depopulation factor and is positive. The second term
Q75 (0) is associated with the quantum correction to the
transition probability kernel and is negative. It follows
that the transparency of the barrier and the quantum
modification of the well dynamics (broadening and
skewedness of the transition probability kernel) have op-
posite effects on the escape rate. The former leads to an
increase of the rate with respect to the classical value,
while the latter leads to a reduction.

To evaluate the leading quantum correction explicitly
we substitute the Fourier transform of the classical dissi-
pation kernel, Eq. (3.24) into Egs. (5.4a) and (5.4b) lead-
ing to

1

Qi'(0)=We_5"‘<b(e“5/“,%,1) (5.6a)
T
and
vey—=__ G —5/4
O)=——
02 (0= L5
X |@(e ™84 4 1)+ F (e T84, 3,1) (5.6b)
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The function ®(z,s,v) is defined as (Ref. 47, Sec. 1.11)
P(z,5,0)= Y (v+n) 2"
n=0

The limit of vanishingly small dissipation energy (8 <<1)
can be studied using the expansion [Ref. 47, Form.
1.11(8)]
— - — . s—1 < — y_n_
e Y®(e Vs, 1)=T(1—s)y +n§0§(s n)n!
with I'(s) and &(s) being the gamma function and the
Riemann’s zeta function, respectively. We find

3

Q”(O)EQ','(O)'FQ'Z'(O):I 2

—2—1~/2(1—G/28)8_”2
T

—5+0(8'?) . (5.7)

This result leads to two conclusions.

(i) The sign of the quantum correction in the weak dis-
sipation limit &<1 depends upon the ratio
G /286=(8%) /2863 Using Egs. (3.20a) and (3.21) we
find that

G _ I 7 drA/n Re[R(M)1f(R)

28 2" dARe[R(MIF(M)

(5.8)

If the product Re[K(iA)]f(A) decays sufficiently fast
then the ratio is less than unity and the quantum correc-
tion leads to an increase of the depopulation factor. Note
though that, as pointed out by Mel’nikov and Siit3*! and
by Griff et al.,” the first quantum correction to the
depopulation factor can be a nonmonotonic function of
the dissipation strength.

(ii) It follows from Eq. (5.7) that the quantum correc
tion has a singular behavior in the limit of vanishing dis-
sipation (6—0). This nonanalyticity shows that the sim-
ple perturbation expansion (5.3) is incorrect in this limit.
The leading quantum correction to the depopulation fac-
tor in this limit is obtained by using the result of Sec. III
for the Fourier transform of the transition probability
kernel, Egs. (3.23) and (3.24). In the limit of vanishing
dissipation (6 —0)

In[1—P(r—i/2)]=In(8)+h(8;7) , (5.9)

where h (8;7) is analytic for §—0. Using the tabular in-
tegral

0ysin(60,/2)

- )
= J 7 dr{cosh(r8,)—cos(8,/2)] ' =1———

27

one finds for the leading term in the depopulation factor
a result obtained previously in Ref. 48.

1=6y/2m

As noted by Mel'nikov?’ and others?®3%4® in this limit
the leading quantum correction is of the order # rather
than ~#% It follows from Eq. (5.10) that the overall
effect is an increase of the depopulation factor relative to
its classical value.

It is interesting to compare this result with previous
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treatments of the quantum Kramers problem in the ex-
tremely underdamped limit?" ~*

I—Bﬁwb /2

Yy =8 (5.11)

The difference between this result and Eq. (5.10) is that in
the latter the renormalized frequency of the barrier re-
places the bare one. Since Ay=<w, it implies that the
value of the depopulation factor is smaller than predicted
by the previous theories. This is not surprising. As al-
ready mentioned in Sec. IV the unstable mode barrier is
thicker than that for the system coordinate leading to a
more classical behavior. It is also important to stress
that Eq. (5.10) is valid in the limit § <<1. For the non-
Markovian dissipation this limit may be realized also
when the damping strength is very large.>>?® In this case
the prediction of Egs. (5.10) and (5.11) will differ consid-
erably.

VI. THE CUBIC POTENTIAL WITH OHMIC
DISSIPATION

A. Preliminaries

As a practical application we consider in this section
the case of the cubic potential with Ohmic (Markovian)
dissipation. This choice is motivated by its extensive use
as an approximation to the tilted cosine (washboard) po-
tential for the RSJ with a biasing current close to the crit-
ical value.”® It also has a few simplifying technical
features, e.g., analyticity of the potential and the fact that
a closed expression is known for the asymptotic trajecto-
ry.

We limit ourselves to the case of the Ohmic (Markovi-
an) dissipation y(z)=2y8(t) since it suffices for illustra-
tion of the main physical effects while avoiding unneces-
sary technical complications. This choice also allows us
to make a direct comparison with the theory of
Mel’nikov and Meshkov?* in the classical limit, and Lar-
kin and Ovchinnikov’® in the quantum case.

The cubic potential (cf. Fig. 1) has the form

V(g)=—1iMolq*(1+q/q,)

=—2V(q/q9,)*1+q/q,) (6.1)

where V=2 Mwjq} is the barrier height, and the origin
of the coordinates is at the top of the barrier. The bare
barrier frequency is w, and —gq, is the coordinate of the
second turning point. The asymptotic trajectory that
starts at t = — oo at the barrier top, reaches the turning
point —gq, at t =0, and returns to the barrier top at
t = oo is well known:

gas(t)=q(t)=—gosechX(w,t/2) . (6.2)

From the general discussion in Sec. II it follows that the
zeroth-order equation of motion for the unstable mode
can be derived from a Hamiltonian with the effective po-

tential V g(p),
Vealp)=—1A3p*1+p/py) . (6.3)

Here
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(6.4)

and u,, is the projection of the system coordinate on the
unstable normal mode (cf. Sec. II). The time-dependent
zero-order force F(t) acting on the unstable mode is
given by [cf. Egs. (2.18) and (6.3)]

F(t)=23A3[p*(1)/po] (6.5)

with p(t) being the asymptotic trajectory for the effective
potential. Since V. 4(p) is also a cubic potential the
asymptotic trajectory for the unstable mode is given by

Pas 1) =p(1)=—posech?(Agt /2) . (6.6)

A closed analytic expression for the Fourier transform of
the force can be derived leading to

2

A
0 V, 6.7)

y(p2+1)

- 2
fM=216m sinh(7y)

Upo D

where y =A/A,.

We shall first consider the classical limit. The transi-
tion probability kernel P (g;€’) in this case is Gaussian
and the only physical quantity that has to be evaluated is
the average dissipated energy 6 [cf. Eq. (2.20)]. It should
be emphasized that the classical dissipation kernel K (¢) is
nonlocal in time even in the case of Ohmic dissipation.
Furthermore, K(t) has a cusp at t =0. The Ohmic dissi-
pation kernel is given by

A — —
1 A lel Aqltl
-——e ! —e 0

=1
Ko(t)—‘z )\'0

(6.8)

The barrier frequency for the unstable mode A is related
to the damping parameter y by

2 172
Ap= J;— +ol| - 12’— (6.92)
and
2 172
A= J;—+w§ +12”— . (6.9b)

For future use we write an explicit expression for the ra-
tiO ,u = )\'l /KO:

2
psxl/x0=1+—2?;)—2[1+(1+4w§/y2)“2]. (6.10)
b

In the extremely underdamped and the overdamped lim-
its this expression reduces to

pu=1l+y/0, (y<<o,) (6.10a)
and
2
p=L- (14203 /7% (y>>wp) . (6.10b)
@p

The spectral function for the bath of stable modes I(A) is
given in this case by
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1 1

= -
M+ A2+

Re[R,(il)]= -

1

(6.11)

The projection of the system coordinate on the unstable
normal mode u,, is

ul=(1+0)"'=(1+y/2x) " . (6.12)

Finally, the condition for the applicability of the pertur-
bative approach’” is 0 =y /24, < 1.

B. Cumulants of the energy loss

Substitution of Egs. (6.7) and (6.11) into Eq. (3.20a)
leads to the following result for the average energy loss of
the unstable mode

asa<m=-2—‘7}(1+1/p)3(y2~1)M4(u)BV0
=A,(n)BYV, . (6.13)
The integral M,, (u) is defined as
_ = dyy™y*+1)
M, (u= (6.14
it f~w (y2+u2)sinh¥(7y ) )
and satisfies the recursion relation
2
M2n+2(y'):;(32n 12T By, )~ M, (1) (6.15)

where B,, is the Bernoulli number. This recursion rela-
tion allows us to evaluate M,,(u) easily provided that
(say) M (p) is known. Calculation of the integral M, (u)
is an exercise in contour integration. The result is

() —1— ——

2
M =2 [ 22
2p

T |5 6

(6.16)

where

FInl(p) _ & 1

8;12 n=0 (,u+n)2

is the so-called trigamma function (Ref. 49, Sec. 6.4).
Analogously, the third-order cumulant of the energy loss
of the unstable mode is expressed in terms of M¢(u)

27
(8%)= T”r 1+ 1/ (2 — 1M (1) (BAiry) BV,

I

Y'(p)

=A4(p)(BAL) BV, (6.17)

with

=4 _p

It is now possible to study the behavior of the average en-
ergy loss and of the third cumulant in the overdamped
(u>>1) and the extremely underdamped (z—17) limits.
Using the asymptotic expansion for the trigamma func-
tion ¥'(u) [Ref. 49, Form 6.4(12)] we get
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A=~ [1+3+ L+ Lioany |, ©i12
35 PR
27 3 ,
~— — . 6.18
A= 5 [14=+0(1/) (6.18b)

In the extremely underdamped limit one has to employ
the series expansion of ¥'(u) around =1 [Ref. 49, Form.
6.4(9)] leading to the results

A,(y)zg—(ys—_—l—){1+[60§(2)—101](u—1)}

+0((u—1)%), (6.19a)
Ay~ 38 7‘” [1— 42§(2)—9§—1 (p—1)
+0((u—1)%) .
(6.19b)

It follows that the ratio (&%) /863 is a slowly varying
function of the damping increasing monotonically from 2
to unity as the damping varies in the interval 0 <y < .
From Eq. (5.7) we thus find that in the limit of weak dissi-
pation the leading quantum correction is positive.

C. The classical limit

As already pointed out in the classical limit the present
theory reduces to that of PGH.?"3® The classical depo-
pulation factor, Eq. (2.24) is only a function of the aver-
age energy loss 8. Results of the preceding subsection al-
low us as a byproduct to compare the results for the clas-
sical escape rate predicted by the theories of Grabert and
co-workers®”*® and Mel’'nikov and Meshkov** (MM). In
the particular case of Ohmic dissipation the rate expres-
sions formally differ by the prescription for the evalua-
tion of the average dissipated energy. The expression for
the average energy loss used by MM is?”%°

Sam=B(AEyn ) =BMy [ * dilg(n)]’== (um BV,

(6.20)

where ¢(¢) is the asymptotic trajectory velocity for the
system coordinate in the absence of dissipation. The ra-
tio of the average energy loss of the unstable miode to the
energy loss of the system coordinate 8y, is thus given by

& _ 15m(u+1)*M,(p)

(6.21)
8MM 16[1.5/2
In the extremely underdamped limit (z—1)
b iseM (D=1 (6.21a)

5MM

and the two results coincide. In the overdamped limit
(u>>1)

157 3/2

5 3
b ~ 0. 6.21b
16 1 MaRI=00 ©210)
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This ratio of the average energy losses is exhibited in
Fig. 2 for the whole range of values of the u parameter.
Inspection of the figure shows that the energy loss 8 of
the unstable mode is systematically smaller than that for
the system coordinate. This result together with the lim-
iting expressions for the classical depopulation factor,?’

Y =8[1+£(1/2)(8/m)1?] (8<<1),
Yy=~1—(4/78)%exp(—56/4) (8>1),
enables a comparison of the classical escape rates predict-

ed by the two methods. In the extremely underdamped
limit (6 <<1)

| _ Y b
Tum Ya(MM) 8y

=1

so that the rate predicted by the PGH theory is smaller
than the MM result. Furthermore, the turnover in the
PGH theory is predicted at larger values of the damping.

D. The quantum limit

We now turn to the analysis of the quantum expression
for the depopulation factor, Eq. (4.13). Combining the
general expression for the Fourier transform of the dissi-
pation kernel, Egs. (3.11) and (3.19) with Egs. (6.7), (6.11),
and (6.13) we can recast it in the form

P(r—i/2)=exp[—R(7)] (6.22)
where
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FIG. 2. The ratio of the average energy losses for the unsta-
ble mode & and for the system coordinate &y as a function of
damping strength. The results are for a model of a cubic poten-
tial with Ohmic (Markovian) dissipation.
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R(7)=R(1,u;6,)
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y4(y2+ 1)
(y2+pu?)sinh*(my)
cosh(8yy /2)—cos(10yy )

(6yy 72)sinh(6yy /2)

I(1;60p,n)= fowdy

(6.22b)

As a result the expression for the quantum depopulation
factor is given in the case of cubic potential with Ohmic
dissipation by

M (7,15600) /M 4 ()]}

=ﬂ£[w0 (14 1/0)% @2 — DI(7,1;6,)
I(1,1;6,)
=6(u)————— 6.22
(u) M. () (6.22a)
and the integral I(7,u;0,) is defined as
J
6,sin(6,/2) nf{l—exp[ —6(u
YTo=Tolu)=exp g > f

Its evaluation involves a double integration, which can be
performed numerically using standard integration pro-
cedures [the integrands in Egs. (6.22b) and (6.23) do not
contain singularities].

In Fig. 3 we compare the quantum depopulation factor
(solid line) with the classical one, Eq. (2.24) (dashed line),
for a model potential with BV,=10 and B#iw, =2.5. The
following observations are noteworthy.

(i) The quantum depopulation factor is substantially
larger than the classical one.

(ii) Both curves are linear in the low damping domain.
The classical slope is unity (as is well known from
Kramers’s original work!), while the quantum slope is
substantially smaller and in close agreement with the
theoretical prediction ~0.6 [cf. Eq. (5.10)].

(iii) The quantum and the classical factors converge at
y/w,~0.1. This demonstrates that a relatively weak
dissipation is sufficient to suppress the quantum effects on
the depopulation.

In addition to comparing the depopulation factor it is
of interest to compare the effect of the quantum well dy-
namics as reflected in the transition probability kernel.
The dash-dotted line in Fig. 3 is obtained by replacing the

ingoC\(‘)

0.

-0.

—2_5j— T T T T
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, .
oG (v /W)

FIG. 3. The depopulation factor Y as a function of the
damping parameter for the same model with SV,=10. The
solid line represents the quantum result for B#iw,=2.5. The
dashed line represents the classical result. The dash-dotted line
corresponds to using the classical transition probability kernel
in the quantum expression for the depopulation factor.

(6.23)

cosh(760,)—cos(6,/2)

f

quantum transition probability kernel, Eq. (6.22), with
the classical one P (7—i/2) [cf. Eq. (3.24)] in the expres-
sion for the quantum depopulation factor, Eq. (6.23).%
We find that this “quasiclassical” approximation is quite
reasonable. It is notable though that the quantum result
is somewhat lower, reflecting he skewedness of the kernel
which dominates over the quantum broadening, leading
to a net reduction.

The quantum Kramers turnover for the cubic potential
with Ohmic dissipation is presented in Fig. 4, on a loga-
rithmic scale. The dashed line is the classical result, de-
rived from PGH theory. The solid lines denoted (a) and
(b) are for the values of Bfiw, =2.5 and 1.0, respectively.
The dimensionless barrier height is BV,=10. The quan-
tum enhancement of the rate is evident, although it
doesn’t take too high a temperature to substantially
suppress the quantum effects. The turnover occurs at
nearly the same values of the damping in all cases. A
blown up view of the turnover region is shown in Fig. 5.
We find that the quantum turnover is at values of the
damping parameter which are only slightly lower than
the classical.

logw(r/r*rsr)
0.5

f
2.5 +———T— T T L
-4

-3 -2 -1 ) 1
‘Og1o<7/wb>

FIG. 4. The Kramers turnover on a log-log scale. The rates
are normalized by the classical TST value in the limit of vanish-
ing friction: I1gr=(Q/2m)exp(—BV,). The dashed line
represents the classical escape rate. Curve a is the quantum es-
cape rate for Bfiw,=2.5; curve b is the same for Bfiw, =1.0.
The (dimensionless) barrier height for all curves is BV, =10.
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FIG. 5. A magnified plot of the turnover region on a linear
scale. The input data are the same as for Fig. 4.

VII. DISCUSSION

A new expression has been derived for the quantum-
mechanical decay rate of a metastable state. The result is
general, applicable for the whole range of damping
strengths and to non-Markovian dissipation. The deriva-
tion is based on the following new results and techniques.

1. The well dynamics leading to the redistribution of
energy in the unstable normal mode have been treated
systematically. The transition probability kernel was de-
rived from the quantum forced oscillator solution for the
first-order perturbation theory equations of motion for
the stable modes.

2. The quantum transition probability kernel was
shown to be broadened and skewed compared to the clas-
sical one. Cumulants of the energy loss for the unstable
normal mode have been explicitly evaluated. The classi-
cal and the quantum average energy loss are identical.
The quantum dispersion is larger than the classical. The
third-order cumulant is negative.

3. The continuum limit of the kernel was obtained by
defining a new spectral function for the bath of stable
normal modes. This function differs qualitatively from
the standard spectral density function J(w) since it de-
pends also on the specific form of the potential of the sys-
tem.

4. The quantum rate expression was shown to factor-
ize into a product of four terms. The nonequilibrium well
and barrier dynamics is reflected by the quantum depopu-
lation factor. The other three factors have been derived
previously. The rate expression reduces to the known re-
sults for the escape rate, in the appropriate limits.

5. The depopulation factor is dependent on the barrier
dynamics as well. In the presence of dissipation, the un-
stable mode barrier is broader (more classical) than the
system coordinate barrier. As a result tunneling is ham-
pered and the depopulation factor is smaller®® than pre-
dicted by previous theories,?”?%3? in which the influence
of dissipation on the tunneling was neglected.

6. The first-order quantum correction to the depopula-
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tion factor was shown to have two main contributions.
Tunneling as well as the quantum broadening of the tran-
sition probability kernel lead to an increase. On the other
hand, the skewedness leads to a preference for transitions
to lower energies, which causes a reduction of the depo-
pulation factor.

7. An application of the theory has been illustrated on
the cubic potential with Ohmic dissipation. In this case,
the quantum depopulation factor is larger than the classi-
cal one. The quantum turnover occurs at lower values of
the damping.

The theory presented in this paper is based on a num-
ber of assumptions and approximations which we list
below.

A. The metastability assumption BV,>>1. This re-
quirement is a standard one and assures exponential de-
cay kinetics (so that the escape rate is well defined) and
thermal equilibrium at unstable mode energies sufficiently
lower than the barrier energy.

B. Classical treatment of the unstable mode. Unlike
the stable normal modes, which are handled quantum
mechanically, this classical approximation ignores energy
quantization in the unstable mode. Justification of this
important simplification is provided in Secs. III and IV.

C. Perturbative treatment of the nonlinear part of the
potential. Here we follow the procedure originally sug-
gested by Grabert.’” The small parameter is the devia-
tion of the unstable mode from the system coordinate.
Discussion of this approximation may be found in Ref.
38.

D. Description of the well dynamics in terms of the
master equation. The only physical assumption which
underlies the derivation of this equation from the exact
generalized master equation is the complete loss of coher-
ence (phase) during the particle excursion within the well.
Since the period of (conservative) motion diverges for the
energy at the barrier top weak coupling to the bath of
stable modes will be sufficient to destroy (randomize) the
phase completely. It is more general than the diffusion
equation,’>2>28 which is derived from the master equa-
tion by keeping the first two terms in the Kramers-Moyal
expansion.

E. Parabolic barrier approximation for the tunneling
probability. Derivation of the quantum escape rate ex-
pression in Sec. IV is based on the assumption that the es-
cape is dominated by tunneling close to the top of the
barrier. This assumption justifies the use of the parabolic
barrier approximation and is valid for temperatures
greater than T,. The rate expression is therefore valid
above the crossover temperature.

F. Extrapolation of the lower integration limit in eval-
uation of the flux to — o. The usual justification?’ of this
procedure is based on the metastability condition
BVy>>1. For the transmission coefficient of parabolic
barrier this leads to the divergence of the rate expression
at T. The divergence is therefore not a physical one.

A number of possible extensions and applications of
the theory seem possible.

(i) The restriction to temperatures above T, may be re-
moved. For temperatures slightly below 7'; one can em-
ploy the Affleck method.?? Expansion of the action in the
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transmission coefficient to the second order in energy re-
moves, as is well known,'%!"23 the divergence in the
Wolynes equilibrium factor =. It will also modify the
steady-state energy distribution function as derived from
the integral equation. At very low temperatures the well
dynamics is irrelevant, since the escape occurs in an ener-
gy region deep within the well, where thermal equilibri-
um prevails. The depopulation factor is consequently
equal to unity, and one remains with the low-temperature
equilibrium results for the rate.!s!”

(i) The example treated explicitly was limited to Ohm-
ic dissipation. The theory has yet to be applied to a non-
Markovian bath. Investigation of the validity domain of
the multidimensional TST limit should prove interesting,
especially for the strong damping limit where the pertur-
bation expansion is still justified.

(iii) The theory is readily extended to a double well po-
tential following a procedure suggested by Mel'nikov.?’

(iv) The results of this paper are based on the lowest-
order perturbation theory equations of motion for the
normal modes. Systematic improvement is possible in
principle, by keeping higher-order terms in the expansion
of the nonlinear part of the potential. As an example,
one can use the first-order equation of motion for the un-
stable mode, and the second-order equation of motion for
the stable ones, retaining however the assumption of
decoupled stable modes (keeping only the diagonal terms
in the expansion).

(v) Present experimental techniques allow control of
the damping in measurement of the decay rate of the zero
voltage state in current biased RSJ.!° The Kramers turn-
over has been reportedly observed recently.'”® We be-
lieve that the present theory will be of use in analysis and
interpretation of these results.
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APPENDIX: SOLUTION OF THE INTEGRAL EQUATION

In this appendix we present a solution of the integral
equation, Eq. (4.3). Defining the  function
N(e)=R(e)n(e) the integral equation can be written in
the form

[1+explae)]N(e)= [~ de’P(e—eN(e') . (A1)

The two-sided Laplace transformation (Fourier transfor-
mation with imaginary argument)

Niis)= [ * de N(e)exp(—se), (A2a)
N(a)=L. P s Nis)exp(se) (A2b)
2mi Y z—iw
allows us to recast Eq. (A1) as
Nli(s —a)]=—[1—P(is)]N(is) . (A3)

The boundary condition, Eq. (4.5),
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n(e)=Cexp(—e) (e—>—o0)

implies that the function N(is) has a simple pole at
s=—1:

N(is)=

(s—>—1). (A4)

_s+1

We look for a solution of Eq. (A3) in the form of a prod-
uct: N(is)=N,(is)N,(is) with

N,lits—a)]=[1—P(is)]IN,(is) ,

- - (AS)
Nz[l(s—a)]z_Nz(ls)
Without loss of generality one can also assume that
N, (is)=1 (s——1)
c (A6)
Nylis)=——5— (s —1).
,(is) P (s )

The function N,(is) is determined from the conditions
(AS) and (A6)

~ 7C/a
; =——, A7
N, (is) sin[7(s +1)/a] (A7)
Introducing g(is)=InN,(is) we get from Eq. (A5)
glits—a)]l—glis)=In[1—P(is)|=h(is) (A8)
which is equivalent to
g(x)=—"nx) (A9)

~ explax)—1 "

It follows that

N [ ® (e *—e*) 1 +io ~
g(ls)—f_mabc_—_em_1 Tmf:_iw dy e”h(iy) .

(A10)

The term e* has been introduced to satisfy the condition
g(—i)=0 which follows from Eq. (A6). Interchanging
the order of integration in Eq. (A10) and using the tabu-
lar integral

d exp(—ox)

f—oc xl—exp(—x) (0<o<l)

=mcot(wo)

leads to

glis)= —271(; f::_i:dy In[1—P(iy)]
X {cot[m(s —y)/a]
+cot[w(y +1)/a]} .
Combining Egs. (A7) and (A11) we obtain

(A1)
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(s (mC/a) 1 p[z+ie -
Nis)=———F——F—""—= - dyIn[1—P - + .
(is) sm[1r(s+1)/a]exP Sia fz_iw y In[ (iy)]{cot[m(s —y)/a]+cot[m(y +1)/al} (A12)
The Fourier transform of the stationary energy distribution function 7 (is) can now be found from
fi(is)=P(is)N(is) .
Furthermore, the quantum-mechanical escape rate I of the particle is given by
-1 r= =1 §—;
r=s- [ 7 deT(em(e) 2pr V(i) (A13)
which together with Eq. (A12) leads to
_ C L z+io —B(s _
I=rasintr/a ™ |24 S " dym[1—Pliy)]{cot(my /a)—cot[(y +1)/al} | . (A14)

The integration contour can be chosen from —1—ic to —]+icw. Shifting the contour to the real axis by an ap-

propriate variable change results in

G
amsin(Bhing/2) P

1 o I
o f_mdrln[l P(r—i/2)]

cot —cot

T(L+ir)
a

L(—1+i7)
a

which can be further rewritten in an equivalent form used in the main text:

Ch, Bikgsin(Bhiry/2)

In[1—=P(1—i/2)]

T arsin(Bing/2) P 2 I,

" cosh( TB#A,) —cos(Bhiry/2)

. (A15)
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