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First-passage-time noninteger moments for some diffusion and dichotomous processes
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We calculate noninteger moments (t i) of first passage time to trapping, at both ends of an inter-

val (O, L},for some diffusion and dichotomous processes. We find the critical behavior of (t ), as a
function of q, for free processes. We also show that the addition of a potential can destroy criticali-
ty.

I. INTRODUCTION

Recently noninteger moinents (NIM's) of probability
distributions have found application in the study of scal-
ing properties for fractal objects and random walks, '

chaos, percolation problems in random resistor net-
works, and diffusion on hierarchic structures. ' In a re-
cent paper Weiss, Havlin, and Matan have studied first-
passage-time noninteger moments (t~), q & 1, for Wiener
processes and they have shown that critical behavior can
exist as a function of the parameter q. Specifically, if L is
a characteristic length of the system then for large L the
qth moment of the first passage time (FPT) is expressed as

r( )-'
2q —1 q )-' (2)

with a logarithmic dependence on L appearing at q =
—,'.

This critical behavior indicates lack of uniform scaling in
the underlying diffusion problem as otherwise expected
from the fractal nature of the Wiener process and ran-
dom walks. ' ' '

In this paper we will study the properties of first-
passage-time NIM's on two absorbing boundaries of ran-
dom processes driven by dichotomous noise. For the free
process we will show that (tv) present the same critical
behavior as that of the Wiener process (provided that the
initial condition is much less than L). We will also show
that the addition of a linear potential destroys the critical
behavior of the dichotomous noise driven process and the
same happens to the Wiener process, i.e., there is no criti-
cality for a diffusion process in a linear potential field.

II. FREE PROCESSES DRIVEN
BY DICHOTOMOUS NOISE

Let X ( t) be a random process whose dynamical evolu-
tion is governed by the equation

where F ( t ) is the random telegraph signal alternately tak-

and the derivative of r(q) with respect to q is discontinu-
ous, that is,

'0, q (—,
'

where

p= [s (s +2)]'/

and x is the initial position of the random process.
We now study the behavior of (t t) (0&q &1) as a

function of q under the assumption that L is a charac-
teristic length of the system which can grow indefinitely
large and x is held fixed. In terms of the Laplace trans-
form of the first-passage-time probability density function

f the noninteger moments ( t q) are given by

(t')= f "dss ' f(s/x) .
I 1 —

q o r)s
(6)

In order to evaluate the integral on the right-hand side of
Eq. (6) when L is large we distinguish three cases: q & —,',
q & —,', andq =

—,'.
(a) For q & —,

' the major contribution to the integral
comes from values of s such that pL »1 and pL »px,
hence we may use the approximation

—px

f(six) = (7)

Then

(t') = J dP[ —1+(1+P')' ']1

I(1—q) o

X x+ 1

p+ ( 1 + p2)1/2

—px
X

p+ ( 1 +p2)1/2

which converges for q & —,
' (although it diverges for

q &
—,
' ). Since the right-hand side of Eq. (9) is independent

of L we conclude

ing on the values +1 with an exponential switching time
probability density g(t)=e '. ' We assume that x=0
and x =L are absorbing boundaries. The first passage
time to those boundaries has a probability density func-
tion whose Laplace transform reads"

(1+s)sinh(Px)+P cosh(Px)+sinhP(L —x)
s x

(1+s)sinh(PL)+P cosh(PL )

(4)
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(t')-K (q &-,') . (9)

o =L (s/2)'r and 8=x/L we have

(b) When q & —,
' the major asymptotic contribution to

the integral comes from small values of s. Thus defining

ments, both in the Wiener process and in the dichoto-
mous case. Specifically, we will see that a linear potential
destroys the critical behavior of ( t ) W. e first study the
diffusion case and then the dichotomous case.

A. Di8'usion in a linear potential

(tq) = L ~f do cr ~ f(al8),1.(1—q) 0 aa

where

f(a/8)=I (1+2o /L )sinh[8ag(cr)]

+ (2o lL )y( a )cosh [8cry( o ) ]

+sinh[(1 —8)ay(a)] j /b(cr )

the function h(cr ) being defined by

(10)

"c}f(t/x) c}f(t/x) + 1 c}f(tlx)
Bt Bx 2

with the initial condition

(21)

We consider one-dimensional diffusion in a constant
force field [i.e., a linear potential V(x) =vx] with absorb-
ing boundaries at both ends of the interval (O, L). This
model can be used to represent the diffusion of charged
particles in a constant electric field. '

The first-passage-time probability density function for
the process obeys the Kolmogorov equation

and

b( a ):—( 1+2o /L )sinh[ ay(a ) ]

+(2o /L)y(a)cosh[ay(a)]
f (0/x) =5(x —x0)

(12)
and boundary conditions

f(tl0)= f(tlL)=0 .

(22)

(23)
y(a)—=(1+o /L )'

When L »1 we have

sinh(8cr )+sinh[(1 —8)o ]
sinho.

and

(13}

(14)
„sinh[P(L —x )]+e sinh(Px )

sinh(PL )
(24)

In Eq. (21) o =+1 (
—1) if v &0 (v &0). '

The Laplace transform of the solution to Eqs. (21)—(23)
is given by'

—2(t~) = L'~i(8),
I (1—q)

where

P=(1+2s)'r (25)

where

2 c} sinh(8cr )+sinh[(1 —8)o ]dcr a
0 Bo' sinho.

In the Appendix we show that, for q & —,',

I(8)=—K'8+O(8 )

whence

(tq) L2q —( & (

(17)

(18)

(26)

2qe cTx

f dp(p —1)
I (1—q) ( c}P

X [e t'"+e '~+~' sinh(Px)] .

(27)

When L »1 and L »x we find after some algebra

f(s/'x)=e "[e ~"+2e ' +~' sinh(Px)] .

The substitution of Eq. (26) into Eq. (6) yields

(t'") -lnL . (19)

Finally the case q
=

—,
' is also worked out in detail in the

Appendix. The final result reads
When o =1 (attractive potential towards the origin) the
second term in the right-hand side of Eq. (27) is negligi-

ble, therefore

Collecting results we write

K q

(t t) = f dp(p 1) t e—
I (1—q) i BP

=(2m. )
' e"x +' K (x) (0&q &1) (28}

( t ~ ) —. lnL, q =
—,
'

L2q —1

(20)

III. LINEARLY BOUND PROCESSES

Therefore in free processes driven by dichotomous noise,
the noninteger moments exhibit the same critical behav-
ior as do Wiener processes [cf. Eqs. (1) and (2)]. (tq) =(t')(.(+ (tq)( I,

where (t~)(+, is given by [cf. Eq. (28)]

(29)

where K„(x) is a modified Bessel function. ' We thus see
that in this case (t~) is finite and shows no critical be-
havior.

For the case of a repulsive potential (cr = —1), we write

In this section we will show that the addition of a force
field drastically changes the properties of noninteger mo-

(tq), , =(2m. )
' e "x +' K (x)

and [cf. Eq. (27) and Ref. (14)]

(30)
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X

(t'i)( )- L f d/3(/1 —1) qe" P sinh(Px}
r(1 —q)

=(2/~)' Le "[(L x—)~ ' E, z (I, —x) —(L+x)q 'y ~, (L+x)] .

When L is large we can use the asymptotic estimate

K (L+x) =(~/2)' (L+x) ' e1/2 —
q

Finally

«')=(t')(
)
—-L'(1 —e '").

In this case ( t ) grows as L but exhibits no critical behavior as a function of q.

B. Dichotomous noise: Linear potential

Let X(t) be a random process driven by dichotomous noise in a constant force field; its evolution equation is

X(t)=u+F(t),

(31)

(32)

(33)

(34)

where —1 & u & 1 and F(t)=+1 is dichotomous noise with an exponential switching time distribution i/)(t)=e '. The
Laplace transform of the Arst-passage-time probability density function is'

where

y„ey [(a+ y )sinh(Px)+P cosh(Px)]+( I+ u) 'sinh[P(L —x)]s/x =e
(a+y )sinh(PL)+P cosh(PL)

(35)

1+s
1+v'

[v +s(s+2)]' u(1+s)
'P

1 v2 1 v2
(36)

We note that if —1 & u & 1 then P) y. Now for large L and x held fixed we have from Eq. (35) the following approxi-
mation:

—(p+ y)x
f(syx) e + (y p)L e

—(y —p—)x+e —(y+p)xP a Y

(1+u)(a+P+y) P+a+y

The substitution of Eq. (37) into Eq. (6) yields

(t~) = [Io(q,x)+I, (q, x,L)],I 1 —
q

where

—(p+y)x
Iz(q, x) =(1+v) ' f ds s

0 (ls a+P+ y

(37)

(38)

(39)

and

I, (q, x,L)= f "dss &—e(y P' e 'y P'"+e
o as P+a+y (40)

s =uy+(I+y )' —I=s(y) .

When 1 ) v )0 the lower limit of the integral in Eq. (40), s= 0, corresponds to y=0 and we find after some algebra

(41)

It is easily seen from Eq. (39} that Io(q, x) converges when 0&q &1 and is independent of L. Let us now evaluate
I, (q, x,L) for L» 1 and L ))x. We make the change of variable

Ii(q, x,L)= —f dr[s (y)] ()e 'Lq)(y, L,x),
0

where

(42)

1 —u
p(y, L,x)=(L —x)e'"+

1+v
L— 1+v + 2V7

X
y —(1+v )'

1 —u (1—v )(I+a )' y+(I+y )'
2

[1.+(1+r )' ](1+v }'

Xexp )&2[(1+u }y+v(1+v )' ] .
)i/2

(43)
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Since L » 1 then the Laplace method allows an

asymptotic evaluation of Eq. (42); the final result reads

q

(20X)/(1 —0 )I&(q, x,L)= — — 1 — e' ""'r'' ' ' I (1—q) .
v 1+v

(44)

Introducing Eqs. (44) and (39) into Eq. (38) we finally ob-
tain the relation
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APPENDIX: DERIVATION OF EQS. (17) AND (19)

From the definition of I(8) given by Eq. (16) we have

L
v

—(20X/(I —0 )e
1+v (45) I(8)=I'(0)8+O(8 ),

where

{50)

where 0&q &1 and 0&v &1.
When —1 & v & 0 the bound s=0 corresponds to

7
2

1 —v
(46)

~~ 8 cr(1 —cosho )

o 8sr sinhsr
(51)

Integrating by parts and taking into account that
1&q & —,

' we get

[cf. Eq. (41)] and instead of Eq. (42) we now have

I, (q, x,L)= —f dr[s(r)] ~e ' y(~, L,x),
T

(47)
I'(0)= —2q dou'

o sinho.
(52)

from which it follows that

~I, (q, x, L)~ &e ' I dr[s(r)] ~y( r, L, x)~ . (48)
T

Equation {48) shows that, when L ))1, I~(q, x,L) is
transcendentally small, hence [cf. Eqs. (38) and (39)]

(1+v) —(P+r)
J d.[s(.)]-& . (49)

I 1 —
q Br a+ +y

( t '")=(2/n )LI(8),
where

8 cosh[o'(1 —28)]
o Bu coshcr

(53)

(54)

where 0&K'& ao. Substitution of Eq. (52) into Eq. (50)
yields Eq. (17).

For q =
—,
' we write Eq. (15) in the form

For 0&q &1 this integral converges and is independent
of L. Therefore ( t~) is finite and has no phase transition
as a function of q.

and

I(0)=0 . (55)

IV. CONCLUSIONS

We have considered the problem of first-passage-time
noninteger moments for some diffusion and dichotomous
processes. The critical behavior of (tq) found for the
Wiener process also appears in the free process driven by
dichotomous noise in exactly the same way and with the
same critical exponents. This critical behavior means an
absence of uniform scaling in the underlying physical sys-
tem and might indicate a fractal nature of the dichoto-
mous noise which is not obvious at first glance since the
trajectories of free processes driven by the random tele-
graph signal are much smoother than the Wiener process
trajectories. Finally the addition of a linear potential
breaks down any kind of critical behavior. This fact is
not obvious at first glance either because diffusion in a
constant field of force can be reduced to the Wiener pro-
cess by a simple change of variable and for the dichoto-
mous case the trajectories have similar analytical proper-
ties to those of the free process. '

From Eq. (54) we have

8 sinh[o (1 —28)]
o Ba coshtr

~ sinh[o(1 —28)]
0 cosh'

) sinh[o (1—28)]
0 cosho

and'4

I'(8)=2 ln tan =2 ln
vr8 vr0

2 2

hence [cf. Eq. (55)]

I(8)=28 ln
mO

2

Introducing Eq. (58) into Eq. (53) we find Eq. (19).

(57)

(58)
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