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Self-avoiding walks (SAW's) and manifolds (SAM's) in random environments are studied using a
combination of Lifshitz arguments and field-theoretic methods. The number of ¹tepSAW s start-
ing at the origin, Z, is shown to be a broadly distributed quantity whose typical value, Z,», behaves
as Z,„~-(Z)exp( cN —

) below four dimensions. Here a=2 —dv and (Z) is the average number
of SAW's at the origin. On the other hand, the integer moments of Z are exponentially larger than
the average, i e., (Z")—(Z )"exp[ck

'~ (k —1)ÃJ for the range 1 & k & k, . Similar results hold for
SAM's. Within the field theory for SAW's the results for 1(k (k, arise from a fluctuation-driven
first-order phase transition in the k-replicated theory. Above k„Griffiths singularities control the
moments of Z.

I. INTRODUCTION

N is the number of steps in the SAW, p is the (nonuniver-
sal) connective constant, and y is a (universal) critical ex-
ponent. For a site-diluted lattice with a fraction p of al-
lowed sites, Harris pointed out that

(z) =p "z, . (1.2)

This result follows from the observation that a given
chain conformation visits N distinct sites and is therefore
allowed with probability p . Comparing (1.2) to (1.1) we
see that the only effect of the disorder is to modify the
nonuniversal connective constant p~pp. Similar argu-
ments show that the size of the chain averaged over dis-
order and over starting positions is unmodified by site di-
lution. These results contributed to the belief entertained
by some authors, ' that disorder is irrelevant for SAW's.
On the other hand, Derrida conjectured that disorder is
relevant and should appear in the behavior of the typical
value Z,„as given by ( log(1+Z) ). Results for the typi-
cal value of Z were presented in a recent paper by one of
us. These results support Derrida's conjecture and show
that the power-law singularity of the pure partition func-

In the present paper we discuss the statistical mechan-
ics of self-avoiding random walks (SAW's) and manifolds
(SAM's) in random environments. The subject of SAW's
in disordered environments has been intensely studied'
during the past decade but remains controversial. Much
of the literature concerns the size of a SAW in a random
environment with a variety of qualitatively different
answers given for the value of the correlation length ex-
ponent both at and above the percolation threshold. The
primary emphasis in this paper is on the number of
SAW's or SAM's starting from the origin, i.e., the parti-
tion function Z. Our object is to determine the statistics
of the partition function.

The partition function for SAW's on a pure lattice Zo
has the leading asymptotic behavior

Z NNy —1

tion, Eq. (1.1), is replaced by an essential singularity.
Specifically we found that Z,„=(Z )exp( —cN I where
a is the "specific-heat" exponent a=2 —dv. Similar
essential singularities have been found for directed self-
avoiding walks in random environments.

The considerable effort investigated in studying SAW's
in random environments is motivated by the following
considerations. Firstly, this system tnodels the behavior
of polymers in porous media. For example, the mean
partition function determines the way in which polymers
are divided between a solvent bath and a sample of
porous material. The statistics of the partition function
determines the distribution of the polymers within the
porous material and their large scale diffusive motion.

Self-avoiding walks in random environments are close-
ly connected to the larger subject of phase transitions in
random systems. In the most general setting this is mani-
fested by the Szymansik' representation of field theories
by interacting random walks. Thus we may hope to
deepen our understanding of phenomena such as Griffiths
singularities and Lifshitz tails by studying the behavior of
interacting walks in random environments.

Self-avoiding tethered manifolds" generalize the con-
tinuum or Edwards version of self-avoiding walks and
serve as a simple model for polymeric membranes. The
statistical mechanics of SAM s is considerably more com-
plicated than for the special case of SAW's and the be-
havior of a tethered surface in three dimensions is not
well understood. Recent computer simulations' suggest
that tethered membranes remain flat for a11 temperatures
in contrast to the theoretical predictions of a crumpling
transition. ' One can imagine a manifold of arbitrary di-
mension D embedded in a space of dimension d. Above
the upper critical dimension d ' =4D /( 2 D) self-—
avoidance is irrelevant and the SAM is crumpled, having
a Hausdorf dimension dH = 1/v=2D/(2 —D). Near and
below the upper critical dimension it is believed that a
crumpled phase exists for sufBciently high temperature
and one can compute the exponent v within an e =d* —d
expansion. We can now put a SAM in a random environ-
ment and study how the environment changes the size
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and partition function of the manifold. Muthukumar
and Thirumalai have addressed the question of the size
of a SAM in a random environment. As in the case of
SAW's one finds that the crumpled phase survives and
the exponent v is unchanged by sufficiently weak disor-
der. In the present paper we study the statistics of the
partition function for SAM's in a random environment.
The results for SAM's are formally very similar to that
for SAW's except that the "specific-heat" exponent
a=2 —dv which determines the relevance of disorder
and controls the nonanalyticities in the moments of the
partition function is replaced by the more general form

AD =2D dv.
In this paper we use two different methods to study

SAW's in random environments. The first method is an
extension of the "Lifshitz" arguments given in Ref. 7.
This approach is based on the observation, Eq. (1.2), that
the partition function depends exponentially on the frac-
tion of allowed sites or "porosity" p. The basic assump-
tion is that rare configurations of the environment with
unusually high porosity near the origin dominate the pos-
itive moments of Z. The calculation consists of identify-
ing the dominant configurations and estimating the parti-
tion function of these environments. The approach given
here is somewhat more complicated than the traditional
Lifshitz method. In the Lifshitz argument for electrons'
or ordinary random walks' in random environments the
important fluctuations of the environment are spherical
regions. Here the rare events dominating the high mo-
ments of the partition function are fluctuations which
have nonspherical shapes. Section II A of the paper de-
velops this approach for calculating the positive moments
of the partition function for self-avoiding walks on site
diluted lattices. Section II B extend the Lifshitz method
to self-avoiding manifolds in Gaussian random environ-
ments. Section IIC presents results for the distribution
function for the free energy.

The second approach, presented in Section III, is to
map the SAW problem onto an O(n) symmetric field
theory with quenched disorder. The disorder is eliminat-
ed in favor of interacting replica fields where k replicas
are introduced to compute (Z"). The salient feature of
this field theory in the appropriate n ~0 limit is that the
quartic coupling representing the disorder follows a runa-
way trajectory under renormalization for d (4. For a
range of moments 1&k &k, this runaway trajectory
leads to a fluctuation driven first order phase transi-
tion. ' ' The first-order transition occurs at a tempera-
ture higher than the underlying second order transition,
which means, in the SAW language that the connective
constant for the kth moment is greater than pp for k ) 1.
For k )k, the bare field theory exhibits a first-order tran-
sition. Quantitative predictions for the connective con-
stant are in agreement with the results of Sec. II.

II. "I.IFSHITZ" ARGUMENTS FOR Z
A. Self-avoiding walks on site-diluted lattices

1. Preliminaries

We suppose that for large N the moments of the parti-
tion function are dominated by rare environments which

have many more conformations available than typical en-
vironments. These environments support an atypically
large number of SAW's because they have a higher than
average porosity in a region around the origin. This high
porosity region may be the full correlation volume or
may be smaller than the correlation volume. Our task is
to determine the optimal size, shape and porosity of the
regions which dominate the kth moment of the partition
function. The larger the local porosity the larger the
value of Z in that environment. On the other hand, for a
region of a given size the probability of finding such a re-
gion diminishes as the local porosity deviates from the
average. If the high porosity region is smaller than the
correlation volume, the number of chain conformations is
suppressed but the possibility of such an environment is
enhanced. The balance between these competing effects
determines the optimal regions.

Consider a region of the lattice Q having a volume
~
Q~.

The local porosity of the region m is defined as the ratio
m =M/~Q where M is the number of allowed sites in
the region. The probability pn(m) for finding a region Q
with local porosity m is a binomial which, for large ~Q~,

becomes a Gaussian,

( )
21Tp (1—p)

t/2
/Q/(m —p)~

2p (1—p)
(2.1)

In the limiting case of an undiluted region m =1 we have
the exact result p„(m) =p '"'.

Next suppose a SAW of length N is put in a region 0
having M allowed sites. Let Z(Q) be the number of
SAW's starting at the origin confined to the region 0 for
a given realization of the disorder and let Zo(Q) be the
corresponding partition function for a SAW confined to
Q without forbidden sites. Let ( ) be a constrained
average over the configurations of the region for which
there are exactly M =m~Q~ allowed sites. The result for
the ratio %n(m)—= (Z(Q)) /Zo(Q) is

M!(Q—N)! )
e„(m)= Q!(M —N)!

™N
0, M&N. (2 2)

To obtain this result, imagine a fixed conformation of the
chain in the region and count the number of ways of dis-
tributing the M allowed sites in 0 so as to cover the
chain. Equation (2.2) is obtained by dividing this number
by the total number of ways of distributing M allowed
sites in Q. Since each conformation occupies N sites, this
counting is independent of the conformation. In the limit
Q-M ))N ))1, the combinatorial result, Eq. (2.2), may
be expanded as

1 —I
ln+n(m) =N lnm- + 0 ~ ~

2)Q) m
(2.3)

The first term in this expression is the result, already stat-
ed in Eq. (1.2), that the number of conformations avail-
able to the chain is suppressed by a factor rn . The
second term represents the difference between fixing the
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number of allo~ed sites as is done here versus fixing the
average number of allowed sites as is done in deriving Eq.
(1.2). This difference vanishes for ~Q~ ~00 but is crucial
in the arguments which follow. Indeed, we can anticipate
one of the central results of the paper by examining Ec(.
(2.3) in the case that Q is a correlation volume ~Q~ -N
and that the local porosity is just the average porosity
m =p. This gives an estimate of the typical or most
probable value of the partition function Ztyp for which
we obtain the result

Z,„=p Zoexp[ cN —"(1—p)/2p] . (2.4)

The typical value is exponentially stnaller than the
average, i.e., Z,zz/(Z ) =exp[ —cN (1—p)/2p].
Throughout the paper we use c to denote an arbitrary
positive constant that may depend on the dimension.
The numerical value of c varies from equation to equa-
tion.

In what follows we shall use (Z(Q) ) to estimate the
partition function for chains starting at the origin in a
given environment having region 0 with local porosity
m. However, in obtaining %n(m) and hence (Z(Q))
we have averaged over all those configurations of the dis-
order with a fixed number of allowed sites. The
preaveraging over all configurations with local porosity
m washes out some of the fluctuations in Z and is dis-
cussed below in Sec. II A 3.
the Quctuations in Z and is discussed below in Sec. II A 3.

The next quantity which is needed for the calculation
is the number of conformations Zo(Q) for a polymer
confined to an undiluted region Q. The simplest situation
is that Q is at least the correlation length R in all dimen-
sions. In this case, the partition function of the polymer
is, to good approximation, the same as in an infinite lat-
tice Zo(Q)=ZO. If Q is smaller than the correlation
length in one or more dimensions, the number of
configurations is reduced. Using scaling arguments,
Daoud and de Gennes' ' obtained the leading behavior
of Zo(Q) for a polymer confined in regions of various
shapes. For a long tube of diameter L the result is

Zo(Q ) =Zoexp I cNL— (2.5)

where v is the correlation length exponent. The length of
tube occupied by the chain R

~~

is given by

R -EL' (2.6)

This result can be understood within the "blob" picture'
in which the polymer is viewed as a string of blobs, each
of diameter L. Within each blob the polymer behaves as
an unconfined chain so that L -Xb, b ~here N», b is the
number of monomers in a blob. Equation (2.6) follows
from the relation, R~~

—(N/Nb&, b)L. Note that Eqs. (2.5)
and (2.6) correctly yield the size and partition function of
an unconfined chain in the limit that the tube diameter
goes to the correlation length L ~R -1V in which case

Rll R and Zo(Q)~ZO.
More generally, consider a polymer confined in a re-

gion 0 that allows the polymer to expand freely in 6 di-

mensions (1 b, & d) but confines the polymer on a length
scale L &&R in the remaining d —6 dimensions. Using
the scaling ideas of Ref. 18 we find that the entropic
suppression due to confinement is independent of 6 so
Eq. (2.5} still holds while the unconfined length scale is
given by

~v(h)L l —v(5)/v(d)
II

(2.7)

where v(b, } is the correlation length exponent for b, di-
mensions.

After identifying a class of optimal shapes for the SAW
to reside in we need to estimate the number of distinct
shapes in this class. Let gn be this counting factor. If Q
is the correlation volume g& is order unity. If, for exam-

ple, 0 is a self-avoiding tube of diameter L and length R
~~

then there will be many equivalent ways of choosing the
conformation of the tube. The number of distinct shapes
in a given class times the number of SAW's contained in
each shape must yield the full partition function thus,

g„=ZO/Zo(Q) =exp[cNL (2.g)

We shall use the product gnpn(m) as an estimate of the
probability that a given environment has a single region
with porosity m in the 0 class of shapes. This estimate is
appropriate if g„p„(m) «1 but when g„p„(m) is order 1

or greater it is likely that each environment has many re-
gions in the class. This violates the original hypothesis
that the polymer is confined to a single region.

2. The moments of Z

k opN (2.10)

where 5m is the deviation from the average porosity,
5m:—m —p, and 5p is the deviation from a pure system
6p=1 —p. Note that the upper limit of the integral in

Eq. (2.9) is at m= 1 so that for kN ~ ~Q~ Eq. (2.10) is re-
placed by 5m =6p.

After approximating the integral by the value of the in-

tegrand at the optimal porosity 5m we must carry out the
remaining optimization with respect to the size and shape
of the region. This variation takes the form,

I.et us now assemble all of these ingredients to obtain
an estimate for the kth moment of the partition function.
Our ansatz for (Z") is

(Z")= sup gQ J dm p„(m)[+n(m)ZO(Q)]" . (2.9)
0 . p

The idea is that (Z") is dominated by high porosity en-
vironments with a given class of optimal shapes Q. The
integration and variation with respect to the shape is sub-
ject to the constraints discussed above-that gnpn(m) « 1

and ~Q~ &N"' The integr. al over porosities m involves
only pn(m) and 0'n(m). For a given volume ~Q~ this in-

tegral can be carried out by steepest descents. The for-
mulas simplify in the weak disorder limit where p ap-
proaches unity and we shall quote the resu1ts only for this
case. The optimal porosity is given by
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(Z") IZO ——sup I exp[ k—5pN c—(k —1)L

+k(k —1)5pN /2iQi]I .

(1.2), which has the weak disorder form

(Z) =Zoexp( —5pN} . (2.17)

for

kN/Qi &1. (2.11a)

for

For kN &
~ Q~, m is set to unity and there is no entropic

suppression due to forbidden sites (4~1) so that we
have the simpler expression

(Z")/Zo = sup Iexp[ —c(k —1)L '~"N —5p~Q~/2]I

(Z")IZO ——sup I exp[ —c (k —1)NL
L

NL' ""—5p/2] -I .

The optimal tube diameter L2 is given by

(2.18)

For the high order moments k & k, the optimal regions
are undiluted (m = 1) and the appropriate variational ex-
pression is (2.11b). Written in terms of the tube diameter
we have

kN//Qf &1. (2.11b) L,-[(k —1)/5p]'~" (2.19)

We now have a variation with respect to two parameters,
the number of unconfined dimensions 6 and the length
scale L of confinement in the remaining d —6 dimen-
sions. For k & 1 it is clear from (2.11a) that for a given L
one should make the region as small as possible, which is
achieved by confining the polymer in a tube (b, =l} in

which case 0 is given by

iQi-R L '-NL
II

(2.12)

The maximum is attained for

L ) -(k5p) (2.14)

with a =2—d v. The corresponding result for the mo-
ments 1«k «k, is

(Z ) =Zoexp[ k5pN+c(k ——1)(k5p)'~ N j (2.15)

with

and the variation over Q in Eq. (2.11a) reduces to a varia-
tion with respect to the tube diameter

(Z )/Zo-—sup texp[ kN5p—+(k —1)N
L

X( —L ' '+kL' " d5 l2)]]
(2.13)

and the moments for k )k, are given by

(Z")=Zoexp[ —c5p' "(k —1)' '~ "N
I . (2.20)

Finally, consider the low moments 0& k & 1. The max-
imum found for the k & 1 case now becomes a minimum
and the quantity in the square brackets in Eq. (2.13) in-
creases as L goes either to zero or infinity. The con-
straint gnpn(m) «1 sets a lower bound on L while the
upper bound is L «N". It is straightforward to verify,
for any number of free dimensions 4 that the maximum
occurs at the upper bound for L. Thus we ignore the
term involving L in (2.11a) and set ~Q~ -N ". The result
for 0& k & 1 is

(Z") -Zo exp[ k5pN ck—(1 k)5—pN'] .— (2.21)

As k approaches unity from below we again recover the
exact result, Eq. (2.17). For k & 1 the correction to the
leading exponential growth of the partition function is an
essential singularity in N instead the pure system behav-
ior characterized by a power law. If one defines the typi-
cal value Z,„~ to be Z,„=(Z")' " for small k then we
recover Eq. (2.4).

A useful way of characterizing the asymptotic large-N
behavior of the moments is via the connective constants

pk defined by

k, -5p' (2.16) p 1jm ( Z Ic ) 1 IkN
N~ oo

(2.22)

defined as the value of k for which the optimal porosity
(2.10) reaches unity. For k= 1 the second term in the ex-
ponential vanishes and we recover the exact result, Eq.

The behavior of the kth-order connective constant is
found from the results for the moments, Eqs. (2.15},
(2.20), and (2.21),

1 —c, [(k —1)/k][5p/(k —1)]' ", k & k,
Pk/p= '1 —5p+c2[(k —1)/k](k5p)'i, 1 k &k,

1 —5p, 0(k «1 .

(2.23a)

(2.23b)

(2.23c}

The connective constants are plotted as a function of k in
Fig. 1. The high order connective constants approach
the pure system value p reflecting the fact that the high
moments probe those rare configurations in which the
chain sees a pure region and thus have the same number

of conformations as on a pure lattice. On the other hand,
for low moments (0& k 1) pk is independent of k which
reflects the fact that both average and typical chains en-
counter forbidden sites with probability 5p =1—p per
step. Note that the connective constants cannot be extra-
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probabilities in Eq. (2.24) are approximately

and

p N

(2.25a)

(2.25b)

PP

with p&=pp the connective constant for (Z). Ignoring
the rare cases where Z & 1 in estimating the low moments
of Z leads to

(ZIG) N (2.26)

FIG. 1. The connective constants pk for the kth moment of
the partition function plotted as a function of the order of the

moment k. See Eqs. (2.23).

polated from k ) 1 to k near zero since the convexity of
ln(Z") would be violated.

P (Z) =Po5(Z)+ Pi 5(Z —1)+ (2.24}

For p &(1,most configurations have no SAW's at the ori-

gin so Po is nearly unity. With probability p there are

configurations with N allowed sites connected to the ori-

gin which support a single SAW. These connected sites

are themselves a SAW so there are p ways of having
configurations with Z= 1. Configurations with more
than one SAW are exponentially rarer so the first two

3. Strong disorder

Since (Z(Q))"+ (Z(Q)") for k & 1 and since
Z(Q)-Z when 0 is the correlation volume we see that
the results for the low moments, Eq. (2.21), are an upper
bound to the correct answer. It is our hypothesis that for
weak disorder, porosity fluctuations dominate the fluc-

tuations in Z" for k & 1 so that Eq. (2.21) is exact. On
the other hand, for strong disorder (5p order unity), Eq.
(2.21) is not correct. Since Z is a positive integer valued

random variable its probability density P(Z} takes the
form

for any k so that the connective constants are given by

(2.27)

This result is qualitatively different from the weak disor-
der results given above, Eq. (2.23c}, since here the con-
nective constant decreases toward zero as k approaches
zero rather than being independent of k. The transition
from weak to strong disorder is not yet understood. The
simple argument leading to Eq. (2.27) clearly fails unless

p, & 1 so that perhaps p = 1 jp signals the transition be-
tween the strong and weak disorder regimes. The per-
colation threshold is another intuitively plausible candi-
date for the transition point. It might also be that the
transition occurs at a k-dependent value ofp as is seen for
the case of directed polymers on disordered hierarchical
lattices.

B. Self-avoiding manifolds in a Gaussian

random potential

In this section we consider self-avoiding manifolds in

an environment with a quenched Gaussian random po-
tential. In addition to generalizing the previous results to
manifolds of arbitrary dimension the present calculation
illustrates how the Lifshitz method is applied to continu-

um rather than lattice systems and to a random potential
rather than site dilution.

Self-avoiding tethered manifolds are defined by gen-

eralizing the Edwards continuum description of self-

avoiding walks. ' In the absence of disorder the partition
function is

ZoIw] =fd[r]exp ——f d x~7'r(x)~ ——f d x f d x'5 (r(x) —r(x'))
2 2 A A

=f d [r]exp( —%[r]) . (2.28)

Here x =(x „xz, . . . , xD ) is the internal coordinate in

the D-dimensional manifold; r(x) is the position of that
point on the manifold in the 1-dimensional embedding

space; V is the D-dimensional gradient and w is the
strength of the self-avoidance. The case D=1 is the Ed-
wards continuum version of a SAW. The path integral
ranges over all manifolds centered at the origin with a

given internal shape and linear size S. The "mass" of the
manifold is

~
A~ =S . To obtain finite results the parti-

tion function must be normalized by the ideal manifold
partition function ZoIw =0I and regularized, either by
the introduction of a short distance cutoff for the interac-
tion so or by dimensional regularization.

For positive w and sufficiently high dimensionality the
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manifold is expected to exist in a crumpled phase in
which the radius of gyration of the SAM obeys a scaling
law

R-S (2.29)

ZOIw j/ZOIOj -exp co(w, so)
S
sp

D —1

+c, (w, so)
sp

(2.30)

As discussed in Ref. 21, the subleading terms depend on

The Flory value for v is (D+2)/(d +2) and the ideal
manifold (i.e., non-self-avoiding) value is v= (2—D)/2D.

The partition function for a crumpled manifold in a
pure environment behaves exponentially in the mass of
the manifold~'

the boundary conditions given to the manifold. The lead-
ing exponential terms which characterize the "connective
constant" for SAM's depend on the cutoff. In dimension-
al regularization these terms vanish. ' Except in the case
that D is an integer there is no power-law correction to
the partition function.

Disorder is added via a 5-correlated Gaussian random
potential V(r) with mean zero and variance o:

( V(r) V(r') & =o 5 (r —r') . (2.31)

Note that x has the dimensions [x]=[r] ' ' where [r]
is a physical length so that [V]=[r] ' ' and
[o ]= [w] =[r]" i[ '. The disorder averaged parti-
tion function is given by

For a given realization of the potential, the partition
function is

Z = f d [r]exp —&[r]—f dDx V(r(x)) . (2.32)

(Z&= fd[V] fd[r]exp —&[r]—f ddr' + f dDx 5"(r(x)—r')V(r') (2.33)

where JV is the normalization for the Gaussian disorder.
The average over the random potential is easily done by
shifting V(r) with the result that

(Z&=Z, Iw —o'j . (2.34)

Thus, the only effect of disorder on the average partition
function is to change nonuniversal amplitudes including
the connective constant. In contrast to the case of site di-
lution, disorder increases the partition function since Zp
is a decreasing function of the interaction strength. If
0. )w the manifold collapses to a size set by the cutoff
and the theory is no longer physically sensible. In what

follows we consider the weak disorder limit 0 ((m.
However, we shall see that for suSciently high moments,
the effective disorder becomes large and the manifold col-
lapses so that the theory is restricted to moments k (k, .

In the Lifshitz calculation for site dilution it is high
porosity regions which dominate the positive moments of
Z. For a Gaussian potential it is regions with large nega-
tive values of the local potential which dominate the mo-
ments of Z. Let Z(Q) be the partition function for
SAM's confined to a region Q and ( & represent a con-
strained average such that the integrated potential in the
region is fixed at —miQi. The partially averaged parti-
tion function for confined SAM's is

(Z(Q)& =f d[V] (2 f d r'V(r')+iQim
n

2

X fd [r]exp —Pr'[r] —f d r' + f d x5 (r(xl —r')) (r')
0 Po

(2.35)

g2D
ln(Pn(m)=mS — o

2[Q/
(2.36)

Here JV& is the appropriate normalization for the con-
strained Gaussian average and the path integral ranges
over all manifolds confined to O. The integrals can be
done by shifting the potential and using the Fourier rep-
resentation of the constraining 5 function. The ratio
0'o(m) = (Z(Q) & /(Z(Q) & is given by

Note that this result has the same form as for the site-
dilution case, Eq. (2.3). The probability density po(m)
for having a shape Q with local potential m is simply a
Gaussian with variance o /i 0 ~.

The entropy loss due to confinement, the spatial extent
of the crumpled manifold in the unconfined dimensions
R ij, and the number of equivalent conformations of the
confining region gz can be obtained by generalizing the
scaling or "blob" arguments discussed above. The result
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for the confined partition function is

(Z(Q) ) = (Z )exp[ —cS L /"]

and, using Eq. (2.8), it follows that

g„=exp[cSDL D'] .

(2.37a)

(2.37b)

random variable y

y =InZ/(Z)

then

p (y) =f dk e "«(Zk) /(Z )" .

(2.44)

(2.45)

The size of the manifold in the unconfined dimensions is

R -SL'
II

(2.38}

We suppose that the number of free dimensions cannot be
less than D if the partition function is to grow exponen-
tially with S . Thus the optimum confining shape for
moments k & 1 is a D dimensional "pancake" with extent
R

~~

in d-D dimensions.
The variational ansatz is essentially the same as Eq.

(2.9):

Neglecting questions of convergence and analyticity we
may evaluate p (y) by a steepest descents calculation as-
suming the dominant saddle point resides on the real k
axis. In carrying out this evaluation it is important to
choose the correct regime for k —for small y the small k
regime is appropriate and vice versa. For simplicity con-
sider the case of a polymer (D= 1) in a Gaussian random
environment. Using the results of Eqs. (2.41) for the mo-
ments of Z and supposing that a «1 we obtain the fol-
lowing result:

r

(Z")= sup g„f dm p„(m)[%„(rn)(Z(Q))]"
L

(2.39)

p (y}-exp (y +o S /2c )
C

2(y2S ~

for the range

(2.46a)

The Gaussian integral over the local potential m can be
done immediately with the result

(Z")/(Z )"=sup [exp [—c (k —1)S L

+k(k —1)o'S' /2IQI]] .

(2.40)

For k & 1 the optimum region is a correlation volume
~Q~ =S and the result is

( Z" ) /( Z )"-exp[ —co k (1—k)S ] (2.41)

with the exponent aD characterizing the relevance of the
disorder given by

—C&
S 0

(2.46b)

This result depends on the moments 0 & k & 1. Thus for y
of order S the probability density is a Gaussian with
mean o S /2c and variance twice the mean. One of the
consequences of Eqs. (2.46) is that the scaled variable
(1/S )InZ/(Z) goes almost surely to a definite value
proportional to —o in the limit S~ oo.

For y of order S one obtains results which are best un-
derstood by considering two limiting cases. If
O' S «y &S one uses the expression for the moments,
Eqs. (2.43), in the limit k »1 and obtains

aD =2D —dv . (2.42) p(y) —exp( —cy'+ /o S ) (2.47)

For k & 1, choosing
~
Q

~

-S L /" and optimizing with
respect to L we obtain

while for a &y /o S & 1 with a «1 we have

(Z")/(Z") — p[+ (k —1)(k ) S (2.43) p(y)-exp a(cr /2—)' S —y — . (2 48)
4( 2/2 )1/aS

aD is positive below the upper critical dimension
d'=4D/(2 D}. For exam—ple, if 1=3 and D=2 the
Flory value is aD =

—,'.
Because self-avoidance is soft in the continuum

description, the manifold can collapse to a region whose
size is set by the cutoft' with an energy cost which scales
as wS . This possibility can be introduced into the
theory by replacing the confinement factor (k —1)L
in Eq. (2.40) by kwS and by replacing Q by a cutofF
volume. One sees that the kth moments with
k & k, —( w /o ) are dominated by unphysical, collapsed
manifolds.

It is straightforward to check that these expressions
reproduce the moments of Z in the appropriate ranges of
k; Eq. (2.46a) yields the moments k & 1, Eq. (2.47) yields
the moments k »1 while Eq. (2.48) yields the moments
near and above k=1.

III. FIELD-THEORETIC CALCULATION
OF THE MOMENTS OF Z

A. The model

C. The probability density for 1agZ

The moments of Z can be viewed as the characteristic
function of the probability distribution for lnZ where ik
plays the role of the Fourier variable conjugate to 1nZ.
In particular, let p(y) be the probability density for the

The number of X-step SAW's, C~(l) starting from a
lattice point l on a site-diluted lattice can be obtained
from the susceptibility g& of an n-vector spin model in the
limit n ~0. ' The susceptibility is defined by

lim g TrS~ &St', iexp X K,/p, pJS;.S~. . (3.1)
n~0 (t (~ ~)
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Here Si =(S», . . . , Si„) is an n-component spin vector at
site I, normalized so that g" i SI Si —=Si S& =n,
E;J =EL;j with L,. = 1 if i and j are nearest neighbors and

L, =0 otherwise. The random lattice is defined by set-
ting p; = 1 if i is an allowed site and p; =0 otherwise.

The susceptibility is the generating function for the
number of SAW's, ' (Z")= ( Ctt(I)")

can be determined from the moments of y.

(3.3a)

disordered phase. For N ~ Oo the integral in Eq. (3.2b) is
dominated by the singularity in yl nearest to the origin,
i.e., by the phase transition in the n-vector (n ~0) model.

Below we argue that the 1V dependence of the moments
ofZ,

g E C~(l) .
N=O

The inverse of Eq. (3.2a) is,

C (I)=f dE

(3.2a)

(3.2b)

(3.3b)

Here the angular brackets denote an average over the dis-
order in which each site variable is chosen independently
with

with c a contour that encircles the origin without enclos-
ing any of the singularities of yI. Note that K in Eqs.
(3.2) is the inverse temperature and (3.2a) is the high tem-
perature expansion of the susceptibility. The representa-
tion, Eqs. (3.2), relating the SAW problem and the n-

vector spin model is valid only in the high temperature or

1 with probability p
0 with probability 1 —p . (3.4)

To compute (yi ) we introduce k replicas
a = 1,2, . . . , k, and use Eq. (3.1}to write

(3.5)

with SI an n-component spin vector in the ath replica at site l. Using the Gaussian transformation

k k k

exp g g E; p;p S; S =constX g f dP&ttexp ~
—g g K;J 'P; PJ~+ g gp;S;

a=1 (i j ) laP a=1 (i j) a=1 i

(3.6)

the trace and disorder average in Eq. (3.5) can be per-
formed. The result is a field theory in terms of the P
fields that is given by

k

(yi)=constX f [dP] g PIigtt&Ii e"p( ~k)
a=1 I'

1 f dxln (1—p)+p g '1+u gPp(x)
a a P

(3.8b)

Here &k is the k replica Hamiltonian,

k= g0'+, '0;p
l,j
a, P

(3.7a)
where a is the lattice spacing, z is the coordination num-
ber, 2 =zla, and u =z E/2a ". If the phase transi-
tion in this magnetic model is continuous, or nearly con-
tinuous, and if the spatial dimension is greater than or
equal to three, then the critical behavior will be deter-
mined by the P approximation to Eq. (3.8b). To 0($ ),
Eq. (3.8b) gives

—gin (1—p)+p g 1+—gP;&2 p

(3.7b)

L

In the continuum limit, the field theory for (y" ) is

k

f dx[tP (x) (t& (x)+V) (x).V) (x}]
2

with

k

=constX f [Dp] g g(x) fdx'pi(x )
a=1

Xexp[ —&k ] (3.8a)

+u g fdx[$ (x).P (x)]

g f dx[P (x) P (x)][/~(x) P~(x)]
8

(3.9a)

%k= —fdxg [AP (x).P (x)+V/ (x).VQ (x))
1

with
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t = (1—pzK),
g 2

z (pzK)u—
4—d

(3.9b)

B. The moments of Zfor 1«k «k,

To begin we note that for the k= 1 case the last term in

Eq. (3.9a) is absent and the Hamiltonian %Pi is the pure
system Hamiltonian with E replaced by pE. The leading
singularity in (y(x)) near the ferromagnetic transition
for %, is then given by

(y(x)) =
(1—pKp)r

with y the pure system susceptibility exponent and LM, the
connective constant or effective coordination number.
For N ~ ao, Eqs. (3.2) and (3.3) give

(3.10a}

(Z) =c(pp) Nr (3.10b)

in agreement with Eq. (1.2).
For k%1, the replicas are coupled by the last term in

Eq. (3.9a) and the problem is qualitatively difFerent than
in the pure or k= 1 cases. To find the consequences of
this we construct renormalization-group (RG) flow equa-
tions for the parameters t, u, and 6 that appear in Eq.
(3.9a). We use standard field theoretic techniques and
work to one-loop order which will enable use to construct
an @=4—d expansion. Denoting the renormalized quan-
tities by tz, u~, and hz, the flow equations are

u(1 —p)
8 p

Note that the coupling between replicas is
-(1—p) -5p

The approximate Hatniltonian given by Eqs. (3.9} is
stable only if u & (k —1)h/4. Otherwise the quartic ap-
proximation cannot be used and the full Hamiltonian
given by Eq. (3.8b) is needed. Using that b, -5p « 1 this
yields a critical k ( =k, ) given by k, =5p ' which agrees
with the Lifshitz result, Eq. (2.16}, if fluctuation effects
are neglected [i.e., set a=0 in Eq. (2.16)]. The quartic
field theory is equivalent to the Edwards walk with
Gaussian disorder discussed above in Sec. II B and the in-
stability of the field theory at k, corresponds to the col-
lapse transition in the Edwards theory.

In Sec. IIIB we discuss the behavior of (y"(x)) for
1 & k & k, using the quartic field theory. In Sec. III C we
consider the k »k, behavior of (y (x) ).

that Eqs. (3.11a) and (3.11b) are determined by two- and
four-point vertex functions, respectively, within a single
replica. This implies the quantity b, (or hz ) in Eq. (3.9a)
does not couple to these flow equations to any order in
perturbation theory because for these vertex functions
the last term in Eq. (3.9a) is effectively of O(n) and van-
ishes in the SAW limit. This implies that Eqs. (3.11a) and
(3.11b) are identical to those in the pure system, and, by
themselves, have the same fixed point (FP} as the pure
system. This fact has been used to conclude that disor-
der is irrelevant for SAW's. We shall see that this is not a
correct conclusion because Eq. (3.11c) leads to a runaway
trajectory to hz and this has dramatic consequences for
the number of SAW's at the origin. We also note that the
RG flow equations (3.11) are independent of k, the num-
ber of replicas. Again, this is true only because of the
n ~0, SAW limit.

For d & 4 (e &0) Eqs. (3.11) predict that small disorder
( -b,z ) is irrelevant in a RG sense. For d & 4 (e & 0},Eq.
(3.11b) implies a FP value of ux given by

u'= +O(e ) .
32

(3.12)

With this ansatz the renormalized free energy relative to
the disordered phase to one-loop order Fz(P) is given by

kt„F"(P) = +kg u~—

kf ttt+4uttk—'

+(k —1)f ttt+12utig +bttP — Atty

+f [t„+12u„g ——', (k —1)h~((} ] (3.14a)

Equation (3.12) inserted in Eq. (3.11c) shows that even
small disorder is relevant for d &4. Furthermore, Eq.
(3.11c) has no FP and instead scales or runs away to large
values of Az. As is the case for the closely related prob-
lem of cubic anisotropies, ' ' here a runaway RG trajec-
tory implies a fluctuation driven first-order phase transi-
tion. To demonstrate this we construct a free energy for
a presumed ordered phase and compare it to the free en-

ergy of the high temperature phase. ' '

To proceed we make the assumption that the symme-
try breaking in the ordered phase is the same in each re-
plica and in the P= 1 spin direction

(3.13)

did
6 =2tR —4tg ug (3.11a) with

dug

db
dh~

db

—Eug 32u g

=eh~ +26„—166~ u~

(3.11b)

(3.11c)

Xf(x)= (logx+ —,') . (3.14b}

The first-order phase transition is manifest in the free en-

ergy when the RG length scale reaches b* such that

with b the RG length scale. The coupling constants in
Eqs. (3.11) have been scaled by (2m ) /Sz with Sz the area
of a d-dimensional unit sphere. It is interesting to note

uti(b')= b,„(b") .
8

(3.15)
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db, ~(b)
b = hx—(b)+28 tt (b) . {3.16)

Solving Eq. (3.17a) for b yields

The correlation length g at the transition is identified

with this length scale g=b'. In the weak disorder limit

5p «e, b~ must be large to satisfy Eq. (3.15) since

btt(b =1)-5p «utt(b +-~)=e/32. Thus, in solving

Eq. (3.15), we can replace uz(b) in Eq. (3.11c) by its
fixed-point value yielding

Eq. (3.21b) this in turn implies

(gz(l) ) =exp(t,'"'kN) . (3.22a)

pi, =pp exp(t,'"')-pp[l+c(k5p)4/'] . (3.22b)

To leading order in an e expansion, Eq. (3.22b) is in
agreement with Eq. (2.23b).

From Eqs. (3.21a), (3.22a), and (2.22) the kth-order con-
nective constant for 1(k (k, is

htt(b) [e+4btt(1)]
6„(1) [@+4',„{b}]

At b*, Eqs. (3.15) and (3.12) yield

(3.17)
C. The moments of Z for k &&k,

The effective Hamiltonian given by Eq. (3.8b) can be
written

4(k —1)
(3.18a)

&=—Jdx[VJ'(x)] [VP (x)]+Jdx U(P~), (3.23a)

and Eqs. (3.17) and (3.18a) give
2/e

k5p
(3.18b)

These two equations yield

ttt (b') =a@, (3.20a)

with a =e /16. Equations (3.1la), (3.11b), and (3.20)
give

t(k) ue (k5 )4/e
(b*)

(3.20b}

What does the first-order phase transition in the mag-
netic model mean in the polymer representation? We
first note that in general to obtain (Z")= (CN(l)) one
needs to introduce k distinct temperatures K&, . . . , Kk
[cf. Eq. (3.2b)]. However, it can be shown that to obtain
the leading N dependence of ( Z ") it is su Scient to use
only one K. If we introduce the critical temperature
t = 1 —ppK, and write

Z =C~(1)= (pp ) g~( l ) .

then for small t

(3.21a)

(g (x))—I dN exp( —tkN)(gz(1)) . (3.21b)

The first-order phase transition in the magnetic model
implies that (y (x)) is discontinuous at t =t,'"'. From

To leading order in e, a=@/4 and v= —,', so that the
correlation length given by Eq. (3.18b) is identical to the
confinement length given by Eq. (2.14).

To determine the connective constant for k &1 we
need to determine the transition temperature for the k-
replica field theory t,'"'. We note that there is an underly-
ing continuous transition at tz(1)=0 but that the actual
first-order transition temperature is at a higher tempera-
ture tx (1)= t,'"' & 0. At the first-order phase transition

Fx(4)=0
(3.19)

=0

with the potential U(P ) given by

U(P )= —gP P —
& gin(1+uP .P )

k„g in[l+uP P'] — logp . (3.24)
1

a=) a

The two leading terms in Eq. (3.24) are the sum of k un-

coupled pure system potentials. We conclude that in the
k ~ 00 limit the phase transition in the magnetic model is
just the pure system phase transition. This implies that
the connective constant approaches the pure system con-
nective constant JM as k~ 00. This is in accord with Eq.
(2.23a).

For large but finite k, Eq. (3.24) is a faithful representa-
tion of Eq. (3.23b) as long as kP » l. In fact, if fiuctua-
tion effects are ignored then Eqs. (3.23) and (3.24) imply a
first-order phase transition with, using logp = —5p,

1/2

k

—
2 5p

k

1/2 (3.25)

Here t,' ' is the phase transition temperature measured
relative to the pure system transition at t=0 and P is the
amplitude of the magnetization at t,'"'.

To take into account fluctuation effects we use a scal-
ing argument. The first two terms in Eq. (3.24) lead to a

1
~in p+5p exp —gin(1+u{{} P )

'

a a

(3.23b)

As already noted, if U(P ) is expanded to O(P ) then the
theory is unstable for large enough k, with the least stable
direction being along the replica diagonal [cf. Eq. (3.13)].
For k ~ ~ the first two terms in Eq. (3.23b) are of 0 (k),
while the last term is of O(1). To the leading and sub-
leading order as k ~ ~ we have
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pure system free energy f that scales like

(3.26)

The first-order phase transition takes place when this
term is comparable to the last term in Eq. (3.24), —5p.
This implies

5p
& /(2 —a) 1/d v

(3.27)

Equation (3.28) is in agreement with Eq. (2.23a}.
We conclude this section with two remarks. First, the

connective constant p,„ for k & 1 cannot be determined
with the methods of Sec. IIIB. This follows because
b,„(b') given by Eq. (3.18a) is negative which corre-
sponds to an unphysical initial condition for the RG.
Second, Eq. (3.22b) is identical in structure to Eq. (2.23b}
except for a factor (k —1)/k. The methods of Sec. III B
requires that k —1&0(e) since otherwise the Ginsburg
criterion is violated and one must consider additional
fluctuations. Thus, in the range where the field theory is
applicable it is in agreement with the Lifshitz arguments
up to factors of order unity.

IV. DISCUSSION

We have treated the statistical mechanics of self-
avoiding walks in randomly diluted environments using
two distinct methods. For the positive integer moments
of the partition function both methods are in agreement
and show that the partition function Z is a broadly distri-
buted random variable. More precisely, the connective
constants, which describe the exponential growth rate of
the moments (Z" ), increase with k. On the other hand,
for the low moments (0 & k & 1) and for sufficiently weak
disorder we find that (Z") /(Z )"-exp{—ck(1

k)5pN J with a—=2—dv& 1. We have only been able
to obtain results for the low moments using the heuristic
"Lifshitz" method of Sec. II. The field theory solution,
valid for k & 1+0 ( e }, cannot be extrapolated to k & 1

suggesting that a replica symmetry breaking solution
might be needed to obtain the low moments of Z.

The Lifshitz calculation for SAW's was generalized to
the case of self-avoiding D-dimensional crumpled rnani-
folds with qualitatively similar results. The main change
that occurs is that the "specific-heat" exponent a which
characterizes the essential singularities induced by the
disorder is replaced by aD =2D —d v.

In a recent publication, Meir and Harris study SAW's
in diluted environments from a different perspective. Us-

where the last equality follows if hyperscaling is valid.
The arguments from the end of the previous subsection
relating the magnetic problem to the polymer problem
can be repeated here except that the transition ternpera-
ture is measured relative to the pure system critical tem-
perature, i.e., t =1—pK. The kth-order connective con-
stant for k &)k, is then given by

' 1/dv

(3.28)

x xt~c„(0, ) ')
j N

(4. la)

while the quantities studied in Ref. 8 are defined by

G'"= SCNCN o,J ' . 4.&b

j N

Consider the simple case of k=0, then g' ' is the proba-
bility of having some walk at the origin so that y' '=p
while G' ' is the expected number of sites connected to
the origin which diverges as p ~p, . It may well be that
for arbitrary k one finds that y'"' is smooth at p, while
G'"' is singular there.

Ordinary random walks and directed random walks in
random environments are closely related to SAW's in
random environments. In both cases disorder leads to a
broad distribution for Z due to rare configurations which
dominate the moments of Z. The average partition func-
tion (Z„w) for ordinary random walks on diluted lat-
tices was obtained rigorously by Donsker and Varadhan
and later Geld-theoretic investigations ' extended the
result to all of the positive integer moments of ZRw yield-
ing

(Z" ) =z""exp[—c in( 1/p)'""+"(kN)'"'+"] (4.2)

where z is the coordination number and c is a constant
depending on the dimension. Lifshitz arguments have
been constructed' ' for the first two moments of ZR~.
An interesting feature of these arguments is that the op-
timal regions are confining in all d dimensions and have
no scatterers (b, =0 and m= 1 in the notation of Sec. II).
The size of the confining region scales as L-N '"+ '.
Confinement in a11 dimensions is permissible for RW's
but not SAW's. In contrast to the SAW result, the con-
nective constant for RW's is that of the pure system for
all moments. The stretched exponential correction arises
within the field theory from an instanton calculation and,
as pointed out by Lubensky, is a kind of Griffiths singu-
larity. The instanton calculation could be applied to
computing corrections to the leading exponential behav-
ior for the high moments of the SAW partition function.

ing field-theoretic methods similar to those developed for
the diluted Ising model they construct a 6-e expansion to
investigate the region near the percolation threshold.
They find that SAW's on percolation clusters are de-
scribed by a fixed point with new values of the critical ex-
ponents while above the percolation threshold disorder is
irrelevant. These results are consistent with ours since
above four dimensions we also predict that weak disorder
is irrelevant. The existence of a percolation fixed point
near six dimensions lends weight to the idea that the
transition from strong to weak disorder below four di-
mensions occurs at the percolation threshold though this
is not accessible via a 4-e expansion. There is, however,
an argument which runs counter to this hypothesis and
depends on a subtle difference between the class of quan-
tities studied in Ref. 8 and those studied in this work.
Let Ctv(i,j ) be the number of ¹tepSAW's from i toj in
a given environment. The quantities which we study in
Sec. III are defined by
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Directed walks are free to move in any direction in d
transverse dimensions but must move forward in one
"time" dimension. The positive integer moments of the
partition function, ZD~, for 1+1 dimensional continu-
ous directed walks in Gaussian random environments
have been obtained by Kardar with the result

(ZDw ) —exp[c, kt +c2k (k —1)t] (4.3)

where t is the walk length in the time direction. This re-
sult resembles the results for k &1 for a SAW in a ran-
dom environment in that the connective constants in-
crease as a power of k larger than unity and the first mo-
ment is trivially affected by the disorder. In contrast to
the SAW case, it has been argued that (4.3}holds for all
positive k. The results presented here for SAW's cast
doubt on the extrapolation of Eq. (4.3} from integer k to
k (1.

Note added. Two works that are not yet published

relevant to the present paper have come to our attention.
In one paper, S. P. Obukhov independently derives the
recursion relations obtained in Sec. III and from them
draws the conclusion that the free energy is controlled by
a strong disorder fixed point. In the other, J. D. Honey-
cutt and D. Thirumalai develop a Lifshitz theory for
SAW's based upon tube-shaped regions.
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