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Statistical-physical theory of multivariate temporal Suctuations:
Global characterization and temporal correlation
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The fluctuation-spectrum theory and the generalized time-correlation function method estab-
lished for the statistical characterization of univariate temporal fluctuations are extended to mul-
tivariate fluctuations by introducing the concept of the complete set of temporal fluctuations for the
overall description of dynamical behaviors of the physical system. We develop the eigenfunction ex-
pansion for relevant quantities and further construct the continued-fraction expansion. The present
approach enables us to study the explicit cross correlation among several time sequences as well as a
detailed description of the dynamical behaviors of the system.

I. INTRODUCTION

Recent studies on fluctuation dynamics, especially on
chaotic dynamics, brought about several new concepts in
statistical physics. One of the important contributions is
the multifractal theory of strange objects, ' established
first on the basis of the Renyi exponent D . A similar
approach to the study of fluctuations around the metric
entropy of chaotic dynamical systems has been formulat-
ed in Ref. 9 by utilizing generalized entropy. Another
approach to fluctuation dynamics, especially on the sta-
tistical characterization of univariate sequential fluctua-
tions, was developed as the fluctuation-spectrum
theory, ' '" by introducing the characteristic function

12, 13

The common features of the multifractal theory and
the fluctuation-spectrum theory are mainly threefold.
The first is that both of them deal with the rates describ-
ing the enhancement or the reduction of relevant quanti-
ties as the scale over which they are defined is changed.
Second, the various aspects of fluctuations of the rates
can be singled out by introducing the so-called filtering
parameter q. ' ' Third, they have the thermodynamics
formalism relevant to the global characterization of fluc-
tuations, giving no explicit information about the genera-
tion law of fluctuations. On the above third point Feigen-
baum, Jensen, and Procaccia' tried to study the correla-
tion in strange objects in connection with the global char-
acterization. On the other hand, the approach to tern-
poral correlation has been developed by the present au-
thors as the generalized time-correlation function
theory. ' ' These are the correlation problem embed-
ded in an observed strange object or in an observed
univariate time series.

The fluctuation-spectrum theory and the generalized
time-correlation function theory seem to be sufhcient in
order to statistically analyze a univariate steady time
series. However, from the viewpoint of an overall
description of the dynamical behaviors of the physical
system, the observation of univariate time series is not
necessarily sufficient. The fundamental aim of the

present paper is to develop a statistical-physical approach
to multivariate temporal fluctuations.

This paper is organized as follows. In Sec. II we briefly
describe the reason for the necessity of the study of mul-
tivariate temporal fluctuations. The statistical-physical
theory for them is developed in Sec. III, especially can-
cerning their global (long-time) statistical characteristics.
This is reconsidered in Sec. IV from the ensemble-
processing viewpoint. Such a global approach turns out
to have a formalism similar to equilibrium thermodynam-
ics (Sec. V). In Sec. VI, the relevant quantities for Mar-
kov processes are derived from first principles. It is
shown that the global aspect is determined by the largest
eigenvalue of the extended master operator H(q). Others
contribute to explicit temporal correlations. A more
practical and workable approach to the overall analyses
of multivariate temporal fluctuations is proposed in Sec.
VII as the continued-fraction expansion for the charac-
teristic function Mq(n). Two examples are illustrated in
Secs. VIII and IX. The concluding remarks are given in
Sec. X.

n

~„=—g u(j)
ll

(2.1)

converges to the long-time average a„as n is increased.
As far as we are concerned, with a univariate time series,
the statistical characterization with the fluctuation-
spectrum theory and the generalized time-correlation
function theory seems to be sufficient. However, from
the viewpoint of the characterization of the overall
dynamical behaviors of the system, we meet another
problem.

II. NECESSITY OF THE OBSERVATION
OF MULTIVARIATE TEMPORAL FLUCTUATIONS

In previous papers' ' ' we dealt with a univariate
time series (u (j)I =

tu (l), u (2),u(3), . . . I, observed
from the physical system, discussing how a scale-
dependent time average,
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(x„—p, )/pz, x„cI2=[p, ,p, +pz)

[ „—p, +p~ ] p3, x„E 3
——[pi+pe, 1]

(2.2)

(p& +p2+p3 =1). The fluctuation dynamics of local ex-
pansion rates is discussed with

lnp] ', x„E.I&
u (n)=in~ f'(x„)~= lnp2 ', x„EIz (2.3)

lnp 3 x EI3

Take a subsequence with the span n in [ u (j)), where the
state point is n, times in I, , nz times in I2, and
n3(=n n&

—n2—) times in I3. Let a' be the average
value of [ u (j)] in this region, i.e.,

a„= [n&—lnp
&

'+n2lnp2 '+(n n~ nz)l —pn—'3]

=a' . (2.4)

We cannot uniquely determine the numbers n& and n2.
So in order to determine n

&
and n 2 for a precise charac-

terization of the subsequence, we need the observation of
another scale-dependent average p„=n 'g,",v (j),
where v (n) is, e.g., the coarse-graining position,

p) /2, x„&I)
v (n) = p, +pz/2, x„&I2

p&+pz+p3/2, x„&I3
(2.5)

Now the numbers n, and nz are able to be uniquely
determined with (2.4) and

1 p& pzp„=—
n& +n2 p~+

As a simple example, let us take the three-valued Ber-
noulli map,

x„+,=f (x„)

x„/p„x„EI,—= [O,p, )
SYSTEM
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FIG. 1. Schematic figures showing the degeneracy for the ob-
servation only for a„. A univariate time series may not distin-

guish different internal states of the system.

n

p„=—g v(j),n (2.7)

the time series [v(j)j being different from Iu(j)I.
Namely, even a„ takes the same value in two subse-
quences, the observation of p„ in these subsequences may
give different values p' and p" for %&(n} and 'P&&(n), re-
spectively (Fig. 1). If the degeneracy cannot be dissolved
by observing a„and p„, one should increase the number
of other time series to be observed. This is the fundamen-
tal reason for the importance of the survey of multivari-
ate temporal fluctuations.

The above consideration suggests the introduction of a
set of temporal fluctuations (time series), which
sufficiently describe the overall dynamical characteristics
of the system. This set will be termed the complete set of
temporal fluctuations. In the above three-valued Ber-
noulli map, the complete set is composed of two different
time series, provided that we are concerned with the dy-
namics for discretized states I, , I2, and I3. As will be
discussed in Sec. V, this set can be compared with the set
of thermodynamics variables relevant for the complete
description of the thermodynamic state of the system un-

der consideration.

P3+(n n, n2) —p, +p—z+ (2.6)
III. STATISTICAL-PHYSICAL

CHARACTERIZATION OF MULTIVARIATE
TEMPORAL FLUCTUATIONS

The above example hints at the importance of the
study of multivariate temporal Quctuations for a more de-
tailed description of the system. We may set up the prob-
lem on the multivariate fluctuations in a more general
way as follows. Let qi, (n) be the internal state of the sys-
tem giving the subsequence, with the span n, where a„
takes a value between a' and a'+ d a'. Let us take anoth-
er subsequence, whose a„ is the same value as in 0',(n).
This state is called %„(n}. The fact that the a„'s for the
two subsequences are the same does not necessarily imply
that %,(n) and %„(n) are the same. Since we observe the
system through the quantity a„, the above situation sirn-

ply means that we cannot distinguish them. In this sense
the states %,(n) and %'«(n) are degenerate for the obser-
vation of a„. This degeneracy can be dissolved by
measuring the quantity

Let us consider real m-variable steady time series ex-
perirnentally observed,

[u(j) JJ"
&

=
[ (u1), (u2), (u3), . . . , (unN) I . (3.1)

They are supposed to be composed of m diferent time
series, ' i.e., (un) =c l[o&u(n), u(n), . . . , u (n)]. The m

will be hereafter called the dimension of u(n). For the
overall description of dynamical behaviors of the system,
it is desirable that these m time series constitute the corn-
plete set of temporal fluctuations. However, the follow-
ing arguments hold even if u(n) is not necessarily chosen
as the complete set.

We divide the above sequence into N subsequences,
each of which has the span n:
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Iu(J)}j=l~ fu(J)ij=n+l~ . ~ Iu(J)]j=kn+l~ '
& I (J)]j=(N —1)n+l .

The set of these subsequences constitutes the ensemble
S„. The quantity

BP q
aq

(3.1 1)

n

a„(k)=—g u((k —1)n +j)
j=1

(3.2)
where (8/Bq)„=B/Bq„, the fluctuation spectrum is given
by the Legendre transform

N
v„(a')= g 5{a„(k)—a'),

It =1
(3.3)

5(a„—a') [=+~,5((a„)„—a„')] being the 5 function.
The probability density p„(a') that a„ takes a value a' is
thus calculated by

v (a') 1
N

p„(a')= lim
" = lim —g 5(a„(k)—a') .

N k=1

(3.4)

The average of F(a„) in the ensemble S„ is given by

1 N

{F(a„))—:lim —g F{a„(k))
Nk

(k =1,2, 3, . . . , N) is the average of [u(j)j in the kth
subsequence (ensemble member). The number density of
subsequences for which an takes a value in between a'
and a'+da' is given by

o(a)=q a —P(q) . (3.12)

By inserting (3.11) into (3.12), o is alternatively written as

o(a) = ~q~q.
8 rb(q)

Bq /q/
(3.13)

where ~q~ =&q q. Combining (3.11) and (3.12) yields

c)cr(a)
aa

(3.14)

The uniqueness of the natural probability density implies

P(q=O) =0,
cr{a(q=O))=0 .

(3.15)

(3.16)

The fluctuation spectrum o(a') vanishes only for
a'=a(q=O).

The steepest-descent method is applicable when the in-
equality

F a' p„ a' a', (3.5) (3.17)

where I"„Ada'= I"„da',I" daz J"„da' A.
Especially, the order-q characteristic function is defined
by

holds for an arbitrary real vector z, z„being its pth com-
ponent. y(q) ' is the inverse matrix of g(q). The pv ele-
ment of y(q) is defined by

M (n}—= (exp(nq a„))
= f p„(a')e "&' da', (3.6)

and its inverse matrix has elements

(3.18)

P(q)= lim —inM&(n) .1

n~co n
(3.7)

where q=col(q„q2, . . . , q ) with real numbers q„
(p = 1,2, . . . , m ) and the scalar product a b =g~ la„b„.
The extensivity of na„suggests the introduction of the
similarity structure function P(q) via

Ba„a„a,
Furthermore, if we introduce the matrix yta'I by

[X{a')

(3.19)

(3.20)

Assume that p„(a') asymptotically obeys

p„(a') nex—p[ —o (a' )n]

for a large n The scala. r function o (a') defined by

1
o (a') = —lim —lnp„(a')

n~oo n

(3.8)

(3.9)

is called the fluctuation spectrum, ' and evaluates the
asymptotic generation probability of the value a' for a
large n.

Inserting the asymptotic form (3.8) into (3.6), and ap-
plying the steepest descent method, one finds

it follows that

M (n)=Q~(n)exp[/(q)n],

where

(3.22)

(3.21)

The condition (3.17) implies that all eigenvalues of g(q)
or g [a'] should be positive.

The above global characterization gives no explicit in-
formation about the temporal correlation in [u(n) I. This
can be described with the order q(generalized-) time
correlation function Q (n) (Refs. 16—18) defined through

P(q) = —min~ [o (a') —q a'] .

Namely, if we set '

(3.10)
lim —1 n&Q( )n=0 .

1

n~~ n
(3.23)
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Namely, the poles of

:" (co)= g Qz(n)cos(con)
n=0

(3.24)

(co%0) are relevant to the characteristic frequencies
Ice'"I and the damping rates ty'"[ for characteristic
motions in I u(n) I. As will be shown in Secs. VI and VII,
Q (n) is generically expanded as'

~((a„;q&)
y„,(q, n):— "= —1nllfz(n}

Bq„ Bq„Bq n

=x „(q ") (4.7)

has the meaning of the susceptibility evaluating the
change of the average (a„;q) under the infinitesimal
change of the degree of processing, indicated by the vari-
able q. The introduction of the correlation function

Q (n)=J' '+ g' J'"exp[ (i—co'"+y'")n] .
I

(3.25)
u„„(q,n)—:((a„—(a„;q))„(a„—(a„;q))„;q) (4.8)

[u„,(q, n) =u„„(q,n)] leads to the relation
IV. ENSEMBLE PROCESSING

AND PROBABILITY DENSITIES g„„(q,n)=nu„„(q, n) . (4.9)

v„(a', q}~ v„(a'}e"~' (4.1)

The probability density p„(a',q) that a„ takes a value a'
in the processed-ensemble S„(q}is obtained as

v„(a', q)
p„(a',q)= lim

N~ao N q
N(q)

lim g 5(a„(k ) —a')
N q

=p„(a')g„(a',q) . (4.2)

We turn to the ensemble processing first introduced in
Ref. 14 for a univariate time series. The majority of the
ensemble members in S„are in the peak region of p„(a'}
(the central limit theorem}. In order to magnify the fluc-
tuation characteristics of the minority in tail regions, a
new ensemble S„(q) is constructed so that the number
density of ensemble members is changed according to

This is the direct interrelation between the response func-
tion y(q, n) and the variance u(q, n). Since
a =lim„„(a„;q ), one finds

y„,(q)= lirn y„„(q;n)= lirn [nu„,(q;n)],
g —+ 00 lf —+ 00

(4.10)

which is equal to the quantity defined in (3.18). We ob-
tain

(a„;q)=a+ —lnQ (n)
1

Bq n
(4.11)

2

g„„(q,n ) =y„„(q)+ —lnQ ( n )
q„Bq„ n

(4.12)

where Q~(n) is the order-q time-correlation function
defined in (3.22).

The insertion of the asymptotic forms of (4.4) and
p„(a') into (4.2) yields the asymptotic law'

Here

N(q)= f v„(a',q)da' (4.3)

p„(a',q)-n ~ exp[ —o(a', q)n],

where

cr(a', q }=o ( a') —
q a'+ P(q)

(4.13)

enq a'
g„(a';q)= ~ (

(4.4)

is the total number of ensemble members in S„(q), and
a„(k ) is the value of a„ in the kth ensemble member of
S„(q). g„ is the processing factor,

=o (a') —o(a) — ~ (a' —a),Bo (a)
a (4.14)

will be called the order-q fluctuation spectrum'
[o'(a';0)=o(a')]. Expanding (4.14) around a'=a and
retaining the lowest-order term, one gets

o(a', q)= —,
' g g [g(q) ']„,(a' —a)„(a'—a)„, (4.15)

[g„(a',0)=1]. The average of F(a„) in the ensemble
S„(q}is calculated by

w(q)
(F(a„);q)= lim g F(a„(k})

N~ca N q

which is non-negative [Eq. (3.17)]. Therefore p„(a', q)
asymptotically takes the Gaussian form

p„(a';q) n "exp —-—"g g [y(q) ']„„
p v

= f p„(a',q)F(a')da'

[(F(a„);0)=(F(a„})].Especially,

(4.5)
X(a' —a)„(a'—a)„

(4.16)

(a„;q)= —lnM (n)
1

Bq n

The quantity defined by

(4.6) near its peak position (a'=a), i.e., for
~a' —a

~
& 0 (1/v n ). Hence a is found to be the average

of a„, taken over the processed ensemble S„(q) for large
n.
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The conventional central limit theorem result is writ-
ten, for large n, as

p„(a'} n- exp ——g g (D ')„„(a'—a)„
p, v

X (a' —a) (4.17)

where a=a(0}=(u(n} ), and D is a certain constant ma-
trix. Equation (4.16) is namely the direct generalization
of (4.17) to the processed-ensemble S„(q). The quantity
D is thus given by D =y(0)i2. Furthermore, the
asymptotic form of the generalized time-correlation func-
tion Q (n) [Eq. (3.22)] for q~0 has an explicit interrela-
tion with the conventional double time-correlation func-
tion of [u( j) ) . See Appendix A.

a univariate time-series case, we can expect a further ana-

log for a multivariate time-series case. In this section, we

first give several characteristic functions obtained by the
Legendre transforms of the similarity structure function

P as well as their physical meanings. Then we compare
the present formalism with the mathematical structure in
the equilibrium thermodynamics.

Consider Srst, for simplicity, the bivariate time series.
Let us construct a new ensemble from the original ensem-
ble S„. It consists of ensemble members of S„, whose

(a„}2 are in between az and az+daz. This is called
S„"'Iai) . Namely, all members in S„'"I a2) take the value

(a„)z=a2. Let Ms" [az) n ) be the average of

exp[ nq, (a„)i ] taken over this ensemble:

M'" I aidan )
= (exp[nq, (a„),]5((a„)2—a2) )

V. ANALOGS TO THERMODYNAMICS
= f p„(a'„a2)exp(nq, a', )d a', , (5.1)

In Ref. 10 we have pointed out an analog on the
mathematical structures in the fluctuation-spectrum
theory for univariate temporal fluctuations and in con-
ventional equilibrium thermodynamics. The thermo-
dynamics formalism for univariate temporal fluctuations
corresponds to a hydrostatic system contained in a rigid
wall, where no external work is done and whose thermo-
dynamic state is completely determined only with tem-
perature. When the wall is movable, we should add the
system volume as another thermodynamic variable.
Furthermore, when particle (constituent) numbers are
changeable, the particle numbers and the corresponding
chemical potentials are added as thermodynamic vari-
ables. In this way as a natural extension of the analog for

where p„(a', ,a2) [=p„(a')] is defined in (3.4).
We introduce a new function

A, (q„ai)= lim —1nM"'[aidan) .1

n- n
(5.2)

Inserting the asymptotic form (3.8) into (5.1) and apply-
ing the steepest-descent method, we get

A, (q „az)= —min, [o (a'„a2}—q, a', ],
1

(5.3)

where cr(a'„a2} [=o(a')] is the fluctuation spectrum.
By introducing the quantity a, , a function of q, and a2,
through

TABLE I. The characteristic (thermodynamic) functions obtained from the similarity structure func-

tion P, and their Pfaffian differential forms. Each of them is a function of independent variables given

in the middle column. g,' stands for the summation except j=1,2, and the curly brackets [q, )' and

[a, )
' mean the sets of the variables q, and a, except j= 1 and 2, respectively. For the meanings of the

functions A& and Aq, see the text.

Characteristic
functions

XJq;a;—
A, =P—q2aq

A, =P—q, a,

A3= AI —q)al
= A2 —q2a2

=P—q, a, —
q a

(=—o)

Independent
variables

q i «q2~ [q) )

qi q2 (a;)'

q„a„Ia,)'

a),qg, [a~ )

a),a2, aJ.

PfaSan
differential form

dP=a, dq, +a2dq, + g'a;dq,
J

dP=a, dq, +a,dq, —g'q, da,
J

d A, =a,dq, q, da2 g' q, d—a, —
J

dAz = q, da&+a2d—q2
—g'q, da,

J

dA, = —q, da, qzdaz g'q, d—a;—
J

dg& = —A3d —+—da2+ g' da, —1 9z

q» Ia )
1

e&
d &PAL =

—A zd ———dq&+ g' —da,
1 a2

e&
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q, = &tr(a], a2)

a&

the function A
&

is rewritten as

A](q], a2) = —o(a],a~)+q]a]

(5.4)

(5.5)

[Eq. (3.12)].
The function A, is therefore given by the Legendre

transform of ((], and is relevant to the fluctuation charac-
teristics of the "univariate" fluctuations (a„), in the en-
semble S„"'Ia&) [Eqs. (5.1) and (5.2)]. If the fluctuations
(a„)]and (a„)z are statistically independent of each oth-
er, then the function A, is obtained as

TABLE II. Two possible analogs of the present formalism to
the thermodynamics (Ref. 24). The parentheses (, ) in the first
column imply that, e.g., the entropy S is a function of U and V,

and the Massieu function 4 is a function of 1/T and p, etc. Nk
and pk are the number and the chemical potential of the kth
constituent, respectively.

Thermodynamic
variables

Temperature T

Entropy S
(U, V)

Pressure p
(magnetic field —h)

Volume V
(magnetization M)

Analog I

1

—A3(=0)

q2

Q2

Analog II

q&

—
Q&

Q2

Internal
energy U

(S, V)

Q& A3(= —o)

The variable qz has been defined by q2 =t)o(a],a2)/t)a2
[Eq. (3.14)], and the similarity structure function is given
by

]}](q)—=y(q], q2) =q]a, +q2a2 —0 (a],a~)

A](q], a2) = A ](q] )+ A ]'(aq),

where A
&

and A 2' are functions of q &
and a2, respective-

ly. In other words, if there exists a cross term of func-
tions of q, and a2 in A, , it evaluates the cross correlation
between (a„},and (a„}2. In a similar way to the above
we can define another ensemble S„' 'Ia, I, and a new
characteristic function Az(a„q2), which describes the
fluctuation characteristics of (a„)2 under the constraint
that (a„), take the value a, .

The above discussion can be straightforwardly extend-
ed to trivariate or quadrivariate time series and so on. As
was seen above, relevant characteristic (thermodynamic)
functions are obtained by the Legendre transforms of the
similarity structure function P. In Table I, thermo-
dynamic functions, their independent variables, and their
Pfaffian differential forms are summarized. The function
A ] defined as in (5.2) is relevant to the univariate fluctua-
tion (a„), in the subensemble of S„, whose other
members take values (a„) =a (j =2,3, . . . , m). Name-

ly, A ] describes the fluctuation characteristics of (a„}]in
S„on the condition that other members take values
(a„)2=a2, (a„)3=a3, . . . , (a„) =a . The function A2
is obtained in a way similar to A, . The function A3 is
namely the fluctuation spectrum [ A 3

= —cr(a )]. In
Table II, two possible analogs of the present approach to
the equilibrium thermodynamics are summarized. One
easily finds that, as expected, q„q2, . . . , q are intensive
variables and a&, a2, . . . , a are extensive ones.

Enthalpy H

(S,p)

Helmholtz
free energy F
(T, V)

Gibbs free
energy 6
(T,p)

Massieu function

Planck function

4= —G/T
(1/T,p)

Particle
numbers IN„}

Q)+ Qg
q~

Ai
( = —g])

( = —](2)

—A 1

[a, ]'

A)

Ai (=g])

VI. EIGENVALUE PROBLEM
FOR MARKOV PROCESSES

Let Ix„ I obey a stochastic process described by the
master equation

P„+](x)=f T(x, x')P„(x')dx'

—:HP„(x), (6.1)

where P„(x) is the probability density that x„ takes a
value in between x and x+dx. T(x, x') is the transition
probability density from the x' state to the x state in unit
step with the normalization condition

J T(x,x')dx=1 . (6.2)

H is the master operator. We consider the case where
u(n) evolves through the dynamical variable x„, i.e., u(n)
is a unique function of x„as

Chemical
potentials [p„j

u(n) =uIx„j .

With the steady density P, (x) satisfying

(6.3)
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P, (x)=HP, (x),
the function Mq(n) can be written as

Mq(n)= I [H(q)]"P, (x)dx,

where H(q) is the linear operator defined by

(6.4}

(6.5)

The poles of:- (co) describe the characteristic frequencies
Iioq" j and the damping rates [y'"j of motions embedded
in Iu(n) j. '

When [u(n) j consists of discrete values, more detailed
analyses are given in Appendix B, and simple examples
are illustrated in Secs. VIII and IX.

H(q)F(x) =H[eq "(*}F(x)]
"

T x, x' eq'I"'IF x' x'

[H =H(0)]
Let us consider the eigenvalue problem of H (q},'

(6.6)

H(q)g'"(x) =exp(P'")g'"(x), (6.7)

where exp[Pq("] and P'"(x) are the 1th eigenvalue
and the corresponding eigenfunction, respectively
(I =0, 1,2, . . . ). By assuming the completeness of the set

I 1t q"(x) j, the invariant probability density P, (x) is

uniquely expanded as

VII. CONTINUED-FRACTION EXPANSION OF M {n }

(n)o =M—,(n } (7.1)

The eigenfunction expansion in the preceding sections
is possible only when the generation law of [u(n)j is
known. Even when the generation law is known, howev-
er, usually it is diScult to solve the eigenvalue problem.
Furthermore, when only the numerical data are available,
such an approach is meaningless. To dissolve these em-
barrassments, we can employ the continued-fraction ex-
pansion for M (n)

Let the characteristic function

(6 8) obey the equation of motionP. (x)= y k(i) y("(x),
I n —1

(n+1)0=(1)0(n)o+ g (n —1 —j))(j)o,
j=Owhere Ikq" j are expansion coefficients. The insertion of

(6.8) into (6.5) leads to

(7.2)

M (n)= g J(&"exp(iI}q"n),
I

where

(6.9)
where (1)0=—(1)0/(0)0 and (n), is the memory kernel. 30

Equation (7.2) can be regarded as the definition of the
memory kernel ( n ), . Assume that ( n ), obeys the equa-
tion of motion

J'"=k'" g'"(x)dx . (6.10)

By noting that the quantity maxi[~exp(Pz")~]

( =exp[max, (Re(A}q(")]j is not degenerate, '6 29 the similar-

ity structure function can be set as

$(q)=maxi(Re/'")=P'o) . (6.11)

Equation (3.15) implies $0( '=0, which corresponds to the
"eigenvalue equation" (6.4}.

The generalized time-correlation function Qq(n }
defined in (3.22) thus turns out to be expanded as (3.25),
where

n —1

( n+1) =)(1) ((n) i++ (n —1 —j)z(j)), (7.3)
j=0

where (1),=(1),/(0), . (n)z is a new memory kernel.
Repeating this procedure successively, we get the set of

functions I(n)„, k =0, 1,2, . . . j, where the kth memory
function (n)k obeys

n —1

(n +1)k =(1)k(n)k+ g (n —1 —j)k+((j)k, (7.4)
j=0

with (1)„=(1)„/(0)k.This generates a new memory ker-
nel (j)k+ (. By introducing the Laplace transform

co'"= —Im(y'")

y(l) —y(q) Re(y(l)) ( )0)

(6.12)

(6.13)

I(I)

:-q(co)=Re $'
1 —exp[i (c0—~,(")—y,'"] (6.14)

The symbol g'l in (3.25) means the summation, except
1=0. The Fourier transform =q(i0) [Eq. (3.24)] is written
as

[Plk= g (n}kP"
n=0

Eq. (7.4) is solved to yield
(0)k

[P]k =
1 —p(1)k p[p)k+(—

Therefore the Laplace transform

Mq[p]= g M (n)p"=[p]o
n=0

is expanded as'

(7.5)

(7.6)

(7.7)

p'(0)
&

p'(0)2

(7.8)
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The expansion coeScients are given by the quantities
{(0)„,(1)k, k =0, 1,2, . . . ]. Since the kth step charac-
teristic function (n)k is successively determined by one-

step lower ones as

1
(n)/0+(

()
(/t +2)/& (1)k(n +1)/&

der in [exp(Pq" }]and {((t~"], we obtain

( (/)) —i —e p(y(/))
q q

(7.14)

For the evaluation of the continued-fraction expansion
from a practical standpoint, it should be discarded at a
finite order. Simple approximation methods are men-
tioned in Appendix C.

n —1

(j}k+i(" j}k
j=0

(7.9)
VIII. EXAMPLE 1: THREE-VALUED BERNOULLI

PROCESS

(n)k can be expressed in terms of quantities

(1)o,(2)o, . . . , (n +2k)o. Hence the coefficients (0)k and

(1)k are determined by the sets of quantities

{(j)oj=1,2, 3, . . . , 2k) {(j)()j =1,2, 3, . . . , 2k+1), re-

spectively. They are easily numerically obtained.
Let {(u'"I be the set of poles of the expansion (7.8). On

the assumption that Mq[p] is expanded as

g( I)

Mq[(M]= g (7.10)
/

1 —
( //, '"

{
J'"

I being the expansion coefficients, its inverse Laplace
transform yields'

(/t )
—g J(/) (p(/) )

—n

I

(7.11)

Since Mq n) is positive, the closest pole to the origin is

not degenerate and is positive. So, by setting

H/k (q) =p/exp[q r'"'1, (8.1)

where

r(3)

lnp, '

r(2)—
p) /2

in@, '

p1 +p2+p3/2

lnp, '

p(+p2/2
(8.2)

The matrix B [Eq. (B24)] is given by

The first example is the bivariate discrete-value time
series in Sec. I, generated by the three-valued Bernoulli
process. The matrix H (q) (Appendix B) has the element

p,
' '=min/(~((t' '~),

the similarity structure function is obtained as

(7.12} ln(p3/pi ) —(1+p2)/28=
ln(p, /p, ) —(1—p, )/2 (8.3)

((l(q) =in(((t(,o)) ' (7.13)

(po(o) = 1). Since we are dealing with the same problem as

in Sec. IV provided that the process is Markovian, the re-
sult (7.11) should coincide with (6.9). Arranging the or-

The eigenvalues of the generalized evolution matrix
H(q} are two zeros and one positive value. The positive
eigenvalue determines the similarity structure function
4(q»q2) [=—(t(q)l as

100
q,

FIG. 2. The similarity structure function P(q„q2) [=—(()(q)] for bivariate time series given in Sec. II generated by the three-valued
Bernoulli process. Analytic expression is given in (8.4). The parameter values are p, =0.1,p2 =0.3, and p3 = 1—

p&
—

p& =0.6.
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1
—

q,
P(q„qz ) =ln p, ' exp

1 —
ql pz

+pz exp 9'z p1+
2

1 —
ql p3

+p3 ' exp q& p1+p&+
2

One can immediately derive the thermodynamic variables
a, A „a, etc. , from (8.4). Especially the long-time aver-

age of u(n) is given by

a, (0) p, lnp, '+pzlnpz '+p3lnp3
1 (8.5)uz(0)

8.4
The thermodynamic variables derived from (8.4) are
drawn in Figs. 2 —5.

&00

FIG. 3. The averages a, and az of the fiuctuations Iu, (n)I and [uz(n)( over the processed ensemble S„(q). These are derived
from P(q „qz ) in Fig. 2 with the definition (3.11).



41 STATISTICAL-PHYSICAL THEORY OF MULTIVARIATE. . . 5311

IX. EXAMPLE 2: A STOCHASTIC MODEL

100'

q
40 0= h r' h

0 r h'
(9.1)

The next concrete system is the three-state Markovian
discrete process (Bl) with the evolution matrix

h' r 0

(h ' = 1 —h, r'= 1 2—r, 0 & h & 1, 0 & r & —,
' ). The invariant

probability distribution is immediately obtained as

r
1

2r +h
(9.2)

(b)

A,( &,.q, )
-I 80

..40

We consider the bivariate time series ut(n), u2(n), gen-
erated by the above process.

Noting that this process has a symmetry between the
first and the third states, let the first time series u~(n)
consist of three values as

u, (n)= 0
1

(9.3)

Namely, u, (n) takes —1, 0, and +1 if the state at the
step n is in the first, second, and third states, respective-
ly. ' Recalling that the time series I u, (n) I is symmetric
under the inversion of the sign, we define the new time
series Iu2(n)] by

FIG. 4. The characteristic functions A
& (q &, a2 j and

A&{a,,qz) derived from ${q,,q2) in Fig. 2 through the Legendre
transforms [Eq. (5.5) and Table I].

0
u2(n)= 0.

1

(9.4)

0(~).&2)
1 )

This is the "symmetry-breaking" time series, and is in-
dependent of tu, (n)I. So the combined time series

( u( n ) ) take three values as

(9.5)

For the above bivariate time series, the extended evolu-
tion matrix is written as

h'e ' r 0

H(q)= he ' r' he (9.6)

0 r h e q& +q2

The eigenvalues of H(q) are solutions of

(' —
aqua +bqg —cq=0,

where

(9.7)

aq=r'+h'(e ' '+e '),
b =h' e '+(r'h' rh)(e ' '+e ')—,

(9.8a)

(9.8b)

FIG. 5. The Auctuation spectrum 0. corresponding to the
similarity structure function in Fig. 2.

cq=h'(r' h)e ' . — (9.8c)

In comparison with the chaos-induced diffusion, h is
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TABLE III. Relevant quantities for the bivariate time series

for the stochastic model with the evolution matrix (9.1) (h ~0).
The 7"' and ys(

' are damPing rates aPPearing in Qz(n) [Eq.
(9.10)]. These exhibit the critical slowing-down (7~~0) near

the phase boundaries. The notation 2ql+q&(BI ») in I implies
that the damping rate 2q]+qz in phase I undergoes critical
slowing down near the boundary BI ». Near the tricitical point

Ptr ( bs 2b ) both pq and y,"' exhibit critical slowing down.

0

-b-

-2b-

0(e( e2)

ql+q2

a] (1) (2)
Yq s Yq

q]+q2+b(BI, I»)
2q]+q&{BI,»)
—2q] —qz(BI, » )
—q]+b(B»,»I)

q[ —b(B»,»I)—q] —
q2 b (BI,»I )

FIG. 6. Phase diagram for bivariate time series generated by
the stochastic model with (9.1) for h ~0. There exist three ther-
modynamic phases I, II, and III, which are clearly separated by
boundaries BI,II(2q, +q2 =0), BI,»I(q I +q2 = —b) and

B»»I(qI =b), where b = —lnr'. These phases merge together at
the tricritical point P„(b,—2b). The thermodynamic quantities
in each phase are summarized in Table III. The susceptibilities
[y„„(q)] except on three boundaries all vanish. The y„, y»,
and y22 diverge on the boundaries BI » and BI »I. On B» I», y„
diverges, and y» and g» vanish.

hereafter supposed to be appropriately small and to satis-
fy r' & h (c9 & 0). The Ith eigenvector of H (q) is obtained
as

[=exp((t)z" ) ] being the corresponding eigenvalue
(I=0,1,2).

Since we are interested mainly in the small-h case, we

first take the limit h ~0. Equation (9.7) is immediately
&I+&2 g

~ ~

solved to yield e ', e ' ', and r' Com. paring these ei-

genvalues with each other, one can determine the similar-

ity structure function (I)(q) and the generalized time-
correlation function Q (n). On the (I)-q2 plane there ap-

pear thermodynamic phases I, II, and III, as is shown in

Fig. 6. The quantities characteristic of these phases are
summarized in Table III.

For a finite but sufficiently small h, all the eigenvalues
are real when q is in the region of same order as in Fig. 6.
One should note that when (9.7) has three real solutions,
all of them are positive. Let gs(

' be the largest eigenvalue.
One gets (1 (q) =in(' ' and

(g(l) h
I &l &2

)

y( I)
( g( l) h

+
)(g( I) h )q

8
q

8 7

r(g("—h'e '
)q

y(l) ln(g(0)yg(l))( &()) (I 1 2) (9.11)

Q~(n)=J~ '+J" exp( y"'n—) +J''exp( —y' 'n),

(9.10)

(9.9) where

FIG. 7. The similarity structure function P(q„q2) [ —=P(q)] for bivariate time series generated by the stochastic model in Sec. IX
for a finite but small h. The P(q) is determined by the largest eigenvalue of the cubic equation (9.7). Since h is finite, the boundaries
among three characteristic phases are unclear. %e set h =0.25 and r=0.3 {r'= 1 —2r=0.4 and b—:—lnr' =0.916).
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Figure 7 is the similarity structure function P(q„q2)
[=—P(q)] for h=0.25 and r=0.3. The thermodynamic
quantities derived from (()(q „qz ) are drawn in Figs. 7—10.
Furthermore, the damping rates y'" and y'q

' are illus-
trated in Fig. 11.

X. CONCLUDING REMARKS

In this paper we proposed the fluctuation-spectrum
theory and the generalized time-correlation function
theory extended to multivariate temporal fluctuations.
This is based on the introduction of the concept, the com-
piete set of temporal fluctuations (time series) for the

CX)

3

FIG. 9. The characteristic functions A
& (q &,a&) and

A2(a~, q2) derived from P(q„qz) in Fig. 7 through the Legendre
transforms.

s

0.5

FIG. 8. The averages a& and a2 of the fluctuations over the
processed ensemble S„(q), derived from $(q, , q2 ) in Fig. 7. The
finiteness of h makes the boundaries among three phases un-
clear.

FIG. 10. The fluctuation spectrum o. derived from the simi-

larity structure function P in Fig. 7.
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-- 20

extension of the Qtering parameter concept found for a
univariate time series. The statistical dynamics for
~q~ &&~ and ~q~ ))Ir, a being the convergence radius of
the cumulant expansion of (t)(q), are usually quite
different from each other. The study of the overall
dynamical behaviors of the physical system turns out to
be possible by observing the statistical characteristics in
the whole regimes of q. This immediately leads to the
phase diagram for temporal fluctuations. Simple exam-
ples are given in Secs. VIII and IX.

The present approach also enables us to evaluate the
explicit cross correlation among several time series. A
brief discussion for the cross correlation has been given in
Sec. V. Here we give an alternative method for studying
it. Let us define the similarity structure function for the
pth time series by

1
n

qi„(q)—:)im —ln exp q X ««(i)
n~ oo 7f j=1

(10.1)

This is determined by the similarity structure function P
in (3.7) as

(10.2)

where e" is the unit vector with the vth component
(e")„=5„„.We define the function P""(q)by

10

FIG. 11. The q dependences of the damping rates yq
' and

y(q
' for the model (9.1) [Eq. (9.11)],where the parameter values

are the same as in Fig. 7. The damping rates in the convention-

al double-time-correlation function are given by yo" and yo '. 1.e.,

n

Me(n)- ii exp q„X «„(j) )
exp[/""(q)n],

@=1 j=1

(10.3)

overall description of the dynamical behaviors of the sys-
tern under consideration. This new concept is clearly the
extension of the set of thermodynamic variables in the
equilibrium thermodynamics. One should remark that to
consider the complete set of temporal fluctuations and to
study temporal correlation in a univariate time series are
quite different subjects (Sec. II). The main part of the
present approach can be straightforwardly extended to
spatially homogeneous fluctuations.

A global characterization partially similar to that in
Sec. III for the fluctuations of local expansion rates in
two-dimensional chaotic maps has been discussed in Ref.
34. Furthermore, very recently Honda and Matsushita
proposed a theory to obtain the complete spectra of
singularities by introducing a new variable to distinguish
strange sets. Their study implies the necessity of an addi-
tional variable for a more precise description of strange
sets. In this way we stand at the stage where we can ex-
pect the new development of the multifractal theory and
the fluctuation-spectrum theory by observing multivari-
ate fluctuations.

The most remarkable aspect of the present approach in
comparing with conventional analyses of multivariate
fluctuations is that the variable q, which is not contained
in the time series [ u(n) ), plays the central role. The vari-
able q singles out various statistical characteristics em-
bedded in multivariate temporal fluctuations. This is the

m

$""(q)=P(q)—g P(q„e") .
p=l

(10.4)

If components (a„)i, (a„)2, . . . , (a„) are statistically
independent of each other, P""(q) vanishes. So (t)""'(q)
turns out to measure the explicit cross correlation, more
precisely speaking, the global cross correlation, among
multivariate time series.

As shown in Refs. 36 and 37, the thermodynamics vari-
ables and the generalized time-correlation function obey
the static and dynamic scaling laws for univariate time
series for the relevant variables near several chaotic tran-
sition points. This suggests that in the case of multivari-
ate time series we may also expect the static and dynamic
scaling laws for (()(q), :-q(co), etc. , near the transition
points. Such studies are planned to be reported else-
where.

The present formalism has a close relation with other
statistical-mechanical formalisms for the global charac-
terization of relevant fluctuations. Recently, Crutchfield
and Young proposed another similar formalism for in-
formation processing complexity of nonlinear dynamical
systems by introducing a measure of complexity different
from the information-theoretic entropies and dimensions.
Thus it seems that the statistical-thermodynamics ap-
proach is able to be the powerful tool for the global char-
acterization of temporal fluctuations as in nonlinear-
dynamical systems.
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C„,(j —1):——,'[(5u„(j)5u„(l))+(5u„(j)5u„(l))] (Al)

APPENDIX A: INTERRELATION BETWEEN THE
CONVENTIONAL DOUBLE-TIME-CORRELATION
FUNCTION AND THE q —+0 STATISTICS OF Mq(n )

The symmetrized double-time-correlation function
defined by

P„„(~)= g C„„(n)cos(con )

sinh(igloo" +yo" )

" sinh [(igloo" +yo" }/2]+sin (co/2)

(A7)

One finds that characteristic frequencies I roz" I and
damping rates [yz" J in the conventional double-time-
correlation function are completely determined by poles
of:- (co) for the limit q~O. Especially, (A7) for co~0 is
written as

= b, „[ny„„(q~0,n ) ]

=b,„[n v„„(q~O,n)], (A2)

[5u„:—u„—(u„)=u„—a„(0)], is an even function of
the time difference j —l, because of the stationarity of the
time series.

It is an easy task to see the relations, for n ~ 1,

8 lnM (n)
C„„(n)=6„ lim

q-o Bq„Bq,

8 ingq(n)=5„ lim
q o Bq Bq„

P&„(co-+0)=g&„(q~O)

j sinh( i~o +y )

= g'E'"coth
I

iN'"+lNp gp
2

The susceptibility for q=0 is expanded as

g„,(0, n) =g„„(0)

——y' j„"„'[1—exp[ —(icoot" +y,'")n] ) .
I

(A8)

(A9)

With the linear operator h„defined through
APPENDIX B: MARKOVIAN DISCRETE-VALUE

PROCESSES

and

b, „G(n) =—[G(n +1)—2G(n)+G(n —1)]/2,

8 lnMq(n)—lirn =y„,(q~O, n)
n q-o Bq„Bq„

=nv„„(q~O, n)

In this appendix we consider an L-state Markov pro-
cess. When the state at step n is in the 1th, u(n) takes the
value r'" [=col(r' ', r2", . . . , r'")] (!=1,2, . . . , L) Let.
HIk be the transition probability from the kth state to the
!th state in unit step (g&,Hlk =1). The master equation
for P„'", the probability that the state at step n is in the
1th state, is written as

n n=—g QC„„(j—I).
j=11=1

(A3) L
P„'",= g H,„P„'"',

k=1
(Bl)

In this sense C„,(n) and the q~O statistics of Mq(n) are
equivalent to each other. '

We first note that on the assumption of the expansion
(3.25) the quantity L

Mq(n)= g [[H(q)]"P,]&, (B2)

(gf,P„'"= 1 }. The characteristic function M ( n ) is ob-
tained as

8 8q 0 qp qv
(A4)

where

remains finite and that limq o Jq" =limq oBJq" /Bq„=0
for lAO. This can be easily seen with the cumulant ex-
pansion for Mq(n). The insertion of the expansion (3.25)
into (A2) yields

Hlk ( q }=H/k fq

with

( I) exp( q. r( I)
)

(B3)

(B4)

C„(n)= g'E„"„'exp[ (igloo" +yo—")n]
I

with the expansion coeScient' '
(I)+ ( I)

~(I) 4j(I) sinh2pv pv 2

(A5)

(A6)

L
p(l) ~ ~ p(k)

Ik
k=1

(B5)

Let E(f'",f ',
q. . . , f' ') be an eigenvalue of the ma-

and P, =col(P',",P„', . . . , P', ') is the steady probabili-
ty distribution satisfying
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trix H (q). One easily observes that E satisfies
[R (q) '] P'j' (815)

—gg (g
—1f(1) (—1f(2)

g
—lf (L)

) (86)

with an arbitrary g. The similarity structure function

P(q) is therefore given in the form

P(q) =ln[eq' s (wq}],

with wq=col(w"', u)' ', . . . , u)' "),where

(87)

=exp[q. (r —r )] (1 = 1,2, . . . , L —1) (88)

and we have set g=fq
' in (86). The quantity

exp(q r' ')s(w~ ) is the largest eigenvalue of H(q). So we
obtain

r(L) + (r(l) r(L) )
Bins(w )

(I)1=1 nWq
(89)

X(r„r„)—() lns(wq)

() lnw'"() lnw("'
q q

(810}

In order to carry out Legendre transforms of ((}, one
should solve q, , q2, . . . , q as functions of a„a2, . . . , a
by inversely solving (89). Since there are m independent
equations connecting q with e, one can uniquely deter-
mine q in terms of a for any m. However, repeating the
discussion similar to that in Sec. II, one easily sees that it
is sufficient to observe (L —1) independent time series for
the complete description of the L-state discrete process.
Especially, if m &L —1, then [m (L —1)] t—ime series
do not give independent information. Hereafter in this
appendix the dimension of u(n) is therefore chosen as

(p, =1,2, . . . , m). The susceptibility matrix is determined
as

L —1L —1

(„(l) „( ))
1=1 k=1

where R (q) is the matrix with the jl element (g" "),
Let us hereafter consider a purely random process,

where the evolution matrix has the element

+1k P/ (816)

The invariant probability is immediately obtained as

P(1) —p (817)

L

X plf,'" (818)

and therefore

L

y p r(l)f (I)

1=1a=
y pf(l)
1=1

L —1

r())u) ( 1) +p r(L)

1=1
L —1

Pl Wq +PL
1=1

Especially the long-time average of u(n) is given by

L
a(q=0)= g plr'" .

1=1

Equation (819) is solved to yield

(819)

(820)

wz" = [U(a) '(r' ' —a)]l —= gl(a) ( &0) . (821)
Pl

'

There is only one nonvanishing, positive eigenvalue of
H(q). So Qq(n)=1. The logarithm of the nonzero ei-

genvalue determines (t, (q) as

m=L —1. (811)
where U(a) is the (L —1}X(L—1) matrix with the ele-
ment

L —1

p —y k (I) y(l)
1=0

into (82) gives (6.9) with

(813)

One should note that this is equivalent to the condition
that the quantities wq pwq )wq

" are uniquely
solved as functions of a, ,a2, . . . , aL ) in (89).

Now we turn to the correlation problem. In the
present process the eigenvalue equation (6.7) is written as

H (q)y(() —exp(y(() )y(l) (812)

with the 1th eigenvector 1flq" (1=0,1,2, . . . , L —1). The
zeroth eigenvalue is chosen as the largest one, i.e.,

(0) .&(L)
exp(((}~ ') =eq' s(wq). Inserting the expansion

U(k«) =a) rl"'—
Combining (88) with (821) gives

L —1 pL
ql

= g (8 ')(kin gk(a)
k=1 Pk

where the matrix B has the element

(822)

(823)

L
~(a') = y ~((a')ln

1=1
(825)

B)k —fk Tk (824)

A slight calculation after the insertion of (823) into (3.12)
with (818) yields the fiuctuation spectrum

m, (a')

L
J(l) —k (I) y (y(l) )q q j '

j=1

The expansion coefficients I kq" I are determined by

(814}
L —1

~l(a ) = y (ak rk )(~ }kl
k=1

(826)
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for l =1,2, . . . , L —1 and

L —1

nc(a')—= 1 —g n, (a. ') .
1=1

One easily finds

La= ~, n r"].
1=1

(B27)

(B28)
(0)~=0 . (Cl)

card approximations. '

The simplest approximation is to retain only one pole
by assuming (0),=0, which leads to P(q) = ln(1)0
=lnM (1) and Q (n)=1. This corresponds to the corn-

plete neglect of temporal correlation.
The lowest-order approximation containing temporal

correlation is the two-pole approximation, where

Employing the inequality x lnx ~ x —1, we can prove

o(a') &0 . (B29)

The equality holds only when a' satisfies

(a') =p, (B30)

(I =1,2, . . . , L). The a' giving (B30) is identical to a(0)
in (B20), the long-time average of u(n). For a'=a(0),
(B28) reduces to (B20). One therefore obtains

This immediately leads to

aq+ (a q 4b —)
'~

P(q) =ln
2

J'+'+ J(q 'exp( —
yqn) (bq & 0)

Q (n)= J' '+J' '( —1)"exp( yq—n) (bq (0)
where

(C3)

L —1

~)«')=p)+ X [a'k ak(0—)](& ')k)
k=1

for 1 =1,2, . . . , L —l.
Finally the susceptibilities are expanded as

—2$(q) L L

XPv(q) 2 g g PIPk(r)I rP )

1=1k =1

x (r(l) (k) )f(l)f (k)
v v q q

L L
(„() r( ))

1=1 k =1

(B31)

(B32)

a =(1)()+(1)),

bq =(1)()(1))—(0)),
g(+) —

1 J(—)

(1),—aq/2
( &0),

(a 2 —4b )) ~2
q q

(&0) .
a +(a 4b )'—

y =ln
a —(a 4b )'~z—

(C4a)

(C4b)

(C4c)

(C4d)

X(r'„"—r'„"')n.,(a' )n„(a') . (B33)
The next is the three-pole approximation obtained by

setting

Since n) (a') is a linear function of a', g&„Ia'
I is the

quadratic function of a'. (0)3=0 . (C5)

APPENDIX C: FINITE-POLK APPROXIMATIONS
OF THE CONTINUED-FRACTION EXPANSION

From a practical viewpoint, the infinite series of the
continued-fraction expansion should be discarded at a
finite order. Hereafter we present a few low-order dis-

I

The cubic equation Mq[p, ] '=0 has two types of solu-

tions: (i) three real solutions, and (ii) one real and a pair
of complex-conjugate solutions. When three real solu-

tions exist, the one that is the closest to the origin deter-
mines P(q). The generalized time-correlation function is

given as

J' '+J"'exp( —y"'n)+ J' 'exp( —y' n)q' q'
q

Q (n)= J' '+J"'( —1)"exp( —y"'n)+J' 'exp( y' 'n), —
J' '+( —1)"[J'"exp(—y"'n)+ J' 'exp( —

yq 'n)],

(C6a)

(C6b)

(C6c)

Q (n)= J' '+2ReI Jq"exp[ (icoq+yq)n])—, (C7)

where co is the characteristic frequency and y (&0) is

yq" and yq
' being positive, where (C6a) —(C6c) corre-

spond to three-positive, one-negative and two-positive,
and two-negative and one-positive solutions, respectively.
On the other hand, when there exist a pair of complex-
conjugate solutions, the real solution, which should be
positive, is larger than the absolute value of the complex
solution, and determines P(q). The correlation function

Qq(n) is expanded as

the inverse lifetime.
In general the X-pole approximation is given by setting

(0)& 0 (C8)

Increasing the number of poles, we can successively take
into account the higher-order contributions. This is espe-
cially efficient when finite poles are dominant in the sys-
tem dynamics. %hen an infinite number of poles contrib-
ute to the continued-fraction expansion, as near the inter-
mittency chaos transitions, the above perturbative expan-
sion may not converge.
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