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The incoming interaction picture is introduced in accordance with the adiabatic hypothesis. A
generalized Wick s theorem and, accordingly, a real-time formalism of perturbation theory at finite

temperatures are constructed for the closed-time-path Green s functions. This new approach is il-

lustrated in terms of the simple case of an electron-phonon system.

I. INTRODUCTION II. THE INCOMING INTERACTION PICTURE

Because of the difficulties in evaluating infinite sums
over discrete frequencies and in performing analytical
continuations in the imaginary time formalism of pertur-
bation theory at finite temperatures, it is desirable to de-
velop a real-time one. Many authors have attempted
this. ' We would like to present an alternative based on
a new interaction picture and a generalized Wick's
theorem. The new interaction picture in which the free
fields are proved to be the incoming fields coincides with
the Heisenberg one at t = —~. Therefore, it is exactly
the incoming one.

As we are going to show, the interaction picture em-
ployed in the book of Abrikosov and his coauthors is,
indeed, the one coinciding with the Heisenberg picture at
t = —~. To our knowledge, Abrikosov et a/. first made
use of it, and it was followed widely thereafter in many
later works, in particular, in the theory of closed-time-
path Green's functions (CTPGF). ' However, it was not
recognized as a novel one but, on the contrary, was in-
correctly identified as the usual one, coinciding with the
Heisenberg picture at t=0. ' The incoming fields are
also well known in quantum field theory, but they have
never been introduced manifestly in connection with pic-
ture transformations.

We will first show in Sec. II that the interaction picture
defined to coincide with the Heisenberg picture at
t = —~ is no longer the usual one, but the incoming one.
Section III formulates a generalized Wick theorem, util-
izing special properties of incoming operators. In that
section a Dyson equation will be generally established,
too. Both the generalized Wick theorem and the Dyson
equation are expressed in terms of CTPGF. The CTPGF
are then transformed into the retarded Green's functions
for ease of practical calculations. Lastly, applications of
this real-time approach to the simple problem of
electron-phonon interaction are discussed in Sec. IV, for
illustrative purposes.

In the book of Abrikosov and his coauthors, the in-
teraction and Heisenberg pictures are related through the
following transformations:

~a, t &t = U(t, —ao )~a &H,

At(x) = U(t, —ao ) AH(x) U '(t, —ao ),
(2.1)

(2.2)

U( t, to ) = T exp i I H;„,t—(t')dt'
0

(2.3)

with H;„,t(t) the interaction Hamiltonian in interaction
picture. The interaction picture prescribed by (2.1)—(2.3)
has been widely used in statistical physics, in particular,
in the theory of CTPGF. ' However, there remains an
open question which has escaped the attention of many
authors. What is the explicit form of ;H„, (t1)'? Or, does
it actually take the usual form

(2.4)

in Ref. 3. This point needs clarification.
For this purpose, let us reexamine the picture transfor-

mations. We first write the relations between the
Schrodinger and Heisenberg pictures

~a &H =e' '~a, t &s,

AH(x, t)=e' 'A (x)e

(2.5)

(2.6)

We then introduce the interaction picture which is relat-
ed to the Schrodinger picture through the relations

~a, t &,=R(t)~a, t &s,

A, (x, t)=R (t)As(x)R '(t),
(2.7)

(2.g)

where ~a, t & stands for the state vector and A (x), the
field operator. The subscripts in (2.1) and (2.2) are self-
evident. In Eqs. (2.1) and (2.2) the evolution operator U
is given by
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~R( ) = R( )Hl t pg (2.9)

where R (t) is a unitary operator to be determined. We

require R (t) to obey the customary equation

u (t )
—etHtU(0 )

—tHt (2.23)

Equations (2.12) and (2.22) mean that Eq. (2.14) is a func-
tional equation to be solved self-consistently. Its solution
can be easily obtained by inspection. Let us set

or

BR (t)
at

(2.10)
R'"(t) =e' 'U(0, —oo ), (2.24)

with the operator U(0, —oo) still defined by Eqs. (2.3)
and (2.4), then

since R (t) must be unitary. The equation

(2.11)

which is a solution of Eq. (2.9), can be verified with the
help of the relation

can then be derived from Eq. (2.7), in which

H;„„(t)=R (t)H;„,sR '(t) .

A formal solution of Eq. (2.11) is

~a, t), =u(t, t )~a, to)t,
with

r

u(t, t o)= Texp i f—H;„,t(t')dt'
0

(2.12)

(2.13)

(2.14)

HU(0, —oo )= U(0, —oo )Ho .

From Eq. (2.23) we have

u(t, to)=e' 'U(0, —oo)e ' U '(0, —oo)e

which is just the solution of the differential equation

—u(t, t, ) = iH,'"„„—(t)u (t, t, ),

(2.25)

(2.26)

(2.27)

i At(x)—[ At(x) Hot(t)],
Bt

Hot(t) =R (t)HosR '(t) .

(2.15)

(2.16)

The solutions of Eq. (2.9) depend on initial conditions.
The usual way is to assign

Taking the partial derivative of Eq. (2.8) with respect to
time leads, with the help of Eqs. (2.9) and (2.10), to

satisfying the condition u ( to, to ) =I, as expected, with

H;'„",t(t) =e'8'U(0, —oo )H,„,s U '(0, —oo )e 'H' . (2.28)

The operator (2.28) is evidently different from that given

by Eq. (2.4), implying that the operator (2.24) is an in-

dependent solution of Eq. (2.9) under different initial con-
ditions and must not be confused with the operator
(2.18). The important thing is that the free field in this
interaction picture is

R (0)=I,
which yields the known solution

(2.17) A (x)=e' 'U(0 —oo)e ' 'A (x)e' 'U '(0 —oo)e

= A;„(x) (2.29)

R (t)=e (2.18)

~a —~ &I=~a &H

It follows from Eq. (2.13) that

~a, t &, =u (t, —~ )~a)„.
The transformation for the operator is, accordingly,

At(x)=u (t, —oo )AH(x)u '(t, —oo ) .

(2.19)

(2.20)

(2.21)

Substitution of Eq. (2.5) into Eq. (2.20) and comparison
with Eq. (2.7) yields (where "in" denotes incoming)

R'"(t)=u(t, —oo )e' '. (2.22)

This is just the unitary operator transforming the
Schrodinger picture into the usual interaction picture. In
this case, the three pictures, the interaction, Schrodinger,
and Heisenberg, all coincide at t =0. However, the usual
interaction picture defined by the operator (2.18) is not
the proper one useful in finite-temperature statistical
physics, e.g., in the theory of CTPGF. A better choice is
to define another interaction picture coinciding with the
Heisenberg picture at t = —~, in accordance with the
adiabatic hypothesis. In other words, one can impose the
initial condition, requiring

which is just the in-field known in quantum field theory
having the properties

At(x, t)=e' 'At(x, O)e

aA, (x)
=i[H, At(x)] .

(2.30)

(2.31)

Equation (2.31) is also the free field equation of motion,
because

Hot(t)=e' 'U(0, —oo)HOU '(0, —oo)e ' '=H .

(2.32)
So far we have proved that the correct interaction picture
prescribed by Eqs. (2.1)—(2.3) is the one defined by the
operator (2.24), which we call the incoming interaction
picture, with the U matrix employed in the book of Abri-
kosov et al. In the above discussion we distinguish the
incoming interaction picture from the usual one with

help of a superscript "in."
It is easier to work out the perturbation expansion in

the incoming interaction picture even in the case of zero
temperature. For instance, a full Green's function

G(x, ,x2, . . . , x„)=(O~TAH(x, )AH(x2) AH(x„)~0)

(2.33)
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can be expressed in terms of incoming operators

G(x„x2, . . . , x„)
=&OIS TA;„(x, )A;„(x2) ' ' ' A; (x, )SlO&, (2.34)

where

the chemical potential, and

N= f d x p (x)y(x), (3.2)

the particle number operator. The Green's function is
defined by

S=u (~, —ao) . (2.35)
G (x ))x2). . . ) x„)

Equation (2.34} is then reduced to

G(x))x2). . . )x„)

=(O~TA;„(x, )A;„(x ) A;„(x„)S~O&, , (2.37)

where the subscript c means that the vacuum diagrams
are to be omitted in the expansion of (2.37}. The scatter-
ing problems can be treated similarly. We consider, for
instance, the annihilation of positron-electron pair in
QED. The scattering amplitude is

lim (Ola~ (k~, t')a~ (k2, t'}c, (p& t}d, (p2, t)IO&,

(2.38)

where az stands for the destruction operator of a photon
with polarization A. , and ct,dt are the creation operators
of an electron and positron of spin r, respectively. All of
them are Heisenberg operators. We then write (2.38) in
terms of incoming operators to give

lim (O~TaI„" (k&, t') aP (kz, t')c„'" (p&, t)d„'" (pq, t)S~O&,

(2.39)

with

In the absence of an external field, ~0& and S~O& differ
only by a phase factor

(2.36)

=Tr[pT A;„(x, ) A;„(x2) A;„(x„)S], (3.5)

where

Sp Tp exp —i 0',"„, t t
P

(3.6}

is the S matrix along the closed time path, with the un-
derstanding that the interaction on the positive time
branch is distinguishable from that on the negative time
branch under the effect of T . It can be shown, by con-
servation of particle number, that

=Tr[pTAH(x, )AH(x2) . AH(x„)] . (3.3)

It is impossible to express Eq. (3.3) in terms of incoming
operators as in Eq. (2.37) because there does not exist a
simple relation like Eq. (3.36) in problems at finite tem-
peratures. The way out is to introduce the CTPGF, and
Eq. (3.3}is then generalized to

G (x))x2). . . )xq)

=Tr[p&p AH(x/)AH(xp) ' ' ' AH(x, )] (3 4}

where T~ is the ordering operator along the closed time
path ( —00~~~ —ao). It is now ready to transform
Eq. (3.4) into the incoming interaction picture to give

G (x„x2, . . . , x„)

r

S=Texp i f d x( ——ie)1();„(x)A;„(x)1i);„(x)
)

(2.40)
[N, U(t, to)]=0, (3.7)

The calculation of (2.39) is now a routine procedure, and
the result, apart from an unimportant phase factor, is
identical to that in ordinary quantum field theory.

We conclude, therefore, that, for the perturbation ex-
pansions at zero temperature, the two interaction pic-
tures, the incoming one and the usual one defined by the
operator (2.9), are equivalent. However, as we are going
to show, they are quite different for the perturbation ex-
pansions at finite temperatures.

III. A GENERALIZED WICK THEOREM

Wick's theorem is essential for perturbation expan-
sions. We give here a generalized Wick theorem in real-
time formalism at finite temperatures. We consider a
thermal equilibrium system with a grand-canonical densi-
ty matrix

which leads to

N =fd x p;„(x)y;„(x), (3.8)

p 'A;„(x)p=e ~"A;„(x,t —ip), (3.9)

in which either A, =l when A;„(x)=y;„(x) or A, = —1

when A;„(x)=y;„(x). One obtains from Eq. (3.9)

pA;„( )=xK(t, (, )[p), A;„(x)]+,
with

(3.10)

as can be seen from Eq. (2.26).
Equations (3.8) and (2.30) give rise to the useful rela-

tion

p =exp[PF P(H pN }], — — (3.1)
K ( t, A ) = 1 + exp i p Ap—p, — —

Bt
(3.11)

where F is the thermodynamic potential of the system, p Starting from the identity
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Trj[p, A(xi)]+A(x2) A(x„)]=Trjp[A(x, ), A(x, )]—A(x, ) A(x„))

+TrjpA(x~)[A(x, ), A(x, )]+ A(x~) A(x„)I

+ ( 1) TrjpA (x~) A (x„,)[A (x, ), A (x„)]+I,
we arrive, by using Eq. (3.10), at

Tr[pA;„(xi)A;„(x2) A;„(x„)]=K(t&,A)(Trjp[A;„(x, ), A;„(x2)]+A,„(x3) . A,„(x„)

+ (+1)"TrjpA;„(x~) A,„(x„,)[A;„(x,), A;„(x„)]+I) .

(3.12)

(3.13)

In particular,

Tr[p A;„(x, ) A;„(x2 )]=K (t „A,)[ A;„(x, ), A;„(x2 )]+
={A,„(x,)A;„(xz)) .

It is easy to see from Eq. (3.10) that

(3.14)

Tr[pA;„(x)]=0 . (3.15)

We, therefore, need only to consider the case of even n in Eq. (3.13), which is reduced, by the repeated application of
Eq. (3.10), to

Tr[pA;„(x, ) A;„(x„)]= g (+1) (A;„(x, )A;„(x, )) (A;„(x, )A;„(x )),
~ J 1 ~n

(3.16)

where p(j, j„) is the permutation to arrange (1, . . . , n) into the order (j, , . . . , j„). We obtain finally from Eq.
(3.16) the generalized Wick theorem

Tr[pT A;„(xi). A;„(x„)]=
t J 1 Jn

(+1) (T A;„(x )A;„(x )) (T A;„(xi )A;„(xi )), (3.17)

in which the ininus sign is for bosons and the plus sign for fermions. The generalized Wick theorem (3.17) and the per-
turbative expression (3.5) form the basis of our new perturbation theory at finite temperatures in terms of real-time
CTPFG.

Before going on further to applications of this new approach, it is useful to discuss a generalized Dyson equation.
The generating functional of Green s functions serves this purpose properly, and it can be constructed generally, in the
interaction picture, as

Z(J J )=Tr pT exp iI,„,(y, , tp;)+i f d x[J (x)y, (x)+y;(x)J(x)] (3.18)

where we have set p, (x ) =—y;„(y) and I;„, is defined by

I;„,(q;, y, )
= —f d x&;„,[q&, (x),g, (x)], (3.19)

with &;„,the density of the interaction Hamiltonian of the system. As usual, Eq. (3.18) can be expressed as

Z(J,J )=exp iI,„, &, Tr pT exp i d x[J ( )yx, ( )xy+, (i )xJ(x)]
' —i6 +E6

5J ~ . p
(3.20)

which can be reduced, with the help of the Wick theorem (3.17) to

Z(J,Jt)=exp iI;„,
—E6 +16

6J exp i f d"xd yJ—(x)G (x,y)J(y) (3.21)
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in which

GP(,y) = —'( T y;( )y;(y)) (3.22)

IV. FEYNMAN RULES FOR ELECTRON-PHONON
INTERACTING SYSTEM

is the free propagator along the closed time path. The
full propagator is given by

For illustrative purposes, we consider the simple prob-
lem of electron-phonon system. The interaction Hamil-
tonian reads

+5 lnZ(J, J )

i5J (x)5J(y) g Jt p

(3.23) H;„,= g g(q)a, (k+q)a, (k)y(q),
k, S,q

(4.1)

Performing the functional derivative of Eq. (3.21), the fol-
lowing equation can be derived straightforwardly:

G (x,y)=G (x,y)+ f d z, d z2G~(x, z, )

XR (z&,z2)G (z2,y), (3.24)

where a, and a,t are destruction and creation operators of
electrons with spin s, and

q(q)=b(q)+b ( —q) (4.2)

is the phonon operator. The coupling constant has the
property

or in matrix notation, g'(q)=g( —q) . (4.3)
G =G+GRG

with R (x,y) denoting

R (x,y)= i (T j;(—x)j; (y)S )

5 I;„t(V,,t; )

5y;(y)5y;(x)

where

j, (x)=—
5$;(x)

5I;„,(t;,fk )

j; (x)=+

(3.25)

(3.26)

(3.27)

(3.28}

According to (3.30), the Dyson equations are (for the sake
of simplicity, the electron spin indices will be omitted
hereafter}

G (k, t, —t, )=Gp(k, t, t, )+f dr,—dr, Gp(k, t, r, )—
XX (k, r, —rz)

XG, (k, r, —t, ) . (4.4)

D~(q, t, t )z=D—~(q, t, t, )+f d—r,dr2Dp(q, t, —7, )
P

X IIp(q, ri —r2)

XD (q, r2 —tz), (4.5)

and

S~ = T~exp[iI;„,(y;, g; )] . (3.29)

Equations (3.26) and (3.27) apply to both bosons and fer-
mions, whereas in Eq. (3.28) the minus (plus) sign should
be taken in the case of bosons (fermions). Equation (3.25)
can be cast into the usual form of Dyson's equation

where

G'(k, t, t, )= i—(T~a—, (k, t, )a, (k, t, }),
6 (k, t, t2)= i (, T—pa(k,—ti)a (k, t2))

(4.6)

(4.7)

are the free and full electron propagators, respectively,
and

(3.30)

where we obtain by comparison of Eqs. (3.30) and (3.25)

Dp(q, t, —t2)= i( Tpq—r;(q, ti )qr,.(q, t2)),
Dp(q, ti, t2)= i ( Tpy(—q, tt )gr (q, t2))

(4.8)

(4.9)

X (x,y)=JR(x,y)j, p, (3.31)

with the subscript 1PI implying the X (x,y) is the one-
particle-irreducible part of R (x,y).

The perturbation expansion is in terms of CTPGF.
But for practical calculations, it is more convenient to
employ the retarded Green's functions. According to the
relations between the CTPGF, the retarded, advanced,
and causal functions, Eq. (3.30), can be transformed into

X (k, t, t )= [ i—( T j;—(k, t, )j;(k, t )S )). . .
II (q, t, t2}=t i(T Q;—(q, t,—)Q;(q, t )S ))&p&

(4.10)

(4.11)

with

are the free and full phonon propagators. The self-energy
parts are given by

G, =G, +G„X„G„,
where the retarded functions are defined by

G„=GF G+

(3.32)

(3.33)

X„=XF—X+ (3.34)
It is obvious that despite the fact that our theory is for-
mulated in coordinate space, it is valid in momentum
space as well.

j(k, t)= gg'(q)a(k+q, t)y (q, t),

jt(k, t ) = g g(q)a t(k+q, t )tp(q, t ),
q

Q(q, t)= gg*(q)a (k —q, t)a(k, t),
k

Qt(q, t)= gg(q) t(ka+q, t) (ka, t) .
k

(4.12)

(4.13}

(4.14)

(4.15)
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To the lowest order, the electron self-energy part is r
q

=& g Ig(q)l G~(k+q, t( t,—)D'(q, t, —t, ),
q

(4.16)
k+q

t2

(4. 17)

which can be easily obtained from Eq. (4.10) by using the
generalized Wick theorem (3.17). The Feynman diagram
corresponding to (4.16) is then

where the solid and dashed lines represent free electron
and phonon propagators, respectively. The next-order
contribution to the electron self-energy is given by

y(2)(k t t ) t / ~ (
1

k+q2 k+q, +q~
f) +

k+q)

q
/' L

q

k+q2 k+q, +q2 k+q,

f2 (4.18)

It is clear that the Feynman rules are similar to those in
the perturbation theory at zero temperature. It is natural
because the generalized Wick theorem is, as we have seen
in Sec. III, exactly parallel to that at zero temperature.

The single-time Green's functions are now needed for
practical calculations. Following the definition (4.6), it is
easy to show, with the help of the basic relation (3.14),
that

d~(q, t, t2) = i (—T~b, (—q, t, )b, (q, t2) ),
which leads to

D (q)=d (q)+d (
—q), a=F,F,r, a

D+ (q)=d+ (q)+do+( —q) .

(4.27)

(4.28)

(4.29)

The single-time Green's functions for phonons can be de-
rived in a similar manner with the result

GFO(k) =[1—f(k)]G„(k)+f(k)G, (k)

GFO(k ) = —[1—f (k)]G, (k) —f (k)G, (k),

(4.19)

(4.20) dF(q) = [1+n(q)]df(q) —n(q)d, (q), (4.30)

Go~ (k) =i2m f(k)5(ko —E(k)),

G + (k) = i 2m [1—f—(k)]5(ko —E(k) ),
where

G„(k)= [ko —E(k )+i0+ ]

G, (k) = [ko E(k) i 0+ ]— —

(4.21)

(4.22)

(4.23)

dF = —[1+n (q)]d, (q)+n(q)d, (q),

d+ (q) = i 2mn(q—)5(qo.—co(q)),

d + (q) = —i 2m [1+n (q) ]5(qo —co(q) ),
where

(4.31)

(4.32)

(4.33)

f(k)= [1+exp[PE(k)]j

with

(4.24)

are the retarded and advanced free Green's functions, re-
spectively, and f(k) is the Fermi distribution function

and

d„(q)= [qo to(q) +i 0+—]
d, (q)= [qo co(q) —iO+]—

(4.34)

E(k)= k~ —
(M .

1

2m
(4.25)

n (q) = [exp[Pro(q)] —1 j

with

(4.35}

The phonon propagator can be expressed as

D (q, t, tz)=d (q—, t, —t2)+d ( —q, tz t, ), —

where

(4.26}

co(q) =
[q~ .

We are ready now to calculate the electron self-energy.
We have from Eqs. (3.34) and (4.16)



41 PERTURBATION EXPANSION OF CLOSED-TIME-PATH. . . 59

2',"(k)=(f (2») 'dqoX(g(q)('[Go(k+q)D»0(q)+6+ (k+q)D. (q)] . (4.36)

Substitution of Eqs. (4.21), (4.23), and (4.28) into the above expression yields after simple manipulations

X'„"(k)= g ~g(q) ~ I [f(k+q)+n(q)][ko+co(q) —E(k+q)+iO+]
q

+[1—f(k+q)+n(q)][ko —co(q}—E(k+q}+iO+] 'I, (4.37)

which coincides with the known result from Matsubara
approach. Further, we make a partial summation over
electron self-energy diagrams, using the Migdal approxi-
mation, to give

X„(k)=i f (2m. ) 'dqo

X g lg (q) I [G„(k +q)DF (q)
q

D, (q)= I (2n) 'dx cr(q, x)(q[]—x+iO+)

where the spectral functions are defined by

p(k) =i [6 + (k) —6+ (k)],
tr(q)=i[D +(q) D+ (—q)],

and the following relation

(4.40)

(4.41)

+6+ (k+q)D, (q)] .

(4.38)
6+ (k) =if (k[])p(k), D~(q) =D, (q) io (q)n(—qo),

With the help of the spectral representations

6„(k)=I (2m') 'dx p(k, x)(k[]—x+iO+) (4.39)

(4.42}

Eq. (4.38) is reduced, after completing the q[] integration,
to

X,(k)= g Ig(q)l (2») f d» f dy p(k+q, »kr(q, y)[[f(»)+»(g)](ko+2 —»+(0 )

q

+[1 f (x)+n(y}](—k[]—y
—x+iO+) ]], (4.43)

which coincides again with the corresponding expression derived in the theory of imaginary-time formalism &o It is
seen that the cumbersome evaluation of infinite sums and analytical continuatlons are avoided in the deduction of Eqs
(4 37) and (4.43). Nontrivial applications of this new approach are planned to be published separately.
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