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In a recent paper, Ford, Lewis, and O’Connell [Phys. Rev. A 37, 4419 (1988)] considered a
charged quantum particle moving in an arbitrary potential and linearly coupled to a heat bath, and
they showed that the macroscopic equation describing the time development of the particle motion
is in the form of a quantum generalized Langevin equation. We generalize these results to include
the presence of an external magnetic field. We find that the magnetic field manifests itself in the
presence of an additional term in the Langevin equation, which is the quantum generalization of the
Lorentz force, but the magnetic field does not affect the memory function nor the random force ap-
pearing in the quantum Langevin equation. It follows that the noise-noise autocorrelation function,
as well as the nonequal time commutator of the noise, is the same as that in the absence of a mag-
netic field. The case of a blackbody radiation heat bath is shown to be easily analyzed as a special

case of our general formalism.

I. INTRODUCTION

The problem of a quantum particle coupled to a
quantum-mechanical heat bath can be formulated in
terms of the quantum Langevin equation. The quantum
Langevin equation is a macroscopic equation correspond-
ing to a reduced description of the system in which the
coupling with the heat bath is described by two terms: an
operator-valued random force F(t) with mean zero, and a
mean force characterized by a memory function pu(z).

Ford, Lewis, and O’Connell! (FLO) have shown that
the most general quantum Langevin equation can be real-
ized by the independent-oscillator (IO) model of a heat
bath. It is a simple and convenient model with which to
calculate. Yet by suitably choosing the distribution of
the frequencies and force constants for the independent
oscillators, one can represent the most general positive
real function, and through it the general macroscopic
description of the heat-bath problem.

In this paper, we extend the work of FLO to include
the presence of a static external magnetic field. What we
find is that the only influence of the magnetic field on a
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charged particle occurs through the addition of an extra
term in the quantum Langevin equation (which is the
quantum version of the classic Lorentz force), and that
the memory function and the random force are un-
changed by the magnetic field. A similar problem has
previously been considered by Marathe,? but that work
did not include an external potential; the derivation of
the equation of motion implied a special gauge for the
vector potential A and a special choice of the memory
function was made in calculating such quantities as the
noise-noise autocorrelation function.

In Sec. IT we give a general, gauge-independent calcu-
lation of the contribution of the external magnetic field to
the quantum Langevin equation in the IO model. As has
been stressed by FLO, although we utilize the IO model,
the equations obtained transcend this model. Next, we
calculate the noise-noise autocorrelation function, as well
as the nonequal time commutator of the noise, for an ar-
bitrary memory function. In Sec. III we present our con-
clusions and we discuss briefly the blackbody radiation
field heat-bath model (BBR) as an example of the general-
ity of the results we have obtained.
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II. THE INDEPENDENT-OSCILLATOR MODEL
IN A MAGNETIC FIELD

Our working model is the IO model, in which a
charged particle moves in an external magnetic field and
in an arbitrary potential, and is linearly coupled to a
large (eventually infinite) number of heat-bath particles.'
The Hamiltonian of the system is then
2
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where e, m, p, and r are the charge, mass, momentum,
and position of the particle, respectively, and V(r)
denotes the external potential. The jth heat-bath particle
has a mass m;, frequency w;, position q;, and momentum
p;- The vector potential A(r) is related to the magnetic
field B(r) by the equation

B(r)=V,X A(r) . 2)

The commutation rules for the various position and
momentum operators are, as usual,

[ra,pﬁ]=iﬁ8a3, [qja,pk3]=iﬁ8jk8aﬁ ’ (3)

and all other commutators vanish.

Without the A field, (1) is just the Hamiltonian con-
sidered in the FLO paper.! In the presence of an external
magnetic field, the motion of the charged particle is gen-
erally three dimensional. This necessitates the vector no-
tations in the Hamiltonian. In the following vector
analysis, the greek indices stand for three spatial direc-
tions (i.e., a,f,...=1,2,3) and the Roman indices i, j,k
denote the different heat-bath particles.

The Heisenberg equations of motion for the heat-bath
particles from (1) are

q;=la;,H)/i#=p;/m; ,

(4)
p,=[p;,H]/ihi=—m;0l(q;~T1) .
These combine to give
4, +wlq;=wjr, (5)

where the dot denotes the derivative with respect to ¢.
For the charged particle, the equations of motion are

/m , (6)
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where d,=9/0r, is the spatial derivative.
The ﬁrst term on the right-hand side of (7) may be writ-
ten as
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where the Einstein summation convention applies to re-
peated indices. Now

and
(va)a=UBaaAB—UﬂaBAa . (10)
Combining (8), (9), and (10), we have
2
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In vector form, (7) thus becomes

p=—VV(I)+3 mjwf(qj~r)+%(vXB)
J
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Similarly,

A(r)= ———+[A H)/ifi=(v-V) A+ 20 i Hhyia (13)

where we have used the static condition d A /9t =0.
Eliminating the momentum variables in (6) and (12),
and using (13) we get

mi==VV()+3 molq;~1)+<(vXB)
J
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But, from electromagnetism, we know that
V(V- A)—VZA"—_] )

where j is the source current of the external magnetic
field. In practice, it lies outside the region where the
charged particle moves. Thus the last term in (14) van-
ishes and (14) becomes

m'r'=——VV(r)+2mjwf(qj—r)‘f‘%(vxm . (15)
j

Here we see that the only effect of the magnetic field is
the e /c(vXB) term, which is the quantum generalization
of the classic Lorentz force. We note that (15) is gauge
independent.

The retarded solution of (5) is

q;(0=qXn+r(n)— [ dt'coslw(t—1)]k(t),  (16)
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where q}'(t) is the general solution of the homogeneous
equation of (5) (r=0).

Substituting (16) in (15) we get the quantum general-
ized Langevin equation

mi+ f_' dt’y(t—t’)'r(t')+VV(t)”fﬁxm:r"(‘) ,

(17)

with the memory function and the random force the same
as those given in the FLO paper:

w)=3 m;wicos(w;1)O(1) (18)

J

F(t)=3 m;olqi1) . (19)
J

Thus (17) is the same as the FLO result except for the
last term in the left-hand side of (17). One immediate
conclusion is that the symmetric autocorrelation as well
as the nonequal time commutator of F(¢) are the same as
in the absence of the B field:!

H(F (DF (') +Fy(t')F (1))
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[F,(2),Fg(t')]
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where
f(z) = fo“’dt eu(t) , (22)

and
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Re[fi(w+i07)]

T
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III. CONCLUSIONS

We have seen that the equation of motion of a charged
particle in a heat bath, moving in an arbitrary potential
and in an external magnetic field, can still be written in
the form of a quantum generalized Langevin equation,
with the influence of the magnetic field being exhibited
solely by a single extra term, which is the quantum ver-
sion of the Lorentz force.

In contrast to the corresponding results of Marathe,?
our results are very general in the sense that (a) they are
gauge invariant (a special choice of gauge is implied for
the vector potential A in Ref. 2); (b) they include the case
of an arbitrary external potential ¥ (r); and (c) they apply
to any choice of memory function [whereas in Ref. 2 a
specific choice of u(t) was made, as can be seen from Eq.
(2.9) of that paper, and noting that the memory function
there is denoted by K (¢)].

The generality of our results has one immediate conse-
quence, viz., they can be applied to get the corresponding
results in a case of much physical interest, viz., the black-
body radiation heat bath."3> By means of a series of uni-
tary transformations, FLO have shown the equivalence of
the BBR and IO heat-bath models in the absence of a
magnetic field.! It turns out that exactly the same trans-
formations apply in the present case. The key point is
that the unitary transformations leave r unchanged, so
that the —e /c(f X B) term in the equation of motion also
remains unchanged. In other words, in the case of the
BBR heat bath, we can use (17) as it stands, with the ex-
plicit forms for p(¢) and F(¢) being unchanged from the
B =0 results [see FLO, Egs. (5.16) and (5.12) for the ex-
plicit respective expressions].
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