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Sum rules for the squared modulus of the nonlinear Raman susceptibility
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We construct new sum rules for the nonlinear susceptibility modulus of Raman processes using
the complex analysis proposed in a previous paper [K.-E. Peiponen, Phys. Rev. B 37, 6463 (1988)].
The validity of the sum rules is confirmed by the Lorentzian line-shape approximation for the Ra-
man susceptibility.

I. INTRODUCTION

From classical dispersion theory, we know that various
angular-frequency-dependent linear optical constants are
related via the Kramers-Kronig relations e.g. , the re-
fractive index is related to the extinction coeScient. To
obtain more information about the optical constants as a
function of angular frequency, one gives sum rules that
characterize the optical properties of the medium. So far
many investigators have given sum rules using, e.g. ,
powers of the optical constants, different weighting func-
tions, and different types of their derivations. " Re-
cently, in addition to the case of linear susceptibilities,
the Kramers-Kronig-type dispersion relations and sum
rules were also introduced for nonlinear susceptibili-
ties. ' ' The derivations given in Refs. 11-14 were
based on the use of the results of the theory of several
complex variables.

In this paper we derive a sum rule to describe the non-
linear Raman susceptibilities, and we give a discussion on
whether it is possible to give sum rules for the squared
modulus of the nonlinear susceptibility. For its
confirmation, we investigate the intensity data of
coherent anti-Stokes Raman spectra (CARS).

II. DISPERSION RELATIONS AND SUM RULES

One of the present authors described the nonlinear sus-
ceptibility as a function of several complex angular-
frequency variables. ' In Ref. 14, the original physical

complex frequency planes (called physical planes hereaf-
ter; the real axes of these planes have a physical meaning,
actually) were transformed into unit disks using a confor-
mal mapping, and then the nonlinear susceptibility as a
holomorphic function was expanded to a power series in
a polydisk.

When we obtain the coherent Raman spectrum of ei-
ther CARS or Raman-induced Kerr-effect spectra
(RIKES}, we use a pumping light with a constant wave-
length (the corresponding frequency is defined as co&) and
a probe light whose wavelength (co, ) is scanned. This
means that in these four-wave-mixing processes we essen-
tially have two independent angular frequencies: one is
fixed, the other is variable. Therefore the total suscepti-
bility, which is the sum of the nonresonance background
term yN„' and Raman term yIt ', is given, in a polydisk, by
the following series expansion of two variables z, and z2:

y' '(z&, zz)=g g atkz', zz (1)
j k

where z„=(co„i)/( —co+i), n =1,2. This series can be
considered as a series expansion gt ct(zz)z', of one vari-
able z, only, with complex coefficients ct(z2). The func-
tion of Eq. (1}is an analytic function of the variable z&.

One may ask: "Do the dispersion relations exist in the
unit disk like in the physical plane?" The answer is
"yes." We can give dispersion relations using the Poisson
theory for a disk, as presented in a book by Morse and
Feshbach' as follows:

I

2' 0
(2)

where 02 is constant, r =1,2, . . . , P denotes the Cauchy
principal value, and z, =exp(i8&) and zz =exp(i82).

The function of the left-hand side of Eq. (2} is analytic.
The validity of Eq. (2) is shown by, e.g., Moretti' for an

arbitrary analytic function. Sum rules are obtained if we
simply choose 0', =2m. which corresponds to the frequen-
cy value co, = 00 in our original physical plane. This leads
to g' '(1,82)=0. If we return to the physical plane, we
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have

Im[y' '(co„co2)]co,f d, = —y (0, 2)
co)+ 1

Re[y' '(co„co2)]co,
2 dt's =0

co)+ 1
1

(3)

in the case r =1. Here we used d8i=2dco, /(coi+1) and
co, = —cot(8, /2). The first sum rule in Eq. (3) has the
same form as the sum rule which was given by King for
the linear refractive index. Taking into account that the
integrals appearing in Eq. (3) exist as normal integrals, it
is not necessary to calculate the Cauchy principal value.
The dispersion relation of Eq. (2} and the sum rule of Eq.
(3}are generalized to hold for a nonlinear susceptibility of
several angular-frequency variables by using the same
method, which is shown in Refs. 12 and 14. We, howev-
er, do not write these formulas explicitly here, because
the derivation is quite evident and our purpose is mainly
to study the squared modulus of the nonlinear suscepti-
bility.

The squared modulus can be approximated as follows:

N N

lx"'(zi»2)1 X cl(z2)zl g ci(z2) i
1=0 1=0

(4)

Using the Cauchy formula and taking into account
z&z& =1,we obtain a new sum rule

1

2mz

Iy"'(z, ,z, ) I'
dzi = g Ici(z2}l

Z ) 1=0
(5)

in the unit disk. In the case of the series expansion of Eq.
(1), the right-hand side of Eq. (5} is modified to be the
sum of the two series

gaIJ+4aoo g aokRe(z2 ) .
j k%0

The latter part of the two series is dependent on the
wavelength of the pumping laser. If the wavelength of
the pumping laser is scanned, the similar integrations
with respect to both variables z, and z2 using Eq. (5}
yield only the series g aJJ. In Ref. 14, it was proposed
that the real and imaginary parts of the nonlinear suscep-

tibility can be calculated using the squared modulus of
the susceptibility. In such a calculation, the series expan-
sion of Eq. (1) is truncated. The sum rule of Eq. (5}, to-
gether with Eq. (1), allows us to estimate the index value
for which the series can be truncated. In the physical
plane, Eq. (5) yields

m Ix
(6)

co)+ 1 1=0

Let us first examine the validity of the formula of Eq.
(6) by using a single Raman-mode model' ' which is
frequently used to describe the nonlinear Raman suscep-
tibilities, i.e.,

(3)— (3) (3)—(3) + R
X XNR+XR +NR

( ) + ~ ICOg CO
~ C02

If we substitute 5=[co„—(co, —co2)]/I, z=(5 i)/—
(5+i), we have

X —
XNR 21. (1—z) .

Thus we have only two terms in our series expansion with
the coefficients yINRI iR /2—I and iR /2I'. A straightfor-
ward integration of the left-hand side of Eq. (6} with
respect to the present variable 5 gives the sum of the
squared moduli of these coefficients. This indicates that
our model is reasonable.

Recently we calculated the effective Raman susceptibil-
ity for benzene using the experimental data given by
Levenson. ' In the present work, we have confirmed that
the result of Ref. 20 is consistent with the sum rule of Eq.
(5). Therefore it is concluded that the sum rules of Eqs.
(5) and (6) can be used to check whether the calculated
real and imaginary parts of the susceptibility are reason-
able or not.

Next we present another useful sum rule. A general-
ized dispersion relation was given in Ref. 14, but it has
not been fully understood until now. This relation seems
to be a key to the formulation of new types of sum rules
for the intensity quantities in the physical plane. We give
the following relation known as the generalized Cauchy
formula' '

Zf Z]
d(Rezi )d(Imz, ), (9)

where the derivative d /dz is defined as

d 1=—[d/d(Rez, )+id /d(Imz, )] .
6fZ

In the Appendix we describe briefly how to calculate the
surface integral of Eq. (9} in the case that the nonlinear
susceptibility is expressed by a series expansion such as
Eq. (1) with a constant z2.

We tried to convert the result of Eq. (9) to our physical
plane. In such a procedure we meet difficulties. The sur-
face integral of Eq. (9), involving the complex derivative,
must be integrated in the whole upper half plane. How-
ever, it is the real axis that corresponds to the measurable
physical quantity, i.e., angular frequency. It seems that
we can calculate the surface integral only for the case
that we can form the complex derivative, e.g., for the
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Lorentzian line-shape model. For the Lorentzian or
more complicated model, the sum rule of Eq. (9) can be
transformed into the physical plane after forming the
Jacobian determinant needed for the conversion, al-
though we have not done it explicitly.

Using Eq. (8), we can write the squared modulus as fol-
lows:

+— (1—z —z+zz ),1 R
4 2

(10)

III. SUMMARY

As a summary, in this paper, we have considered the
squared modulus of Raman susceptibilities using the
theory of complex analysis and constructed sum rules. It
was dificult, in the physical plane, to interpret the result
of the sum rule obtained using the general dispersion re-
lation, since the surface integral contains a complex
derivative which is not obtained from the optical mea-
surement directly. In the near future we will study the

from which it is possible to calculate the surface integral
in the unit disk. The value of the contour integral is
(gNa) + —,'(R /I' ) for the case of z= —1, i.e., for the
Raman resonance, whereas the value of the surface in-
tegral is —,'(R /I ). Thus these two integrals give equal
value to the Raman susceptibility.

When we convert the contour integral to the physical
plane, we have to preserve the Cauchy principal value.
In this conversion, the contour integral is decomposed
into real and imaginary parts. The real part of the in-
tegral has the same form as the integral of Eq. (6) for the
z = —1 case, whereas the imaginary part vanishes as a
principal value for a case where the squared modulus of
the susceptibility is an even function of the variable.
These calculations are straightforward and completed by
substituting z =(5—i )/(5+i ) into the contour integral of
Eq. (9). If the imaginary part of the contour integral
would not vanish as a principal value, it is canceled by
the surface integral. The cancellation is made because
the left-hand side of Eq. (9) must have a real value.

Using the sum rule of Eq. (9), we have also made vari-
ous numerical integrations by changing the curve param-
eters for the case where the Raman susceptibility has the
form R [cott —

(co& toz) +l I —] ' The resul. t of the calcu-
lation shows that the contribution of the surface integral
can be considerably large and not negligible.

FIG. 1. The unit disk of integration of the surface integral.
There is a pole z

&
on the boundary of the disk.

surface integral in the case of linear optical constants, be-
cause such a study might give an answer to the question
of, e.g., how to derive a sum rule, which is given using
physical parameters, for the intensity reAectance of insu-
lators or metals. This is an open question that has not
been solved yet. ' We also try to learn about the linear
system to deal with the nonlinear case.
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APPENDIX

The result of Eq. (9) is well established in complex
analysis. We briefly demonstrate the calculation of the
surface integral in a simple case involving the term z&

only. Using the notations indicated in Fig. 1 and a rela-
tion of z, —z', =r exp(i(()), we obtain the surface integral
of the form

yt(4) r dr dPI=-
o r exp(iP)

(A 1)

where go= argzI +n/2, a.= mr+(P —argz', ) =—P—arg( —z', ). Taking into account, from Fig. 1, that
t =2cosa, —tr/2~a m/2, and substituting t, $0, and a
into Eq. (11),we obtain the following result:

2c ] m/2I= — exp[ i arg( —z—, )] exp( ia)cosa—da
7T' —m/2

(A2)
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