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Soliton switching and energy coupling in two-mode fibers: Analytical results
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Analytic solutions describing soliton interaction in bimodal optical fibers are obtained in the

case of equal cross- and self-phase modulation effects. Conditions are established for integral

pulse-shape switching and a periodic linearlike behavior of the energy coupling is emphasized.

Nonlinear pulse propagation in an optical fiber is usual-

ly described by the nonlinear Schrodinger equation
(NLSE). ' This equation is completely integrable and has
been solved with the inverse scattering method. In the
anomalous dispersion regime, soliton pulses can propagate
without distortion as a result of a perfect balance between
dispersive and nonlinear (self-phase modulation) effects.

In many circumstances, a more complete description of
the propagation would rather involve an interaction be-
tween two (or more) coupled modes. For example,
birefringence will give rise to two nondegenerate polariza-
tion modes interacting through a linear coupling. 4 The
birefringence may result from a nonuniform core or may
be twist induced. The coupling could also be between the
modes of two optical guides as in a dual-core fiber.

A nonlinear coupling may also occur through the
third-order polarization density

PNL, . =A(E* E)E;+8(E E)E;*,

where E is the total electric field and the constants A and
8 represent the material-dependent susceptibilities. They
can be normalized so that 2+8=1. It has been shown

elsewhere that the interplay between linear and non-

linear coupling may lead to interesting and useful applica-
tions in optical communication systems. In particular,
switching between two coupled modes in an optical
waveguide has been a subject of intensive research recent-

9

In many cases, it is a good approximation to consider
that the group velocity and dispersion parameters can be
taken as equal for both modes. ' The case of small
birefringence represents a typical example. ' Then, in a
reference frame moving at the common group velocity, the
dynamics of soliton interaction can be reduced to a pair of
coupled ELSE's: '"' '

2U
, +xV+[IUI'+~I VI']U,

81'
(2)

2V
, +xU+[I VI'+~I UI']V,

z t)r

where z is the normalized propagation distance and r is a
reduced local time. U(z, r) and V(z, r) are slowly vary-
ing envelopes, K is the linear coupling constant, and o is
the ratio between the cross- and self-phase modulation
contributions to the nonlinear effects. '

Besides the numerical simulations ' "related to this
system of coupled NLSE's, only a few particular exact
solutions have been published. First, in the cw regime,
Winful has already shown that the system (2) (with
|1 /Bt' 0) can be solved exactly and useful switching
effects can be anticipated. Considering the dispersive
term, but not the linear coupling (x 0), Inoue' has
presented a series of exact solutions. More generally, for
the same situation (x -0), and when o = I, the system (2)
reduces to a Manakov system which is completely inte-
grable by the inverse scattering method. " But, to our
knowledge, all the solutions published so far' (including
some particular ones with x&0) represent solitary waves
for which no energy exchange between the modes occurs
during the propagation.

In this Rapid Communication, we show that the system
(2) has a wide class of exact solutions exhibiting energy
exchange between the modes. When o =1, the cross- and
self-phase modulation effects make an equal contribution
to the nonlinearity. This situation corresponds to at least
two possible cases: (i) For a purely electrostrictive non-
linearity, the constant 8 0 [Eq. (1)]. This implies a= 1

in (2); ' (ii) in the case of elliptical birefringence when
8=35', 8 being the angle between the major and minor
axes of the birefringence ellipse.

From now on, we will then consider that o =1. Assum-
ing U and V to be of the form

U(z, r) =u p(z, r)cos(xz ) —ivp(z, r)sin(xz),

V(z, r) =vo(z, r)cos(xz) —iuo(z, r)sin(x, z),
(3)

the original system (2) reduces to the following set of
equations for up and Up

elvp rI vp + [I vo I'+
I uo I']'o,

Bz
(4)

Sup tl up
2

+ [IuoI + Ivol ]up.
Bz

This is immediately recognized as the same system of
nonlinear equations solved by Manakov. ' It is well
known that this system can be integrated by the inverse
scattering method and we therefore conclude that for
a = 1, a wide class of solutions of the system (2) has now
been obtained.
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U(z, r) up(z, r)cos(trz),

V(z, r) —iup(z, r)sin(az),
(5)

up(z, r) being the solution of the single NLSE. At
z z/2a, all the energy will be switched from one mode
(U) to the other mode (V), for any input pulse U(0, r).
However, for practical purposes related to communication
systems, it may be desirable to recover exactly the same
pulse shape as injected at z 0. Inspection of (3) and (4)
then reveals that this requirement is automatically
satisfied when the input pulse is a fundamental soliton.
However, if we inject a higher-order soliton (N ~ 2), then
the sinusoidal period must also be adapted to the soliton
period n/2. This means x 2m (m 1,2, . . .). When the
input pulse does not correspond to a soliton, the output
pulse will generally be distorted. Numerical simulations
would be needed for an estimate of the importance of the
distortions.

In general, solutions (3) and (4) will correspond to a
more complex behavior more so than the special cases de-
scribed above. But a striking simplicity underlies this ap-
parent complexity. Let EU(z) and Ev(z) represent the
energy in each mode, this is EU(z) f ~U(z, r)

~ dr,

The dynamics associated with solutions (3) and (4) can
be either simple (solitary waves) or complex, depending
on the choice of the input distributions up(O, r) and
vp(0, r). As shown below, the solution U, V can also be
periodic in z. Here, we limit ourselves to two particular
cases of special interest. First, we consider the case
up +' vp. Then system (4) reduces to the single regular
NLSE which has soliton solutions. In this case, Eq. (3)
becomes

U(z, r) up(z, r)exp(:t ix'z),

V(z, r) =+ up(z, r)exp(Tixz),
and no energy is transferred between the modes. The sta-
bility of that solution has been investigated recently by
Wright, Stegeman, and Wabnitz'p for the particular case
when up(z, r) is the N 1 sech soliton.

The other special case pertains to the experimental situ-
ation when only one of the modes is excited at the input.
To analyze this case, we put vp(z, r) 0 and then, from
(3),

etc. Then, from (3) and (4), we find for the general situa-
tion upWvpWO,

Eu(z) EU(0)+ [Ev(0) EU(0)~

x sin (xz) —Csin(2trz),

Ev(z) E —EU(z),
where

(6)

and

C Im up(0, r)vp (O, r)dr

E EU(0)+Ev(0)

is the conserved total energy. In other words, in terms of
energy, the system exhibits a cw-linear-like behavior, i.e.,
the energy is periodically exchanged and the period (n/tr)
is independent of the input energy, as in the cw linear re-
gime. This is in contrast with the general case tr~l,
where the energy transmission depends on the nonlineari-

6, 11 —13,17

Equation (6) also implies that if the input distributions
do not have the same energy [Ev(0)WEU(0)], then the
propagation will give rise to a periodic energy exchange
and no stabilization to a stationary energy repartition may
occur. Moreover, the parameter C in (6) confirms the im-
portance of the relative phase. For example, when

up(0, r) vp(O, r)e'~ the pulses have the same energy, but
from (6), we then have

EU(z) EU(0) [1 —sin(p)sin(2trz)]

showing that unless p 0 or n (i.e., the first particular
case considered above), the energy will be periodically ex-
changed along the guide.

In conclusion, we have presented a wide class of exact
solutions to the coupled NLSE's. The solution encom-
passes simple solitary waves as well as intricate behaviors.
At the same time, energy considerations reveal a particu-
larly simple periodicity. The analysis also shows that only
solitons can be entirely switched (in shape and energy).
Finally, we believe that the new solution given here can
also be of interest for the general case eral. It could be
used as a zero-order solution in a perturbative treatment'
or a variational method. '
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