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A classical mechanism is proposed for the many-photon ionization of Rydberg atoms in a quasi-
monochromatic oscillating electric field with an amplitude smaller than the stochasticity threshold.
The mechanism is based on the dynamic autoresonance between the slowly varying frequency of the
oscillating field and the Keplerian frequency (or one of its harmonics) of atomic electrons. It is

shown that a large fraction of an initial ensemble of atoms can be efficiently excited by this coherent
mechanism and then ionized via the stochastic instability.

A significant experimental and theoretical effort has
been recently devoted to the investigation of different re-
gimes of many-photon ionization of highly excited (Ryd-
berg} atoms (see, e.g. , Refs. 1 —10}. One of the most in-

teresting is the chaotic ionization regime, i.e., the ioniza-
tion via the (classical) stochastic instability of the atomic
electron. This phenomenon can take place even in the
simplest case of a Rydberg hydrogen atom in a mono-
chromatic oscillating electric field. The necessary condi-
tion for such a "chaotic ionization" is provided by the
Chirikov's criterion of the overlapping of resonances,
which yields the threshold oscillating field amplitude Fo
for a given principal quantum number n and driving fre-
quency co. Below the threshold, most of the perturbed
classical trajectories remain regular corresponding to the
Kolmogorov-Arnold-Moser (KAM) surfaces in an ap-
propriate phase space. '" This means that the ionization
from such states is practically absent. Therefore the
question arises of whether it is possible to achieve the
multiphoton ionization of Rydberg atoms by an oscillat-
ing electric field with an amplitude much smaller than
the above-mentioned threshold value. It has been shown
recently' that the answer to this question is positive in
the case of a broadband-noise radiation field. In the
present work we propose a novel mechanism for the exci-
tation and ionization of Rydberg atoms by an essentially
subthreshold tIuasimonochromatic oscillating electric
field, whose frequency slowly decreases with time. We
find conditions under which a large fraction of the initial
ensemble of atoms can be ionized, while the precise form
of the time dependence of the frequency of the oscillating
field is not essential. The term "autoresonance excita-
tion" will be used in describing the initial stage of the
process because it is based upon a self-sustained (classical)
resonance between the slowly varying external driving
frequency and the Keplerian frequency (or one of its har-
monics) of the atomic electrons. This mechanism is
surprisingly similar to that of a number of charged-
particle acceleration schemes (see, e.g. , Ref. 13) and
therefore it can be called "the Rydberg accelerator. "

For the sake of simplicity we consider here a one-
dimensional (1D) hydrogen atom. The 1D model is ade-
quate at least when the initial state is an extremal Stark

level. It is convenient to express the classical Hamiltoni-
an of the atom in terms of the canonical action-angle
variables I and k, determined by the unperturbed
Keplerian motion of the electron. Since the quantization
of the unperturbed motion converts the action variable I
to the principal quantum number of the atom n, we shall
write n instead of I. In the 1D case, n is the only quan-
tum number of the atom. The classical Hamiltonian in
atomic units becomes (cf. Ref. 4)

00I= — +n F(t) —,'—2 g xk cos(klan, )
2n k=1

(=to(t) kN ' 2eN co—sg, —

N= —eN sing

(2)

(3)

(here and in the following dots mean time derivatives and
we omit all tildes for simplicity). Now we consider an en-
semble of Rydberg atoms and assume that initially each
atom has an initial value of n close to the above-
mentioned no (the allowable spread of n will be settled

where F(t)=Fo cos4(t) is the oscillating electric field, Fo
is the (constant) amplitude of the field, 4(t) is the phase,
and x„=Jk(k)/k and Jk are derivatives of the Bessel
functions with respect to their arguments. The time
derivative of the phase 4(t) is equal, by definition, to the
frequency to(t), which is assumed to vary slowly with
time.

Consider an atom whose electron has an initial value of
n =no such that the initial value of the external frequen-

cy to(t =0)=coo is in a kth resonance with corresponding
Keplerian frequency of the electron, i.e., coo= kn o

where k =1,2, . . . . Let parameter Fono be much less
than the corresponding stochasticity threshold of Hamil-
tonian (1) with co=coo=const (for example, this threshold
is close to 0.02 for k of the order of 1; see Refs. 4, 8, and
9). In this case we can start with the isolated resonance
approximation similarly to the case of co=const. '"
Then, introducing a new phase (=4—kA, —~, normal-
ized action X=n/no, time t =tno, frequency co=ceno,
and the interaction parameter e=Fonokxk=FontrIk(k)
((1,we obtain the following equations of motion:
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later). It is clear that the initial value of the normalized
frequency is equal to k: co(t =0)=k. The initial values
of the classical phase A, (and, consequently, of the phase
g) can be arbitrary, i.e., n—& go

& vr, where go=/(t =0).
In the case co=const, the solutions of Eqs. (2) and (3)

describe relatively slow and small periodic modulations
of N with a "nonlinear" frequency v (see Refs. 4 and 11).
The phase (, in contrast, behaves differently depending
on whether the corresponding electron is "trapped" or
"untrapped" in the phase plane g, N (see Refs. 4 and 11).
The phase g of a trapped particle oscillates with the same
nonlinear frequency v around the equilibrium point (=0,
while the phases of untrapped particles vary monotoni-
cally. Now let us return to the case of slowly varying co.
We shall consider only initially trapped particles and find
conditions under which these particles remain trapped
for a long time, despite possible large (but slow) changes
in the driving frequency co. We shall show that almost all
initially trapped electrons can be coherently "accelerat-
ed" (excited) by a subthreshold oscillating field until they
enter the stochasticity domain (i.e., the resonance over-
lapping domain) and rapidly escape from the atoms.

Let us start with numerical solutions of Eqs. (2) and (3)
(see Fig. 1). In these calculations we set N(t =0)=1 and
chose different initial phases (two of them are shown in
Fig. 1). We considered the main resonance k =1 and
slowly decreasing frequency co(t)=1/(1+at ) [similar
results are also obtained for other slow dependences
co(t)]. We observe in Fig. 1 that, in contrast to co=const,
the average value of N for each of the two cases grows in
time considerably, which means strong excitation. In ad-
dition, the average value of g remains small and negative,
the amplitude of oscillations of N grows in time, while
both the amplitude of oscillations of g and the nonlinear
frequency decrease. ' Now we shall find the conditions
under which this is the characteristic behavior of the sys-
tem (2) and (3), and develop an analytic theory of the
Rydberg accelerator.

Let co(t) be a slowly varying function on a time scale of
the nonlinear period 2n /v, i.e., m~ /v && 1. Then we can
solve Eqs. (2) and (3) perturbatively by separating the fast
and slow time dependences of N and g. In other words,
we seek solutions of Eqs. (2) and (3) in the form
N(t) =N(t)+5N(t) and g(t) =f(t)+5((t), where
(5N(t)) =(5((t))=0, 5N(t) «N(t), and ( ) means the
time averaging over the nonlinear period, which now is
considered as a "fast" time scale. Note that for the
trapped particles considered here g(t =0) always van-
ishes. Seeking a regime in which the phase drift remains
small, i.e., g«1 (the corresponding criterion will be
found a posteriori), and separating the fast and slow vari-
ables in Eq. (2) and (3), we obtain the following two sets
of equations:

cos5$(t)=1 2m—cn (m, vt),

5N(t)=(2mvo/3k)N sn(m, vt), (10)
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for the slow ones. Note that we have neglected the small
term, proportional to E, in Eq. (2).

To the lowest order we assume now that N in Eqs. (4)
and (5) is time independent, and obtain the well-known
nonlinear pendulum equation for the fast phase:

5/+ vosin5$ =0,
where vo=3ekN . Then the dependences of 5g and 5N
on the fast time are given by"

g =3kN 5N,
5N = eN sing'—

for the fast variables, and

(=co(t) kN—
N= —eN g(cosg')

(4)
FIG. 1. Numerical examples of the strong autoresonance ex-

citation, as described by Eqs. (2) and (3): (a) N aud (b) g as func-
tions of the scaled time for a slowly decreasing driving frequen-

cy [a=2.5 X 10 ', graphs 1 (initial phase go= n /3) and 2 (ini-—
tial phase m. /4)]. Also shown is the case of a constant frequency
a =0 for the initial phase n /4 (graphs 3). In all cases
E =0.003 25, corresponding to Fon 0 =0.01 ~
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where m =sin(go/2), while sn and cn are the Jacobian el-
liptic functions of parameter m. For definiteness, we
have chosen the following initial conditions for 5$ and
5N: g(t =0)=go and 5N(t =0)=0. The nonlinear fre-
quency v of a particle depends on go and is given by
v=n.vo/2K(m) where K (and later E) are the complete
elliptic integrals. Now we can take into account the slow
time dependences in Eqs. (9) and (10). Indeed there exists
an adiabatic invariant J of the fast oscillations"' that is
preserved under slow (on the time scale of v ') changes
of co(t):

8N3e'~2J= [E(m) —(1—m )K(m)]=const . (11)
n(3k)'

tude of the fast oscillations of the phase go(t) of the
trapped particles and the nonlinear frequency decrease,
while the amplitude AN of the fast oscillations of 6N
grows in agreement with numerical results presented in
Fig. 1. The decrease of (0(t) means that the particles be-
come "increasingly trapped" with time. In the limit of
such "deeply trapped" particles we simply have
jo(t) =go(0)[co(t)]' and bN(t) =AN(0)[co(t)]
Quantitative comparisons of Eqs. (11},(12), and (15) with
numerical results show very good agreement.

It follows from (15) that the phase drift g remains small
if ~&~/(3ek' co

~ (cosg') ) &&1. Similarly to the above-
mentioned inequality ~to~ /v && 1, this criterion imposes a

Once the slow time dependence N(t) is known (see
below), Eq. (11) yields the slow time dependence of
go=2 sin 'm. The quantity go(t} here has the meaning of
the slowly varying amplitude of the fast oscillations of
the phase of the trapped particles. Similarly, the slowly
varying amplitude b,N of the fast oscillations of 5N is
given by

4

(a)
0 OO

0
gO 0

EN=2N (t)(e/3k)' ~sin(go(t)/2)~ . (12)

Before proceeding to the slow variables, we calculate
(cos5() in Eq. (7). This can be done directly from Eq.
(9) yielding

2-

(cos5$) =1- 4m. q
K (1+q)

(13)

where q = exp( —mK'/K) and K'=K[cos(go(t)/2)].
Now we diff'erentiate Eq. (6) with respect to time and use
Eq. (7) to obtain
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where (cos5() is given by Eq. (13). Equation (14) de-
scribes a linear oscillator with a slowly varying natural
frequency vo(t)(cos5$)'~, which is perturbed by an
external force proportional to ta(t). We observe that Eq.
(14) describes a slow tnotion if and only if the second
derivative term is negligible, so that g(t) can be simply
written as

8.0-

4.0-
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g=m(t)l(vo(cos5() ) . (15)

The substitution of this expression into Eq. (6) and in-
tegration yields the autoresonance condition co(t)
=kN (t). Thus the average value of N for almost all
trapped particles (see below) varies similarly, i.e., as
[co(t)Ik] ', provided co is a slowly varying function of
time. We observe that by slowly (but otherwise arbitrari-
ly) lowering the driving frequency, we can continuously
increase X until the electron reaches the stochasticity
domain and escapes from the atom. It is also clear that
one can strongly excite an ensemble of atoms having ini-
tially slightly different values of n. The allowable initial
spread of n must only be smaller than the corresponding
initial width of the resonance region, which is propor-
tional to e'

Returning to Eqs. (11) and (12) and replacing N by
[co(t)/k] '~, we see that when co(t) decreases, the ampli-
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FIG. 2. A numerical example of the time-dependent transi-
tion to chaos [(a) N aud (b) g vs the scaled time], as described by
the Hamiltonian (1) for a=2. 5 X 10 ', Fon0 =0.01, and

go=a /4 (opeu squares). Also shown are single-resonance solu-
tions for the same parameters and initial phase (solid line).
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constraint on the "chirping rate" of the frequency of the
oscillating electric field. The stronger the phase trapping,
the easier each of these criteria is satisfied. Note that
since v decreases with the increase of m, and v~0 when
m ~ 1, the condition

~ &~ /v && I cannot be satisfied in a
narrow region near the separatrix, dividing the trapped
and untrapped phase trajectories, and the corresponding
(small) fraction of atoms cannot be excited by the pro-
posed mechanism, regardless of how slow co(t) is.

The isolated autoresonance approximation applied
above fails when the particle approaches the stochasticity
domain. In this limit the strong coherent autoresonance
excitation is replaced by the chaotic ionization of the
atom. An approximate estimate of the time moment t,
of the onset of the stochasticity can be obtained using the
constant-frequency results of Refs. 4, 8, and 9, i.e.,
Fon+ (t, ) =0.02 (for k of the order of 1) or
Fonoco ~ (t~)=0.02. Figure 2 presents an example of
numerical integration of the equations of motion corre-
sponding to the exact Hamiltonian (1). We have chosen
the same subthreshold value of the amplitude of the oscil-
lating field and the same "chirping" form of the driving
frequency as in the numerical examples in Fig. 1. Also,
in these calculations we followed Casati, Guarneri, and
Shepelyansky to introduce the eccentric anomaly g and a
new time ri, for which the unperturbed motion of g is uni-
form. It is seen from Fig. 2 that the initial stage of the
ionization process (strong autoresonance excitation) is

very well described by the isolated resonance approxima-
tion. Later the particle enters the stochasticity domain
and executes a chaotic motion, leading in practice to the
ionization. The observed time of the onset of the stochas-
ticity agrees well with the estimate given above. Calcula-
tions for different initial phases of the trapped particles
and other slow dependences of co on time gave similar re-
sults.

The classical theory of the Rydberg accelerator pro-
vides a basis for the experimental and further theoretical
study of the phenomena. Quantum mechanics may im-
pose a constraint on the validity time scale of the
theory, "' ' ' [apart from the obvious constraints
n »1 and co«(2n ) ', co is not scaled anymore]. The
precise form of this constraint will be known only after
the corresponding quantum theory is developed. The de-
velopment of such a theory is urgent because the particu-
lar model considered here exemplifies more general phe-
nomena of the strong excitation and transition to chaos
in Hamiltonian systems with slowly varying parameters.
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