Brief Reports

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of scientific quality, does not warrant a regular article. (Addenda to papers previously published in the Physical Review by the same authors are included in Brief Reports.) A Brief Report may be no longer than $3\frac{1}{2}$ printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Hypervirial solution for the generalized exponential cosine-screened Coulomb potential

Ramazan Sever

Department of Physics, Middle East Technical University, 06531 Ankara, Turkey

Cevdet Tezcan Department of Physics, Ankara University, 06531 Ankara, Turkey (Received 17 May 1989)

The bound-state energy spectrum of the generalized exponential cosine-screened Coulomb potential is obtained by employing the hypervirial equations with the Hellman-Feynman theorem applied to the screening parameters λ and μ independently. The energy eigenvalues are obtained up to the fourth order of the screening parameters.

I. INTRODUCTION

The generalized exponential cosine-screened Coulomb potential¹ (GECSCP), given by

$$V(r) = -\frac{a}{r} \exp(-\lambda r) \cos(\mu r) , \qquad (1)$$

involves a wide class of model potentials that finds applications in various fields of physics such as plasma physics,^{2,3} nuclear physics,^{4,5} and solid-state physics.⁶⁻⁹

Because of the importance of this potential in atomic phenomena, it has been extensively studied by using numerical and analytical methods, both perturbative¹⁰⁻¹⁶ and nonperturbative.¹⁷⁻³⁰ Recently this potential for the $\mu = \epsilon \lambda$ case has also been solved by Chatterjee²⁹ by following the method of Grant and Lai.

In the present work, we employ the same method by taking the screening parameters freely. It is shown that the results obtained by us are reduced to the ones obtained by Chatterjee.

II. THE METHOD AND CALCULATIONS

The radial part of Schrödinger equation (with $m = \hbar = 1$) for a particle in a spherically symmetric potential can be written as

$$Hu(r) = Eu(r) , \qquad (2)$$

where the Hamiltonian *H* is given by

œ

$$H = -\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V(r) , \qquad (3)$$

and the boundary conditions are u = 0 at r = 0, and $u \rightarrow 0$ as $r \rightarrow \infty$. Now we use the hypervirial theorem

$$\left\langle u\left(r\right)\left[r^{j}\frac{d}{dr},H\right]u\left(r\right)\right\rangle = 0$$
 (4)

to obtain

$$E\langle r^{j}\rangle = \langle r^{j}V(r)\rangle + \frac{1}{2}(j+1)^{-1} \langle r^{j+1}\frac{dV(r)}{dr}\rangle - \frac{1}{8}j(j+1)^{-1}[j^{2}-4l(l+1)-1]\langle r^{j-2}\rangle .$$
 (5)

Substituting the expansions

$$V(r) = \sum_{n,m=0}^{\infty} V_{nm} \lambda^{n} \mu^{2m} r^{n+2m-1} , \qquad (6)$$

$$V_{nm} = -a \frac{(-1)^{n+m}}{n!(2m)!} , \qquad (7)$$

$$\langle r^{j} \rangle = \sum_{n'',m''=0}^{\infty} C_{j}^{(n'',m'')} \mu^{n''} \lambda^{m''} ,$$
 (8)

and

$$E_{n} = \sum_{n',m'=0}^{\infty} E_{n}^{(n',m')} \mu^{n'} \lambda^{m'}$$
(9)

into Eq. (5), we obtain

$$\sum_{n',m',n'',m''=0} E_n^{(n',m')} C_j^{(n'',m'')} \lambda^{m'+m''} \mu^{n'+n''} = \sum_{n,m,n'',m''=0}^{\infty} \frac{n+2j+2m+1}{2(j+1)} V_{nm} C_{n+j+2m-1}^{(n'',m'')} \lambda^{n+m''} \mu^{2m+m''} - \frac{1}{8} j(j+1)^{-1} [j^2 - 4l(l+1) - 1] \times \sum_{n'',m''=0}^{\infty} C_{j-2}^{(n'',m'')} \lambda^{m''} \mu^{n''}$$
(10)

41 5205

© 1990 The American Physical Society

BRIEF REPORTS

TABLE I. Comparison of the energy eigenvalues for $0 \le \beta_1$, $\beta_2 < 0.1$ as calculated from the dynami-

cal approach (Ref. 32) with those to fourth order of the screening parameter	rs.
--	-----

State β_1 β_2 E_{nl}/a^2 State β_1 β_2 1s0.020.05 $-0.480072.8$ 1s0.020.022s0.020.05 $-0.106072.4$ 2s0.020.022p0.020.05 -0.105927 2p0.020.023s0.020.05 -0.041272 3s0.020.023p0.020.05 -0.04094 3p0.020.023d0.020.05 -0.04060 3d0.020.024s0.020.05 -0.03043 4p0.020.024d0.020.05 -0.02982 4d0.020.024f0.020.05 -0.02982 4f0.020.021s0.020.08 -0.1085802 2s0.020.102p0.020.08 -0.108124 2p0.020.103p0.020.08 -0.058419 3s0.020.10	$\frac{E_{nl}/a^2}{-0.4800078}$ (-0.4800078)
1s 0.02 0.05 -0.4800728 $1s$ 0.02 0.02 $2s$ 0.02 0.05 -0.1060724 $2s$ 0.02 0.02 $2p$ 0.02 0.05 -0.105927 $2p$ 0.02 0.02 $3s$ 0.02 0.05 -0.041272 $3s$ 0.02 0.02 $3p$ 0.02 0.05 -0.04094 $3p$ 0.02 0.02 $3d$ 0.02 0.05 -0.04060 $3d$ 0.02 0.02 $4s$ 0.02 0.05 -0.03103 $4s$ 0.02 0.02 $4p$ 0.02 0.05 -0.03043 $4p$ 0.02 0.02 $4d$ 0.02 0.05 -0.02982 $4d$ 0.02 0.02 $4f$ 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $1s$ 0.02 0.08 -0.1085802 $2s$ 0.02 0.10 $2p$ 0.02 0.08 -0.108124 $2p$ 0.02 0.10 $3p$ 0.02 0.08 -0.05721 $3p$ 0.02 0.10	-0.4800078 (-0.4800078)
2s 0.02 0.05 -0.1060724 $2s$ 0.02 0.02 $2p$ 0.02 0.05 -0.105927 $2p$ 0.02 0.02 $3s$ 0.02 0.05 -0.041272 $3s$ 0.02 0.02 $3p$ 0.02 0.05 -0.04094 $3p$ 0.02 0.02 $3d$ 0.02 0.05 -0.04060 $3d$ 0.02 0.02 $4s$ 0.02 0.05 -0.03103 $4s$ 0.02 0.02 $4p$ 0.02 0.05 -0.03043 $4p$ 0.02 0.02 $4d$ 0.02 0.05 -0.02982 $4d$ 0.02 0.02 $4f$ 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $1s$ 0.02 0.08 -0.1085802 $2s$ 0.02 0.10 $2p$ 0.02 0.08 -0.108124 $2p$ 0.02 0.10 $3p$ 0.02 0.08 -0.05721 $3p$ 0.02 0.10	(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-0.105\ 103\ 2$
3s 0.02 0.05 -0.041272 $3s$ 0.02 0.02 $3p$ 0.02 0.05 -0.04094 $3p$ 0.02 0.02 $3d$ 0.02 0.05 -0.04060 $3d$ 0.02 0.02 $4s$ 0.02 0.05 -0.03103 $4s$ 0.02 0.02 $4p$ 0.02 0.05 -0.03043 $4p$ 0.02 0.02 $4d$ 0.02 0.05 -0.02982 $4d$ 0.02 0.02 $4f$ 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $1s$ 0.02 0.08 -0.1085802 $2s$ 0.02 0.10 $2p$ 0.02 0.08 -0.108124 $2p$ 0.02 0.10 $3p$ 0.02 0.08 -0.05721 $3p$ 0.02 0.10	-0.105088
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.1050746) -0.036016
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.0360256) -0.03598
4s 0.02 0.05 -0.03103 $4s$ 0.02 0.02 $4p$ 0.02 0.05 -0.03043 $4p$ 0.02 0.02 $4d$ 0.02 0.05 -0.02982 $4d$ 0.02 0.02 $4f$ 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $4f$ 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $1s$ 0.02 0.08 -0.4802096 $1s$ 0.02 0.02 $2s$ 0.02 0.08 -0.1085802 $2s$ 0.02 0.10 $2p$ 0.02 0.08 -0.108124 $2p$ 0.02 0.10 $3s$ 0.02 0.08 -0.05721 $3p$ 0.02 0.10	(-0.03559677) -0.03595
4p 0.02 0.05 -0.03043 $4p$ 0.02 0.02 $4d$ 0.02 0.05 -0.02982 $4d$ 0.02 0.02 $4f$ 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $4f$ 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $1s$ 0.02 0.08 -0.4802096 $1s$ 0.02 0.10 $2s$ 0.02 0.08 -0.1085802 $2s$ 0.02 0.10 $2p$ 0.02 0.08 -0.108124 $2p$ 0.02 0.10 $3s$ 0.02 0.08 -0.058419 $3s$ 0.02 0.10 $3p$ 0.02 0.08 -0.05721 $3p$ 0.02 0.10	(-0.0358503) -0.01248
4d 0.02 0.05 -0.02982 $4d$ 0.02 0.02 $4f$ 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $1s$ 0.02 0.08 -0.4802096 $1s$ 0.02 0.02 $2s$ 0.02 0.08 -0.1085802 $2s$ 0.02 0.10 $2p$ 0.02 0.08 -0.108124 $2p$ 0.02 0.10 $3s$ 0.02 0.08 -0.058419 $3s$ 0.02 0.10 $3p$ 0.02 0.08 -0.05721 $3p$ 0.02 0.10	(-0.0125811) -0.01243
4f 0.02 0.05 -0.0292 $4f$ 0.02 0.02 $1s$ 0.02 0.08 $-0.480 209 6$ $1s$ 0.02 0.10 $2s$ 0.02 0.08 $-0.108 580 2$ $2s$ 0.02 0.10 $2p$ 0.02 0.08 $-0.108 124$ $2p$ 0.02 0.10 $3s$ 0.02 0.08 $-0.058 419$ $3s$ 0.02 0.10 $3p$ 0.02 0.08 $-0.057 21$ $3p$ 0.02 0.10	(-0.0124915) -0.01238
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.0123103) -0.0123 (-0.0120247)
13 0.02 0.08 -0.4802096 13 0.02 0.10 $2s$ 0.02 0.08 -0.1085802 $2s$ 0.02 0.10 $2p$ 0.02 0.08 -0.108124 $2p$ 0.02 0.10 $3s$ 0.02 0.08 -0.058419 $3s$ 0.02 0.10 $3p$ 0.02 0.08 -0.05721 $3p$ 0.02 0.10	(-0.0120347)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.480 354 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.111/118
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.110 810
3p 0.02 0.08 -0.05721 $3p$ 0.02 0.10	-0.082 /6/
	-0.08038
3d 0.02 0.08 -0.05595 3d 0.02 0.10	-0.07786
4s 0.02 0.08 -0.10565 4s 0.02 0.10	-0.22085
$4f \qquad 0.02 \qquad 0.08 \qquad -0.10304 \qquad 4f \qquad 0.02 \qquad 0.10$	-0.21527
4d 0.02 0.08 -0.10034 4d 0.02 0.10	-0.20945
$4f \qquad 0.02 \qquad 0.08 \qquad -0.0976 \qquad \qquad 4f \qquad 0.02 \qquad 0.10$	-0.2034
1s 0.05 0.02 -0.449 969 3 1s 0.05 0.05	-0.4501172 (-0.4501174)
2s 0.05 0.02 -0.074 62 2s 0.05 0.05 0.05	-0.07641 (-0.0764497)
2p 0.05 0.02 -0.0747 $2p$ 0.05 0.05	-0.0762 (-0.0760561)
3s 0.05 0.02 -0.0041 3s 0.05 0.05	-0.0106 (-0.0116627)
3p 0.05 0.02 -0.0041 $3p$ 0.05 0.05	-0.0102 (-0.0109474)
3d 0.05 0.02 -0.0041 $3d$ 0.05 0.05	-0.010 (-0.009 495 4)
1s 0.05 0.08 -0.4504080 $1s$ 0.05 0.10	-0.450 695
$2s 0.05 0.08 -0.08043 \qquad 2s 0.05 0.10$	-0.08495
2p 0.05 0.08 -0.0797 $2p$ 0.05 0.10	-0.0836
$3s 0.05 0.08 -0.0210 \qquad 3s 0.05 0.10$	-0.0564
3p 0.05 0.08 -0.0286 $3p$ 0.05 0.10	-0.0537
3d 0.05 0.08 -0.027 $3d$ 0.05 0.10	-0.0519
4s 0.05 0.08 -0.048 4s 0.05 0.10	-0.148
4p 0.05 0.08 -0.046 $4n$ 0.05 0.10	-0.144
4d 0.05 0.08 -0.044 4d 0.05 0.10	-0.140
4f 0.05 0.08 -0.042 $4f$ 0.05 0.10	-0.134967
1s 0.08 0.02 -0.4198 1s 0.08 0.08	-0.420461
2s 0.08 0.02 -0.0430 2s 0.08 0.08	(-0.420 463 6)

TABLE I. (Continued).

State	β_1	β ₂	E_{nl}/a^2	State	β ₁	β2	E_{nl}/a^2
2 <i>p</i>	0.08	0.02	-0.0432	2 <i>p</i>	0.08	0.08	-0.0491 (-0.048 961 0)
1 <i>s</i>	0.08	0.05	-0.420035				
				15	0.08	0.10	-0.420 87
2 <i>p</i>	0.08	0.05	-0.0452				
				2 <i>s</i>	0.08	0.10	-0.0551
2 <i>d</i>	0.08	0.05	-0.0451				
				2 <i>p</i>	0.08	0.10	-0.0537
				35	0.08	0.10	-0.0081
				3 <i>p</i>	0.08	0.10	-0.0060
				3 <i>d</i>	0.08	0.10	-0.0040
1 <i>s</i>	0.10	0.08	-0.400 389	15	0.10	0.02	-0.399 618
2 <i>s</i>	0.10	0.08	-0.0283	2 <i>s</i>	0.10	0.02	-0.02165
2 <i>p</i>	0.10	0.08	-0.0276	15	0.10	0.05	-0.399882
1 <i>s</i>	0.10	0.10	-0.400 875	2 <i>s</i>	0.10	0.05	-0.023578
			(-0.400 883 9)				
2 <i>s</i>	0.10	0.10	-0.033 50	2 <i>p</i>	0.10	0.05	-0.0235
			(-0.03 496 77)				
2 <i>p</i>	0.10	0.10	-0.0321				
			(-0.032 349 8)				

From the normalization condition that $\langle r^0 \rangle = 1$, we use

$$C_0^{(n,m)} = \delta_{0n} \delta_{0m} , \qquad (11)$$

and the energy of the unperturbed nth S states are given by

$$E_n^{(0,0)} = -\frac{a^2}{2n^2}, \quad n = 1, 2, 3, \dots$$
 (12)

From Eq. (10), we deduced a series of 15 recurrence relations and solved them to get the perturbed energy terms up to the fourth order of the screening parameters λ and μ . For example, the first three recurrence relations obtained by equating the coefficients of $\lambda^0 \mu^0$, $\lambda \mu^0$, and $\lambda^0 \mu$ are

$$E_n^{(0,0)}C_j^{(0,0)} = \frac{2j+1}{2(j+1)} V_{00}C_j^{(0,0)} -\frac{1}{8}j(j+1)^{-1}[j^2 - 4l(l+1) - 1]C_{j-2}^{(0,0)} ,$$
(13a)

$$E_n^{(0,1)}C_j^{(0,0)} + E_n^{(0,0)}C_j^{(0,1)}$$

= $\frac{2j+1}{2(j+1)}V_{00}C_{j-1}^{(0,1)} + V_{10}C_j^{(0,0)}$
 $-\frac{1}{8}j(j+1)^{-1}[j^2 - 4l(l+1) - 1]C_{j-2}^{(0,1)}$, (13b)

and

$$E_n^{(1,0)}C_j^{(0,0)} + E_n^{(0,0)}C_j^{(0,1)}$$

= $\frac{2j+1}{2(j+1)}V_{00}C_{j-1}^{(1,0)}$
 $-\frac{1}{8}j(j+1)^{-1}[j^2 - 4l(l+1) - 1]C_{j-2}^{(1,0)}$. (13c)

By defining L = l(l+1), the expansion coefficients used in the calculation of the energy eigenvalues are as follows:

$$C_1^{(0,0)} = (3n^2 - L)/2a$$
, (14a)

$$C_2^{(0,0)} = n^2 (5n^2 - 3L + 1)/2a^2 , \qquad (14b)$$

$$C_{3}^{(0,0)} = n^{2} [35n^{4} + 5n^{2}(-6L + 5) + 3L(L-2)]/8a^{2}, \qquad (14c)$$

$$C_0^{(0,2)} = 0$$
, (14d)

$$C_1^{(0,2)} = n^2 (7n^4 + 5n^2 - 3L^2) / 8a^3 , \qquad (14e)$$

$$C_1^{(2,0)} = n^2 (-7n^4 - 5n^2 + 3L^2) / 8a^3 , \qquad (14f)$$

$$C_{2}^{(2,0)} = n^{4} [-45n^{4} + n^{2}(14L - 63) + 5L(3L + 2)]/8a^{4}, \qquad (14g)$$

$$C_1^{(1,2)} = 0$$
, (14h)

$$C_1^{(2,1)} = n^4 [73n^4 + n^2(-14L + 83)]$$

$$-L(27L+10)]/16a^4$$
. (14i)

Here we used the Hellman-Feynman theorem for the screening parameters λ and μ to define perturbed energies in terms of expansion coefficients of the potentials

$$\left\langle \frac{\partial H}{\partial \lambda} \right\rangle = \frac{\partial E}{\partial \lambda} \tag{15a}$$

and

$$\left\langle \frac{\partial H}{\partial \mu} \right\rangle = \frac{\partial E}{\partial \mu} , \qquad (15b)$$

С

BRIEF REPORTS

$$m'E_n^{(n',m')} = \sum_{\substack{n=1\\m=0}} nV_{nm}C_{n+2m-1}^{(n'-2m,m'-n)}$$
(16a)

and

$$n'E_n^{(n',m')} = \sum_{\substack{n=0\\m=1}} 2mV_{nm}C_{n+2m-1}^{(n'-2m,m'-n)} .$$
(16b)

Therefore calling $\beta_1 = \lambda/a$ and $\beta_2 = \mu/a$, we write the bound-state energy spectrum in the powers of the screening parameters λ and μ as

$$E_{nl}/a^{2} = -\frac{1}{2n^{2}} + \beta_{1} + \frac{1}{4}(-3n^{2} + L)(\beta_{1}^{2} - \beta_{2}^{2}) + \frac{n^{2}}{12}(5n^{2} - 3L + 1)(\beta_{1}^{3} - 3\beta_{1}\beta_{2}^{2}) \\ + \frac{n^{2}}{192}[-77n^{4} + 5n^{2}(6L - 11) + 3L(5L + 2)](\beta_{1}^{4} + \beta_{2}^{4}) + \frac{n^{2}}{32}[49n^{4} + 5n^{2}(-6L + 7) - 3L(L + 2)]\beta_{1}^{2}\beta_{2}^{2}.$$
(17)

III. RESULTS AND CALCULATIONS

We have derived the entire bound-state energy spectrum of the potential (GECSP) in the powers of the screening parameters λ and μ . In the solution, we employed the hypervirial equation with the Hellman-Feynman theorem applied to the screening parameters separately. This procedure provides a solution for the energy eigenvalues, which are a function of two free parameters having different physical properties; therefore the solution covers the special forms of the potential. One can easily interpret the variation of each parameter and truncate the expansion by arranging the terms especially in the higher-order contributions. One can also easily extend the solution in parallel with the truncation procedure by considering only one of the parameters.

Our results are consistent with previous works.^{12,16,31,32} Some numerical values of energies of the first four states for different values of β_1 and β_2 are also compared with those obtained recently by applying the dynamical-group technique.³²

- ¹N. Bessis, G. Bessis, G. Corbel, and B. Dakhel, J. Chem. Phys. **63**, 3744 (1975).
- ²H. Margenan and M. Lewis, Rev. Mod. Phys. **31**, 569 (1959).
- ³G. M. Harris, Phys. Rev. 125, 113 (1962).
- ⁴H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1936).
- ⁵A. E. S. Green, Phys. Rev. **75**, 1926 (1949).
- ⁶V. L. Bonch-Breuvich and V. B. Glasko, Dokl. Akad. Nauk SSSR 124, 1015 (1959) [Sov. Phys.—Dokl. 4, 147 (1959)].
- ⁷G. L. Hall, Phys. Chem. Solids 23, 1147 (1962).
- ⁸E. P. Prokopev, Fiz. Tverd Tela (Leningrad) 9, 1266 (1967)
 [Sov. Phys.—Solid State 9, 993 (1967)].
- ⁹J. B. Krieger, Phys. Rev. 178, 1337 (1969).
- ¹⁰F. J. Rogers, H. C. Graboske, Jr., and D. J. Harwood, Phys. Rev. A 1, 1577 (1970).
- ¹¹G. J. Iafrate and L. B. Mendelsohn, Phys. Rev. **182**, 244 (1969).
- ¹²C. S. Lam and Y. P. Varshni, Phys. Rev. A 4, 1875 (1971); 6, 1391 (1972).
- ¹³J. McEnnen, L. Kissel, and R. H. Pratt, Phys. Rev. A 13, 532 (1976).
- ¹⁴M. Grant and C. S. Lai, Phys. Rev. A 20, 718 (1979).

- ¹⁵J. Killingbeck and S. Galicia, J. Phys. A 13, 3419 (1980).
- ¹⁶C. S. Lai, Phys. Rev. A 23, 455 (1981); 26, 2245 (1982).
- ¹⁷G. Ecker and W. Weizel, Ann. Phys. (Leipzig) 17, 126 (1956).
- ¹⁸K. M. Roussel and R. F. O'Donnell, Phys. Rev. A 9, 52 (1974).
- ¹⁹C. S. Lam and Y. P. Varshni, Phys. Lett. **59A**, 363 (1976).
- ²⁰C. H. Mehta and S. H. Patil, Phys. Rev. A 17, 341 (1978).
- ²¹P. P. Ray and A. Ray, Phys. Lett. 78A, 443 (1980).
- ²²R. Dutt, A. Ray, and P. P. Ray, Phys. Lett. 83A, 65 (1981).
- ²³S. H. Patil, J. Phys. A 17, 575 (1984).
- ²⁴C. C. Gerry and J. Laub, Phys. Rev. A 30, 1219 (1984).
- ²⁵G. Moreno and A. Zepeta, J. Phys. B 17, 21 (1984).
- ²⁶T. Imbo, A. Pagnamenta, and U. Sukkatme, Phys. Lett. **105A**, 183 (1984).
- ²⁷A. Chatterjee, J. Phys. A 18, 1193 (1985).
- ²⁸R. Dutt, K. Chawdhury, and Y. P. Varshni, J. Phys. A 18, 1379 (1985).
- ²⁹A. Chatterjee, Phys. Rev. **35**, 1229 (1987).
- ³⁰R. Sever and C. Tezcan, Phys. Rev. A **35**, 2725 (1987).
- ³¹D. Singh and Y. P. Varshni, Phys. Rev. A 28, 2606 (1983).
- ³²H. deMeyer et al., J. Phys. A 18, L849 (1985).