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Thermal Quctuations lead to nonspherical distortions of liquid microdroplets with typical ampli-

tude 5-0.1 nm. The 21 + 1 modes of a multiplet are then split in frequency by a fractional amount

of order 6/a —10 ', where a is the droplet radius. The width of the multiplet in the frequency

domain implies a proportionate reduction in the photon storage lifetime and can limit the effective

Q value defined by the photon lifetime to Qo-(a/he)-(10'/e), where s (0&s& 1) is process
dependent and expresses the fraction of the modes of the multiplet effectively coupled in the pro-

cess. The theory behind this scenario is presented.

I. INTRODUCTION

When light of vacuum wavelength A, is introduced into
a microdroplet of radius a and refractive index n & 1, rays
can be reflected around the rim. The dimensionless size
parameter x =2ma/k is a measure of the ratio of the
roundtrip path to the wavelength, and when x assumes
definite values (depending only on n), standing waves or
resonances will appear. In geometric optics approxima-
tion (which is valid as x ~ ~), rays sufficiently near the
rim undergo total internal reflection, so that the elec-
tromagnetic energy is completely confined and the quali-

ty factor Q of the corresponding resonance is theoretical-
ly infinite. However, for the physically interesting range
50&x &500, corresponding to 5 pm~a ~50 pm, one
must go beyond the geometric optics approximation and
describe these resonances in terms of electromagnetic
modes with angular momentum (l, tn ), where, for rays
near the rim

1=(momentum) X(impact parameter)

(nk )( a ) -= nx

with k =co/c =2m/k. These modes have been computed
for Mie scattering' and the internal density of states and
do show very sharp resonances. For transparent droplets
(n real), the computed Q values increase very rapidly
with x, especially for modes without a radial node inside
the droplet, corresponding, in geometric optics language,
to rays without radial momentum and hence propagating
purely tangentially and grazing the droplet surface. For
example, for n =1.45 and x =170, Q —10 . ' In other
words, the photon lifetime within the droplet can theoret-
ically be extremely large, r=Q/to-10 /10' s ' —10 s.

These modes, often called morphology-dependent reso-
nances (MDR's), have been observed in many optical pro-
cesses: Mie scattering, fluorescence, Raman scattering,
Brillouin scattering, chemical energy transfer, and las-
ing. The large storage time ~ is the key to the optical
feedback and therefore central to the understanding of
nonlinear process. ' ' Recently, experiments using

several different techniques' have found that the effective

Q as defined by the photon lifetime is in fact limited to
about 10 . The droplets used are so transparent that ab-
sorption cannot be the principal reason for the reduction
in Q and since some of the experiments concern low in-
tensity phenomena, nonlinear processes are also not a
likely cause. The purpose of this paper is to resolve this
large discrepancy between the theoretical and measured
Q values ( —10 vs -10 ).

The main idea is that due to thermal fluctuations, the
surface of the droplet is deformed to

r(8, tp)=a+ g ALMS 4rrYL st(8, tp) .
L%0, 1

The factor of v'4m is introduced for consistency with the
notation in an earlier work" on which we shall rely
heavily. The L =0 term is excluded because volume
changes are suppressed by the bulk modulus, while L = 1

terms are excluded because they correspond to pure
translation of the droplet. The fluctuations are caused by
thermal energy ks T (where ks is the Boltzmann constant
and T is the temperature) and restrained by the surface
tension ys, and we shall show in Sec. II that for LA0, 1,
the thermal ensemble average (denoted by ( )) at equal
times t is given by

k~T
&L,L'&MM' '

4~y's L2+L 2

In the presence of a shape distortion described by 51~,
the degeneracy of the 2l+1 modes of a multiplet is lifted,
so that the unperturbed frequency ~o becomes
co =coo+co„where A, = —I, . . . , l labels the modes of the
multiplet and co& is the first-order frequency shift induced
by ht M. (If M =0, the distortion maintains axial symme-
try, then A. is identical with the azimuthal quantum num-
ber m; otherwise each mode A. is the linear combination
of several m's. ) Because these modes are dissipative, the
frequencies have a small imaginary part. Ordinary per-
turbation theory, which is valid only for Hermitian sys-
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tems with real eigenvalues, can no longer be applied, and
the calculation of the frequency shifts becomes nontrivial.
We have recently developed a first-order perturbation
forrnalisrn for such dissipative systems" and we apply
that formalism in Sec. III to show that the mean square
splitting of the multiplet

(g~2) y (
2. )2 g2 21

(3)

can be expressed analytically in terms of a sum over
(ALM(t)b LM(t) ); and using (2),

k, T
Q2—

I
'Vs a

(4)

' 1/2
y&a

k~T
(6)

where Qo-2X10 /s for a glycerol droplet (ys=0. 06,
Nm ') of radius 10 pm at room temperature. The factor
c. is process dependent, but it is reasonable to expect that
in most circumstances it is at least -0.1. So we expect
that in this case Qo lies between 2 X 10 and 2 X 10,
roughly in agreement with experiment. The expression
for Qo is the principal result of this paper and the argu-
ments leading to (6) as well as further discussions are
given in Sec. IV.

II. SURFACE FLUCTUATIONS

Consider a droplet surface described by (1), where ELM
are functions of time. The amplitudes b, LM of the surface
modes satisfy, for LW0, 1,'

~LM+ "L~LM+fIL~LM=FLM(t) .

The damping coeScient is

I =(2L+1)(L—1)I

2p

pa

(7)

where p is the viscosity and p is the density of the liquid.
The restoring force is provided by surface tension y& ..

0 =L(L +L —2)A (10)

3 s

pa

where CI are explicitly calculable numbers, with the

asymptotic value

Cl-0.04, l &)1 .

For processes involving all members of the multiplet in
a coherent fashion, the uncertainty relation gives the fol-
lowing limit on the photon lifetime: r~ (b,co ) '~ . If
the process involves only a faction of the multiplet,
(b,co )'~ is effectively reduced by a factor s, 0(E(1.
We therefore obtain

1
Q C007 +~

The term FLM(t) on the right-hand side represents the
force due to thermal fluctuations, with a white-noise
spectrum

LM(~) L'M'(~ ) ~ AL ~~(~ ~ @LL'~MM'

FLM(t) = J (dc@/2n)FL. M(co)e

(12)

(13)

and Az is some normalization constant.
The pressure discontinuity across the surface is

p =ys —+(L —2)
a

(14)

, (L'+L —2)A (t)v'4 Y
a

(16)

h =ELM(t)&4m. YL

giving the potential energy

VL M= ,'(4ny~)(L +—L—2)~ELM(t)~

(17)

(18).

Obviously different modes do not interfere. Identifying
(18) with kttT/2 (which is valid even for overdamped
modes provided the temperature is high' ) and noting
that different modes are independent then gives (2). The
characteristic amplitude is

k~T
(19)

S

independent of droplet size, with a value of 0.07 nm for
glycerol at room temperatures.

This normalization determines AL in (12), which, to-
gether with (7), can be used to evaluate the unequal time
correlations (,ELM(t)b L.M (t') ) in a straightforward
manner. However, these are not needed for the present
problem and will not be shown.

III. FREQUENCY SHIFTS

Since the measured photon storage time is
r-Q/coo-10 /10' s ' —10 s, and the frequency of
the surface fluctuations is 0-10 s ', for all practical
purposes the electromagnetic modes experience a static
distortion of the droplet with constant values of 41~.
Moreover b I~ /a —10 && 1, so first-order time-
independent perturbation is valid for calculating the fre-
quency shifts. We have shown" that for an electromag-

where h(e, p)=r(8, g) —a is the sum in (1) and
L=rX( —iV) is the angular momentum operator. The
second term in (14), proportional to b,LM, is the excess
due to the thermal fluctuations. The potential energy due
to the fluctuations is

V= —,
' JdSph . (15)

For the contribution of a single mode LM, the excess
pressure is

QLM(t)v'4m. YL M
p =ys(I.
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netic mode A, within a multiplet of angular momentum /,

the relative frequency shift co&/co0 is given by the eigen-
value equation

UaPa&—

where

A,

'

CO i

CO0
(20)

—~p ~LM
U = —g &4m f dQX&" YL MXI &

.
I., M

(21)

In (21) and all subsequent formulas, L =0, 1 are under-
stood to be excluded. [In Ref. 11, the derivation was only
for one term ELM, but it is evident that in first-order per-
turbation theory, the effects of several perturbations are
additive. Also, (20) actually applies to the complex fre-
quency co0 and its comp/ex first-order shift co, . However,
the change in the imaginary part is negligible and will be

I

ignored, so henceforth co0 and co& may be taken to be just
the respective real parts. ] The eigenvector
a &

= (a, , a z, . . . ) determines the spatial dependence of
the electromagnetic eigenfunctions, and need not concern
us here. In (21),

X, = LY,&l(l+ 1)

are the vector spherical harmonics. The surprising
feature of this result is that it is totally independent of the
refractive index n and the radial function describing the
unperturbed mode (which is in general complicated). The
result applies exactly to TE modes, and to within correc-
tions of O(L /l ) for TM modes. Since (2) implies that
large L modes are suppressed, the corrections are unim-
portant.

The average relative shift is

1

21 +1
& coo

1

21+1

1 ~LM
4~ g f dQX)~YLM&(~

L, M a
(22)

If we consider the thermal ensemble average, of course ( b, LM ) =0. But even without this average, we have

g X(" X(
2l +1

4m
(23)

with zero projection on YL M, LAO Thus the. average shift is zero even for a given static perturbation. This property is
readily verified using the explicit results in Ref. 11.

Next we calculate the mean square relative shift, averaged over the thermal ensemble:

N' '
2l+1 zq( mo ) 2l+1

1 ( ~LM~L'M' ~

g &4m fdQXI' (Q) YLM(Q)X) P(Q)
L,M L', M' a a,P

&&&42rfdQ'XI a(Q') YL. M (Q')XI (Q') . (24)

1 — f d Q Y(' (Q) YL M(Q) YI P(Q) .

Next apply the addition theorem
(25)

We use (2) for the ensemble average (, bLMAL M. ) and
the identity

f d Q Xf (Q) YL M(Q)X, P(Q)

g YLM(Q)YLM(Q'), g YI P(Q')YI P(Q)
M p

to get, finally

kaT 1 1
1

L(L+1)
y&a 2l +1 L L +L —2 2l(1+1)

2
2L +1 2l +1

4~ 4

'2

2l +1g Yi*a(Q) Yt a(Q') = Pi(cosy )
4m

where y is the angle between Q and 0', and similarly to
the other two sums

X dQdQ'PL cosy PI cosy

The double integral in (27) is

(27)
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2

2L +1 [C(llL;000)]' (2&)

C(llL;000) =(—1)' 2L +1
21+L +1

' 1/2

where

r(x) = (x /2)!
&x!

r(21+L ) 1

&(2I L) —[r(L)]2
(29)

(30)

Then we get (4), with

21+1 '
1 L(L+1)

4m ~)0 L +L —2 21(I+1)

2
2L +1

21+L +1

(I +L /2)!
(& —L /2)!

2
(21 L)!—
(21+L )!

where C( I, Izl3, m, m zm 3 ) are Clebsch-Gordan
coeKcients, ' and in the present case, vanishes for odd L,
while for even L 2l

IV. PHOTON STORAGE LIFETIME

Strictly speaking, the effect of mode splitting on the
time dependence of an optical process will depend on the
details of the process. In this paper, in order not to ob-
scure the main ideas and to emphasize the commonality

among different processes, we shall sketch only the gen-
eral considerations applicable to all processes. In the
simplest terms, the increased width in the frequency
domain of the multiplet as a whole leads, via the uncer-
tainty principle, to a proportionate reduction in the life-
time, as discussed in Sec. I.

To be more concrete, assume that only a (2l+1)-fold
multiplet of modes is dominant. In general, we may
characterize the experiments in terms of emission (or in-

put coupling) to modes A, with amplitudes a(A, ), followed
by detection (or output coupling) with amplitudes b(A, ),
I,= —I, . . . , l. For example, in Mie scattering a(A, ) and
b(A, ), respectively, describe the projection of the incident
plane wave and the detected scattered wave into the
relevant modes. In chemical energy transfer, a(A, ) de-
scribes the emission of a virtual photon by a donor mole-
cule (say at position r&), while b(A, ) denotes the absorp-
tion of the virtual photon by an acceptor molecule (say at
position r2). Then schematically, the amplitude A for the
process goes as

i
[(L/2)!]

(31) A —g a(A, )b(k)e ' ' e (32)

TABLE I. Values of CI as defined by (31).

C( (X10 2)

4
6
8

10
20
30
40
50
60
70
80
90

100
150
200
250
300
400
500

2.2779
2.7766
3.0525
3.2262
3.5914
3.7182
3.7825
3.8213
3.8474
3.8660
3.8800
3.8910
3.8997
3.9260
3.9392
3.9471
3.9524
3.9590
3.9630

Table I shows some selected Cl, and since we are typi-
cally interested in l-nx &)1, it will be adequate to use
the asymptotic value in (5). So for glycerol at room tem-
peratures, 5-5 X 10

Thus the 21+ I modes which are originally degenerate
at cup become split in frequency by -cop5.

where y/2 is the imaginary part of the frequency, for
simplicity assumed to be unaffected by the droplet distor-
tion. To appreciate the time dependence of the ampli-
tude A, it is useful to first consider two extreme cases.

A. Single mode processes

Consider a hypothetical situation in which the droplet
suffers a definite distortion (say the "droplet" is a de-
formed glass bead, with b zo%0, all other b, LM =0),
without distribution over an ensemble. Consider a spe-
cially arranged "Mie scattering" experiment where the

incoming wave is not a plane wave, but consists of a sin-

gle eigenstate A, , and the detection apparatus is designed
to accept the same eigenstate A, only. Then the sum in
(32) has only one term, and we have

(33)

In other words, under these very special circumstances,
the photon lifetime is ~=1/y, essentially unaltered by
the shape distortion. The Q value should be the same as
that computed for a perfect sphere, say —10 if absorp-
tion could indeed be ignored.

Selection of a single mode can be naturally achieved in
some nonlinear processes. ' In typical experiments,
the droplet, in falling through air, is deformed into an ob-
late spheroid, typically by —1%, i.e., there is a static
term 52p-0. 1 —0.5 pm in addition to the thermal fluctua-
tions with AL~ -0. 1 nrn. The static distortion causes the
2l+1 modes of a rnultiplet to split, again by —1%. It is
then possible to preferentially excite a few modes, and for
these modes, now nondegenerate (at the 1'//o level), not to
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mix under the thermal fluctuations (which are at the 10
level).

Preferential excitation depends on the mode functions,
which are most easily visualized as follows. In geometric
optics language, the photons run around the circumfer-
ence along great circles, with L normal to the great cir-
cle. Thus modes with ~rn

~

-I correspond to photons go-
ing around the equator, and have mode functions concen-
trated there; modes with m -0 correspond to photons
going along a meridian, with the mode functions not con-
centrated near any latitude. Thus if the incident radia-
tion is focused onto a spot on the equator, then it will

couple predominantly to the
~

m
~

-l modes. In nonlinear
processes such as stimulated Raman scattering (SRS), the
difference in the coupling strength to different modes m
leads to a corresponding difference in the intensity
thresholds I,h(m) for stimulation, in this case with

I,„II)& I,h(l —1) « I,h(0). Thus if the incident in-

tensity Io lies in the range I,„(l)& Io & I,„(1—1), only one
mode of the multiplet will exhibit SRS, with consequently
a storage time that is in principle not limited by the
thermal fluctuations. Experimental clarification of this
issue would be interesting. However, such a strong selec-
tion of modes cannot occur for linear processes.

a(A)b(A)-&out~A) &A~in) (34)

and
~

A, ), under the ensemble average, is a random vector
in the (21+1}-dimensional Hilbert space spanned by the
resonant modes. Then the uncertainty principle would
give a characteristic decay time

(35)

for the sum

g a(A)b(A, )e

B. Coherent superposition over all modes

It is clear that in most circumstances, especially for
processes not involving stimulation, a(A)%0, b(A)%0
and in fact the product a(A)b(A) must be the same order
for all A, . This is especially so since

ence causes a relatively rapid decay with r-o((co, ) '),
the mechanism being the same as in mode locking.

Any actual experimental situation must lie between
these two extreme cases, in that more than a single mode
is involved but not all modes are equally coupled. This
means that & b,co ) ', now defined with respect to the
terms in the sum in (32), will be reduced by some factor e,
0 & e & 1, relative to that in (35). This then leads to (6) in
its general form. The precise value of c can only be found
if each process is calculated in detail. But, except in
stimulated processes with the intensity just above one
threshold, it is unlikely that e is less than -0.1, so we
have found a very useful estimate for Qo, especially in
view of the fact that the discrepancy to be explained is
—10' (10 vs 10 ).

Assuming c. &0.1, there is clearly broad agreement
with experimental values, showing that the main reason
for the reduction in photon lifetime is readily explained
through shape perturbations, though the simultaneous
existence of other effects, such as Brillouin scattering
from density fluctuations, is not excluded. A more de-
tailed comparison would require a careful analysis of the
individual experimental conditions [in other words evalu-
ation of a(A) and b(A, ) and hence e], and will be given
elsewhere.

We end by clarifying the tneaning of Q in the frequency
domain, in terms of which Q-coo/(width). When the
multiplet is split, there are two distinct widths: (a} the
width y of a single mode, which is essentially unaltered,
and (b) the width of the multiplet as a whole, say coo5,

with 5 given by (4), or more generally the width of the
fraction c, of the multiplet which is effectively coupled,
say coo5e The fo. rmer width defines Q, -coo/y, say

Q&
—10 if absorption were indeed negligible. The latter

width defines Q2
—1/5, or more generally Q2 - 1/(5e ),

which has a reduced value, say Q2 —10, on account of
thermal fluctuations. The reduction in Q discussed in
this paper refers to the effective Q defined by the photon
storage time, Q-~or, which is equal to Qz and not Q&,
simply because the process sees the multiplet as a whole
(or at least a fraction e of the multiplet) and not a single
mode. In particular, we emphasize that Q, is not reduced
by thermal fluctuations.

Since in all cases of interest y~&&1, this is also the
characteristic decay time for A. Expressing the right-
hand side of (35) in terms of 5 and using (4) then leads to
the expression for Qo in (6) with e = 1.

In short, because the thermal fluctuations are random,
the input and output coupling would connect "equally"
to all k. Because of the splitting in frequency, interfer-
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