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Laser cavities are open systems, in that energy can leak to the outside via output coupling. The
"normal modes" are therefore quasinormal modes, with eigenvalues that are complex and eigen-

functions that extend outside the cavity, such that any normalization integral is dominated by the

region outside; in short, such systems are non-Hermitian. This paper addresses the question: How

is the complex eigenvalue (i.e., the mode frequency) changed when the cavity is perturbed by a small

change of dielectric constant? The usual time-independent perturbation theory fails because of
non-Hermiticity. By generalizing the work of Zeldovich [Sov. Phys. —JETP 12, 542 (1961)]for sca-

lar fields in one dimension, we express the change of frequency in terms of matrix elements involv-

ing the unperturbed eigenfunctions, so that the problem is reduced to quadrature. We then apply
the formalism to shape perturbations of a dielectric microdroplet, and give analytic formulas for the

frequency shifts of the morphology-dependent resonances. These results are, surprisingly, indepen-

dent of the radial wave function, so that all integrals can be performed and explicit algebraic expres-

sions are given for axially symmetric perturbations.

I. INTRODUCTION

A. Qnasinormal modes in open systems

In this paper we consider the electromagnetic modes of
an open system formed by mirrors and dielectrics. For
our purpose, a system is said to be closed if the fields are
confined to a finite region in space, for example in an en-
closed microwave cavity, or more generally if the energy
density is integrable. In contrast, it is said to be open if
the fields are not strictly confined, but can leak to the
whole universe. A11 optical cavities with some degree of
output coupling belong to the latter category and we
shall use the terms "open system" and "leaky cavity" in-
terchangeably. Open systems are by far the more com-
mon, although when the leakage is small, concepts per-
taining to closed systems can often be applied with a high
degree of accuracy.

The modes of a leaky cavity have complex frequency
eigenvalues co, with y = —2 Imago) 0 describing the rate of
leakage. Secondly, the eigenfunctions extend over the
whole universe, so that any normalization integral is
dominated by the region outside the cavity. In fact eigen-
functions are largest at infinity, because a spherical out-
going wave exp[ i to( t —r—/c)]/r behaves as
exp(+ yr/2c)/r when co has an imaginary part. For these
quasinormal modes, many familiar concepts derived for
the normal modes of a Hermitian system do not apply.

In some circumstances, it is useful (indeed necessary)
to consider not just the leaky cavity (size a), but the
whole universe (size A, A~Do). By imposing suitable
conditions at the boundary of the universe, the system as

a whole becomes Hermitian. Then instead of the quasi-
normal modes of the cavity [for one ditnension, spaced by
-cia in frequency and normalized to O(a '

)] one
discusses the modes of the universe [spaced by -c/A in

frequency and normalized to 0 ( A ' )]. Each quasinor-
mal mode of the cavity corresponds to a collection of
modes of the universe and the ability to switch between
these two points of view is often useful. ' The latter
description is often convenient because the standard tech-
niques for Hermitian systems allow second quantization
for dealing with emission, absorption, and lasing. '

Nevertheless, for some applications, the concept of quasi-
normal modes is physically appealing and mathematically
convenient, and we shall adopt the quasinormal mode
point of view in this paper.

Quasinormal modes are relevant not only in optics, but
whenever there is leakage or decay, for example in a de-

cay and the associated quantum-mechanical tunneling
problems, in compound nucleus theory, and even in the
wave function of the universe.

We are here concerned with the following question:
Suppose the dielectric constant eo(r) is slightly perturbed
by e&(r), what is the first-order change in the (complex)
frequency eigenvalues? This mathematical problem is
relevant to many physical situations: a small displace-
ment of a dielectric lens, a temperature change a6'ecting
the dielectric constant, or nonlinear changes of the
dielectric constant at high fields. We shall be particularly
interested in the quasinormal modes of dielectric micro-
droplet, to be discussed in Secs. I B and III.

The usual formalism for Hermitian systems gives the
first-order result
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where E' ' is the electric field of the unperturbed mode.
This formula does not make sense for an open system:
the denominator is dominated by the region outside the
leaky cavity, and diverges with the size of the universe A,
while the numerator is independent of A since e, (r) is
nonzero only in (or near) the cavity. The right-hand side,
if naively adopted, would give zero in the limit A —+ oo.
This is a ubiquitous problem with quasinormal modes,
and the necessary reformulation of time-independent per-
turbation theory for open systems has been given by Zel-
dovich for a scalar field in one dimension described by
the Schrodinger equation. In Sec. II we extend the Zel-
dovich formalism to the Maxwell theory in three dimen-
sions, including the case with degeneracy. The end result
is a formula similar to (1.1), but where the denominator is
expressed in terms of a volume plus a surface integral,
such that its value is independent of the size of the
universe, i.e., independent of the volume over which the
integral is taken, provided it is sufficiently large. One in-
teresting feature is that this formula involves the expres-
sion E' 'E' 'and not E' '*.E' '.

B. Quasinormal modes in mierodroplets

We shall apply this formalism to the quasinormal
modes in dielectric microdroplets, usually referred to as
morphology-dependent resonances (MDR*s), which are
the subject of considerable recent interest and have a pro-
nounced effect on the Mie scattering, ' fluorescence, "
Raman scattering, ' Brillouin scattering, ' lasing, ' and
chemical energy transfer' in these microdroplets, as well
as on some aspects of rainbow formation. ' We shall in
particular consider distortions of the droplet shape,
which may be induced by an external impulse, generated
by intense acoustic waves excited through stimulated
Brillouin scattering or simply caused by thermal fluctua-
tions, and have been observed in several experiments. ' '
The shape distortions, though strictly speaking time
dependent, have typical frequencies only in the MHz
range, and may be dealt with as static perturbations. The
perturbation of these quasinormal modes has been inves-
tigated mathematically through a direct calculation of
the elastic scattering cross section from a nonspherical
scatterer by the T-matrix method' ' and one object of
this paper is to solve this problem analytically by devel-
oping the perturbation theory for quasinormal modes.
For readers interested in this application rather than in
the formalism as such, we present below some of the re-
sults, with further details to be found in Sec. III.

A droplet of radius a (typically 5 —50 pm) is usually de-
scribed by the size parameter x =2ma /A, , where A, is the
wavelength of light in vacuum. Consider a set of quasi-
normal modes with polarization p ( =E or M for TE or
TM modes), angular momentum I, and radial mode index
v giving the number of nodes of the wave function inside
the droplet. These modes can be very narrow if I -nx,
where n is the refractive index; in geometric optics

language, the rays are trapped by total internal reflection
around the rim at near-glancing angles. Now let the
shape of the droplet be distorted to

r (e,g) =a + b &4~YI ~(O, y) (1.2)

where 5 &&a, with the refractive index inside the droplet
remaining unchanged. (The factor &4m is introduced so
that for L =0 this describes a uniform expansion of the
droplet by an amount h. Of course hydrostatic expan-
sion is suppressed by the bulk modulus, and even to the
extent that it is allowed, would cause a reduction in the
density and hence the refractive index. Nevertheless the
hypothetical uniform expansion will provide a useful way
to understand some features of the final result. } For
(L,M)=(2,0) and b, /a ((1, the distorted shape is a

heroid, with pola~ and equatorial radii ~, r„a
often convenient to express the amplitude of distortion
via

~p "e
e —= =3&5/4—

a a
(1.3)

The 2l + 1 modes can be labeled by an index
a= —I, . . . , l. For simplicity we assume that the pertur-
bation maintains axial symmetry, i.e., M=O, then a is
identical with the azimuthal quantum number m,' other-
wise each mode a is a linear combination of different m's.
The change in the mode frequency can be written as

hen F(LM;p—lva;n, x)
67 a

(1.4)

L/2
F =F(L, I,a)= 3 (L, I) g f„(L,I)a "

k=0
(1.5)

where by definition f0=1. Moreover, these coefficients
can be evaluated without reference to the radial wave
functions, yielding extremely simple analytic results; for
example, for axially symmetric quadrupole distortion
(L =2) and assuining I »1,

3 (L =2, 1)=&5/4 (independent of I ),
f, = —3/[1(I + 1)],

4

1.e.)

where the right-hand side could in principle depend on
the angular momentum L,M of the perturbation, the
mode indices, the refractive index n, and the size parame-
ter x. For a hydrostatic deformation (L =0), 6 & 0 means
all eigenvalues are decreased, which is the reason for the
sign convention in (1.4). The dependence on a means
that the degeneracy is lifted. The object is to find F, espe-
cially for L &&I, which is the case of physical interest. In
this paper we consider only axially symmetric perturba-
tions (M =0); generalization is straightforward.

We find some surprising simplifications for F, which
are exact for all TE modes and valid up to corrections of
O(L /I } for TM modes: F is zero for odd L, while for
even L, F turns out to be independent of n, x, p, and v;
moreover, the dependence on a can be written as a poly-
nomial in a: '
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6 1(1+1) (1.7)
Now let the dielectric constant be perturbed to

e(r) =eo(r)+e, (r), (2.3}

Complete expressions are given in Sec. III. All
coeScients turn out to be always real.

The rest of this paper is organized as follows. Section
II presents the general formalism and Sec. III gives the
application to microdroplets, with technical details given
in the Appendices. The perturbation is compared to nu-
merical data for deformed dielectric spheres obtained by
the T-matrix method. The results are discussed in Sec.
IV.

II. FORMALISM

where the second term is small in some sense. Denote the
electric field of the exact quasinormal modes as

F (r)=F' ' (r)+F'" (r) . (2.4)

F' ' (r)= ga "E' ' (r), (2.5)

which satisfies (2.2) as well. On the other hand the exact
fields satisfy

The first term is the field when e]~0, and must be a
linear combination

A. Perturbation in terms of E VX(VXF') —(cu ) e(r)F =0, (2.6)

For a system described by a spatially varying but time-
independent complex dielectric constant e(r), the modes
with time dependence exp( i cot )

—satisfy the time-
independent Maxwell equation

V X (V X E)—co e(r)E =0 . (2.1)

VX(VXE' ' }—ar eo(r)E' '=0 (2.2)

where the unperturbed frequency co0 is independent of o, .

We assume the dielectric is present only in a region of
size -a, and that e(r)~1 at infinity. With the velocity
of light in vacuum=1, the wave number k at infinity is
identical to co. Mirrors are ignored, though these can be
readily incorporated through boundary conditions on
(2.1). Quasinormal modes are solutions to (2.1) with out-
going wave boundary conditions, for which co is complex.
Because co and e(r) are complex, E* does not satisfy (2.1).

The unperturbed system with dielectric constant eo(r)
has a D-fold degenerate set of quasimodes E' ',
a=1, . . . , D, satisfying

in which the exact frequencies

0+ (2.7)

=
canoe) (r )F +2cooco) eo( r )F, (2.8)

in which second-order terms proportional to co& and

co)e)(r) have been discarded. It might appear that, to
first order, F on the right-hand side can be replaced by
F' '; however, as we shall see, this is not valid in the case
of shape perturbations and we continue to write (2.8) in
terms of F rather than F' ' .

Now multiply by E' ' (not its complex conjugate) and
integrate over a sphere of radius R, R &&a,
R »A, =2+Ice. Thus

are in general dependent on A, , i.e., the degeneracy is lift-
ed. The object is to calculate the frequency shifts
co~), A, = 1, . . . , D (both real and imaginary parts).

By subtracting (2.2) for F' '" from (2.6),

V X ( V X F" ")—co eo( r )F' "

f dVE' ' [VX(VXF"'~)—co()eo(r)F"'"]=coof dVe, (r)E' ' F +2mocot f dVeo(r)E' ' F
R R R

(2.9}

In fact, (2.9) shows that the perturbation can be effected
after doing the integral. Thus the condition is that the
discarded terms are small when so integrated, and not
that they are sma11 in a pointwise sense. Therefore
changes in e of order unity but extending over a small re-
gion can be accommodated. On the left-hand side of
(2.9), we integrate by parts, obtaining the terms in (2.2),
which add to zero. (This is why we must multiply by
E' ' and not its complex conjugate). However, because
the system is non-Hermitian, there are nonzero surface
terms, which are evaluated to be

(3,(e'""/r ) ik (e'""/-r ), so

g (p(0)k+~(1)il.
)

.kA(~(0)l+p(1)) )I 1

while for the zeroth-order field,

(2.1 la)

g F(0)A, k F(0)k
r i 0 i (2.11b)

Taking the di6'erence and neglecting a second-order term
k, F,' ", we find that F"' drops out completely and
(2.10) can be expressed as

—f dS[E,' ' (c}„F,"'~)—(d„E,' ' )F,'"'] . (2.10)

It is next necessary to eliminate F'" from this expres-
sion. In the far zone, the fields are spherical waves, and

~ A, dg P(0)a F(0)A.

Putting this into (2.9) gives

(2.12)
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a) 2(o dVe (r}E' ' F"+i dSE' ' F' '
CO& COO E'0 r

~of dVe)(r)E ~F) . (2.13)

dR =fdic 1+ g p(R),
2('oo dR

(2.17)

where we have used eo(R ) = 1 for R ))a and

g (R)=R E' ' (R, O, y) E ' (R, O, ri)) .

But at large distance the fields are outgoing waves:

(2.18)

Since ~, is a small quantity, we may replace F on the
left-hand side by F' ' . For the moment also assume e, is
also everywhere small, then F on the right-hand side can
also be replaced by F ' . Recalling the definition (2.5),
we get the eigenvalue equation

2' )y VaPa~ = — y gaPa)" (2.14)
COp p

for the kth eigenvalue —2', /coo and the A.th eigenvector
a = (a, , a 2, . . . , aD). The D XD matrices are

V P— d V ( )E(Q) .E(o)P

g P= f dVe (r)E'" E"'P+ f dSE" E"'P
R

EO I
2cop R

(2.16}

depending only on the unperturbed eigenfunctions and ei-
genvalue. This is then the formal solution of the time-
independent perturbation. In the nondegenerate case,
V ~ and G ~ are the analogs of the numerator and the
denominators in (1.1), respectively.

Since R is an arbitrary large distances, we must verify
that V ~ and G ~ are independent of R; this is nontrivial
since the fields extend to infinity. The case of V ~ is sim-
ple, because e, (r) is nonzero only in (or near) the cavity
of size -a, so any R »a will give the same V ~. For
G ~, wenotethat

will be discussed in the context of microdroplets in Sec.
III. These corrections are such that the formal result (a)
is accurate for the shifts in the real parts, but (b) gives
only an order of magnitude estimate for the changes in
the imaginary parts (widths).

B. Perturbation in terms of B

In some cases, it may be more convenient to express
g p in terms of the magnetic field B' ",corresponding to
the electric field E' ' . In the volume integral in (2.16),
we use the Maxwell equation

e (r)E(o) P XB(o)
0

CO0
(2.20)

integrate by parts, and convert the resultant VXE' 'P

into

V XE'"~=i~ S"'~—l COp (2.21}

= —f dVB' ' B' 'P — f dS n (E' 'PXB' '
) .

R Ct)p R

(2.22)

This resembles the familiar statement that, except for
surface terms, the electric and magnetic energies are
equal —except that there is now a relative minus sign in
the volume integrals. The reason is that in the "usual"
case one of the field factors is complex conjugated, so
that one of the factors of coo in (2.20) and (2.21) would ac-
quire a minus sign.

Since all fields at infinity are spherical outgoing waves,
we further have

n (E' 'PXB' ' )=E' 'P E' ' =B' P B' '

and we may write 6 ~ as

(2.23)

Again because the system is not Hermitian, there is in ad-
dition a surface term:

dv e (r)E' "E' 'P

RE' (,R Og)= a(O, y)e (2.19) g p= —f d VB' ' B' 'p — f dS B' ' B' 'p.
R 2cop R

so that d/dR acting on each E' ) factor gives iko Hence.
dg/dR =0 and thus (2.14) has an unambiguous meaning
independent of R, thus solving the problem associated
with (1.1) as discussed in the Introduction. The indepen-
dence of R will be verified explicitly in Appendix A for
the example of microdroplets with shape perturbation.
This important property relies on two features of g p: (a)
E' ' E' ' is involved rather than E' '* E' ', and (b) there
is a surface term.

The present formalism can be applied to closed systems
with real e(r) as well. In that case, the wave function
vanishes at infinity, so the second term in (2.16) is zero
for large R, while the first term converges. The field E' '

can be chosen to be rea1, and E' ' E' ' need not be dis-
tinguished from E' '* E' '. In that case (2.14) would be
just a trivial degenerate generalization of (1.1).

The corrections to the first-order perturbation result

(2.24)

C. Linear transformation and adjoint field

where

V a~ ~ aVr
r

r

g ap —y agyp

r

2' ) ygap A,

C00 p

(2.25)

(2.26)

It will be convenient to take linear combinations of
(2.14) and write
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E( ) T ~ E( )~ cr
r

(2.27}

(and similarly for 8 if necessary), which are defined
without complex conjugation. Then

V P= f dVEi(r)E(0)at. E(0)p (2.28)

G ~= dv 6 (r)E' ' t E' +
0

R

f dg p(0)at Ei0).p
2cop R

(2.29)

The adjoint fields will be convenient for the following
reason. In the D-dimensional vector space spanned by
IE' ' I, there will be a natural inner product, which, in
general, will not be integrals involving E' ' 8' )~. By
choosing cr, we can often make the inner product coin-
cide with integrals involving E' ' E' i~, which will make
(2.25}more natural in terms of the vector space structure.
The ideal choice of cz will obviously be proportional to
the inverse of G ~, so that G ~ is proportional to the
identity. These remarks will become clear in the context
of the examples in Sec. III.

and the matrix c is left unspecified at the moment. This
transformation can be equivalently expressed if we define
adjoint fields

value. This change is small for the tangential (t) cun-
ponent of E and for the normal (n } component of D =K.
Write F as E and express the integrand on the riglt-
hand side of (2.13) as

D (0)a D iL

e,EI ' .E, +(e—eO)
0

(2.3:

~ E(0)a E(0)A, + D (0)aD (0)A,
r n n

E'o
(2.34)

Furthermore, in analogy to (2.32)

55(r a)&—4n Y(g, ri)
n

1 1 1—
6'p

1
e,(r),

n

while

D' =n g ' (in)n n

(2.35)

(2.36)

where the right-hand side indicates that the field is to be
evaluated on the inside surface. Thus

Now E, and D„, because of their continuity across the
surface, can be replaced by their zeroth-order values, and
we get

D. Shape perturbation

The formalism requires a slight refinement in the case
of shape perturbations. To be specific, consider a dielec-
tric body 8 with refractive index n placed in vacuum.
Use a curvilinear coordinate system (u, g, ri) such that the
surface of 8 is described by u(g, g) =a, where a is a con-
stant, and the interior (exterior) is given by u & a (u & a).
For a spherical body, (u, g, q) is identified with polar
coordinates (r, 8,g) The diel. ectric constant is

eO(r) =1+(n —1)e(a —u) (2.30)

where 8 is the unit step function. Now let the boundary
be perturbed to

V'~=(n 1)b,&—4n. f dS Y(g, g)

)( (E~o~a E~o)f + ri 2g (0)aE(0)/3)
t t n

(2.37)

the integral being taken on the inside of the surface. The
particular combination, with the normal component
enhanced by a factor n, is always found in these cir-
cumstances. The same applies to the transformed ma-
trix V P. The integrals in G ~ are not aA'ected.

For a closed cavity whose walls have a finite conduc-
tivity, which is a non-Hermitian system, a rather similar
formulation has been given.

u (g, g) =a+ 6&4nY(g, ri). (2.31)

where Yis some function of 0 (1) and the &4' factor fol-
lows the convention in (1.2). Then the change in dielec-
tric constant can be written to first order as

e, (r) =(n —1)b,5(u —a)&4m. Y(g, g) . (2.32)

In this case e, is not everywhere small and in fact the
function 65(u —a) represents a unit dielectric fiuctuation
in a thin layer of thickness A. Now if we put (2.32) into
(2.15), the integral is ambiguous because the 5 function in
E'& multiplies the discontinuous function E' ' .E' '~. The
problem can be traced back to (2.13), where, on the
right-hand side, we replaced F by F' ' . This is justified
only if F'" is small.

In the present ease, let r be a point just outside the sur-
face, such that under the shape perturbation, it is just in-
side the surface. To lowest order in 6, the fields at r will
simply change from the "outside" value to the "inside"

III. MORPHOLOGY-DEPENDENT RESONANCES
IN MICRODROPLETS

The formalism in the preceding section permits the fre-
quency shifts co, to be evaluated in terms of the unper-
turbed mode functions. In practice however, the modes
of ordinary laser cavities are extremely difficult to calcu-
late accurately, even in the absence of perturbations.
Microdroplets, quite apart from their experimental in-
terest, ' ' ' offer an example where the unperturbed
mode functions are readily calculable because of the
spherical symmetry, so that the frequency shifts can be
evaluated explicitly. Our notations are defined in Sec. I B
and the refractive index n is taken to be real, although
complex values can be readily handled. In this paper we
shall deal with axially symmetric perturbations (M =0).
It is not difficult to generalize to other cases.
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A. TE modes

The TE modes are given by

E' ' (r)=P(r)X& (O, g)

@here

Xi = LY&, L=rX( —iV)I(I+1)

(3.1)

(3.2)

%e have explicitly indicated the dependence of Iz and F
on the various parameters; in particular Iz is indepen-
dent of L.

Now specialize to a hydrostatic perturbation with
L =0; then from (3.7) F= 1. Such a perturbation main-
tains spherical symmetry and for a sphere the resonance
occurs at a given value of x =boa, so

are the vector spherical harmonics, and the radial func-
tion depends on l, n, and the size parameter x=kpa.
Define the adjoint fields as

E'" (r)=$(r)X~', (&,q ),
i.e.,

a
( 1)a+lg

r r, —a (3.3b)

Thus the adjoint operator simply means that the angular
wave function but not the radial wave function is conju-
gated. Then 6 ~ is proportional to the indentity

6 ~=5 ~ J dr r eo(r)P(r) + R P(R)
0 2cop

F(L, l, a)= A (L, I}f(a) (3.8}

Hence we conclude that Iz =1. But Iz is independent of
L, so this result derived for L =0 must be universally val-
id. There is then never any need to evaluate radial func-
tions and the right-hand side of (3.5) is independent of n,
x, and v. Since this result is somewhat unexpected, we
provide an explicit demonstration in Appendix B. Of
course, Ilt =1 only for those combinations of (n, x, I, v)
which define a resonance.

Thus the frequency shift is given by (1.4) and it remains
to do the angular integral F, which is zero unless L is
even and can in general be evaluated through Clebsch-
Gordan coefFicients:

=S ~G. (3.4)
where

The fact that this is independent of R is shown explicitly
in Appendix A.

Because the perturbation has M =0, n remains a good
quantum number, and V ~ is diagonal. Thus the eigen-
value equation (2.26) is readily solved to give

A (L, I)= [C(IIL;000)] 1—
&2L +1 2I (I +1)

and the Clebsch-Gordan coefficients are given by
' 1/2

(3.9)

COp

1 V = ——I F
2 G a

(3.5)
C(IIL.OOO) ( 1)i crz-

21 +L +1

where on the right-hand side we have extracted a factor
b, /a and separated into radial and angular integrals

IR(n, x, l, v)=(26) '
J dr r [(n —1)a5(r —a)]P(r)

r(21+L) 1

7 (2l L) r(L)—
r(x) =(x/2)!/&x! .

(3.10)

(3.11)

=(26) '(n —1)a P(a)

6 being given by (3.4), and

The a dependence enters through
(3.6)

f (a)=( —1) C(IIL;a, —a, O)/C(IIL;000) (3.12)

F(L, I,a) =&4~Id Q X&* .Yl OX& (3.7)
whose dependence on L and l is suppressed and which
may be obtained through the recursion relations

f (0)= l,f (l)=1—
21(I +1)

f (a+1)=
I [21(I+1)—2a —L (L +1)]f(a)—(I —a+1)(I +a)f (a —1) I /[(I +a+1)(I—a)] .

(3.13)

L/2f (a) —g f a2k

/c =0
(3.14)

[Since f (a) is defined only for 21+ 1 discrete values of a,

While this gives a complete characterization, a con-
venient alternative form for small L is

it can always be represented by a polynomial of degree up
to 21. The above formula is nontrivial in that only terms
up to a appear. In practice, one can use (3.13) to find

f (0),f (1), . . . , f(L), from which fo,f, , . . . , f~ can be
determined, and hence all f(a) can be simply evaluated
from (3.14).] Explicitly for L =2
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[1(l + 1 )]
(21 —1)21(21+2)(21+3)

x 1— 3

1(1+1)

fo=l, f) = —3/[l(1+1)] .

(3.15)

IR (n, x, I, v) = —(2G') &
(n —1)a

x'n 4

' 2

X Q( ) I(1+1)+
Br

(3.24
Details of these calculation are given in Appendix C.

B. TM modes

In this case the magnetic fields are given by

B' ' (r)=P(r)X, (O, y)

so using the form (2.25)

(3.16)

G &=g& —J dr r y(r) g—y(g)
0 2cop

Now the electric field is

(3.17)

E' ' (r)= VXB' '

cooeo(r )

and we only need E just inside the surface

(3.18)

E' ' (r =a, e, lp)=
z

I &1(I+1)Y, n
COpn a

+ 1 B(rg)
r Br

Thus putting this into (2.37)

n' l b, —
V = — n [P(a)] 1(1+1}F',

COpn

(3.19)

B(rg)
2

a

(3.20)

F2=&4~I dQ(nXXt )* YL o(nXXI ) .

Note that under the adjoint operation, XI goes into
XI', but YI goes into —Yl* . The angular integrals are

F', =&4nfdQ Y(* Y. l o Y(
(3.21)

and G' is now given by (3.17), while F is the same as (3.7}
By exactly the same argument as before, we see that
Ia =1 independent of the radial function; this is again
verified explicitly in Appendix A. Thus all the results for
TE modes carry over to TM modes as well. The
O(L /I ) corrections in the TM case, which we have
neglected, are purely real up to 0 ( Imko /Reko)
=O(Q ').

C. Comparison with numerical calculation
and error estimates

The problem of the scattering of electromagnetic waves
from a dielectric body can be formulated via the T-matrix
method, " ' the spherical wave basis is of course particu-
larly convenient for slightly deformed droplets. %e have
calculated the scattering in this manner for a droplet with
real refractive index n =2 and size parameter x-6.7;
several cases have been considered and three typical ones
are given in Table I. Because the shape perturbation
maintains axial symmetry (M=0), each sector with a
definite m can be treated separately. The shifted position
of the resonance is found by stepping through the size pa-
rameter.

The calculated fractional shifts Ace/co are plotted
against m in Fig. 1 (points) and compared with the first-
order perturbation result presented in this paper (lines};
here co and b,co refer to the real parts only. By (3.14}, the
theoretical curve is a polynomial of order L/2 in m .
The agreement shown in Fig. 1 is excellent.

Since F in (1.4) is real, the imaginary part of cu should
satisfy the same relation, namely,

~r
Xp a

(3.25)

where yp and y are the widths of the resonance in the un-

perturbed and the perturbed spheres. In the example of

It is known that

F', =F/cosO, F2 =F (3.22)

TABLE E. The parameters of the resonant mode and of the
shape perturbation for the three cases considered.

L (L +1)
2l (I +1) (3.23)

We shall assume for simplicity that I. &&I, so all the an-
gular integrals are equal, and we can write the frequency
shifts as in (3.5), where

where 0 is the angle between 1, and 12 in the classical vec-
tor addition 1, +L=lz, with ~1, ~

=
~lz~ =I: Resonant mode

Polarization
I
x (for sphere)

Perturbation
L
M
6/a (X10 )

e

(a)

TE
10

6.8263

2
0

—8.94
—0.03

(b)

TM
9

6.6728

2
0

—8.94
—0.03

(c)

TE
10

6.8263

4
0

3.66
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case (a), the right-hand side of (3.25) ranges from
-6X10 3 (m =0) to ——8X10 (m =l) [the line in

Fig. 1(a}],but numerical results show that b,y/y ranges
from -0.16 (m =0) to -0.02 (m =l};thus there is a sub-
stantial fractional disagreement. This is not so surprising
&ince we are calculating the change in the smal/ quantity

y (down by a factor of Q from co). However, most experi-
ments would be sensitive to y rather than hy, and the er-
ror is in practice not important.

This comparison leads naturally to a discussion of the
sources of error in our result (1.4) for b,co/co. First of all,

there will be second-order corrections, say (b, /a ) H, e
where H, =O(1) and in general p, %0. Secondly, the

ikoR—e
R

(3.26)

Recalling that kp has an imaginary part, we see that R
should be chosen to be

R &&
1

Imkp Rekp

so that the correction in (3.26) is of order

A,(Reko)

spherical wave approximation (2.19) contains relative er-
rors in E of the form

X~4 Incorporating this correction in F,

], iP2F~F+—H2e (3.27)

2

~ e

«2

where Hz =0 (1) and in general P2%0.
Putting these together

1 lf3, 6 lP,F+—H2e ' + —H&e
a Q a

(3.28)

«4 a

X&4

4«

I I I I I I I I I
4 24 44 44 44

(b)

I
i44

The conclusion is that the j7rst-order result —(b, /a)F
contains relative errors of order b, /a and 1/Q, in contrast
to Hermitian systems, where the only corrections are of
relative order b, /a. (Of course, the Hermitian case may
be regarded as the Q~~ limit of the general non-
Hermitian case. ) In the examples given here, both 1/Q
and i}/a are at the 10 —10 level, which accounts for
the small remaining discrepancy in the real parts in Fig.
1.

The form of (3.28) implies that the error in the first-
order calculation

«4m , true theory

(3.29)

I
44 where co and hen refer only to the real parts, takes the

form

X)4

2«

(c)
D =d —+d

a ' a
(3.30)

where

1
d

&

= ——H2cosP2,

12 =H)cosP(

I ~ I & I I I & I & I
4 20 44 40 44 140

FIG. 1. The fractional frequency shift hen/co vs m, where m
is the azimuthal quantum number of the quasinormal mode.
Points are numerical results using T-matrix methods, for a
droplet with refractive index n =2. Lines are the first-order
perturbation results given in this paper. The parameters for the
three cases are as in Table I.

in general depend on m. The peculiar feature is the ex-
istence of d, @0. To verify this, we have taken case (a) in
Table I and varied 6/a to calculate (b,m/co}, „„,numeri-
cally. Figure 2 shows the calculated D versus b /a for the
m =0 mode (points} and a fit to a quadratic function as in
(3.30) (line). The fit gives d, =0.015; for all m's, we find
that d, AO in general. This comparison thus verifies the
existence of a correction of the (b, /a )(1/Q) type.

On account of the (b, /a )(1/Q) correction, the imagi-
nary part is more subtle, and we begin by examining the
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(3.33)

Qm

I
-0.004

I—0.02

I
—0.00'

I
0.00'

o.az

I
0.00$ 3/a

To the extent that the photon can be regarded as travel-
ing round the rim, s would be equal to the circumfer-
ence.

Now consider the mode with m =1. Since I, is max-

imum, the photon path is around the equator, so

s =2rtr, =2m.a(1 —e/3), b,s/s = —e/3

giving hto/to=e/3, in agreement with (1.7) for I »1.
Next suppose m =0; since l, =0, the photon path is along
a meridian, so

s =2'(r r, )'~ =2ma(1+e/6), bs/s =e/6,

FIG. 2. The remaining error D in dc'/co as defined in (3.29)
for the m =0 mode of case (a) (but with different values of b/a),
vs b/a or e (points). The line is a fit to a quadratic function
(3.30). The small portion of the graph below the horizontal axis
indicates a relatively small correction going like 6/a.

giving b, to/to = —e /6, again in agreement with (1.7).
This interpretation then provides yet another check on

the formalism, and "explains" why the results are in-
dependent of the details of the radial functions, and of
polarization.

phases P„P2. As Q ~ 00, the system becomes Hermitian
and the frequency shifts must be real. This shows P, ~0,
i.e., P, =O(1/Q); however, no conclusion can be drawn
for P2, so we must assume 132=0(1). Now if we extract
the imaginary part from (3.28),

'2
y 5 1

Q
2 2 i i

—1=——F+ HcosP —+ —H cosP

2Np

yp

'2
1———H2sinPz+ — H, sin f3,

(3.31)

The last two terms, containing the factor 2mp/yo, rejects
the mixing of the real and imaginary parts due to the per-
turbation. The last term creates no problems, since
sinP, -P, —1/Q cancels 2coo/yo, but since f32=0(1), the
other term is of order (b, /a)H2 urithout any factor of 1/Q.
Absorbing some constants into H2, we write (3.31)
schematically as

—1=— (F +H, )+O(—(4/a)(1/Q))+O((&/a )') .y
yp a

(3.32)

Thus. we expect significant percentage errors in y/yp —1,
as is in fact found to be the case. However, it remains
true that y/yp is altered only by order 6/a, which is
often adequate for applications.

D. Physical interpretation for quadrupole distortions

Some aspects of the results for rnicrodroplets have a
simple interpretation in geometric optics. For simplicity
we consider a quadrupole distortion, (L,M) =(2,0). Reso-
nance should occur when the path length s and the wave-
length A. /n are in a definite ratio, or s/A, =X where L is a
fixed number. Hence

IV. DISCUSSION

T ~=B6 ~+R(coo)6 ~ (4.1)

We have developed a convenient formalism for dealing
with the first-order perturbation of the frequencies (real
and imaginary parts) of quasinormal modes in open sys-
tems. As with all perturbation theory, it can be applied
whenever the unperturbed wave functions are known.
Shape perturbations of dielectric microspheres provide
one such example, and, surprisingly, the results are in-
dependent of the details of the wave functions and can be
expressed explicitly in terms of the angular momentum
values. This simplification occurs because the depen-
dence on the mode indices and on the angular momentum
L of the shape perturbation factorizes, and the L =0 case
is trivial.

These results open the way to addressing a number of
issues involving MDR's in dielectric microspheres.

(1) It has been observed that the elfective Q values of
the MDR's as determined from photon storage time are
smaller than expected, limited to about 10 . One possi-
ble explanation is that thermal fluctuations generate
shape distortions, of order b, /a —10, thus splitting the
21+1 modes of a multiplet by heo/to of the same magni-
tude [since F in (1.3) is of order unity]. If the frequency
spread can be interpreted as the inverse of the
confinement time in the usual way, that would then place
a limit on Q of the right order of magnitude. It would be
interesting to investigate this mechanism in detail.

(2) One can calculate the elastic scattering cross section
of electromagnetic waves by slightly deformed spheres in
the following approximate way. Select only one resonant
multiplet; for a11 other modes, assume the scattering is
completely unchanged. For the D =2l + 1 resonant
modes, go to the basis defined by the eigenvectors of
(2.25), which would be the usual states labeled by azimu-
thal quantum number m if the perturbation preserves axi-
al symmetry. In this basis, the scattering matrix T for
the unperturbed system is schematically
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where B denotes background and R (coo) denotes a reso-
nance described by a pole at the complex frequency coo.

Now simply let the perturbed T matrix be

T ~=B5 ~+R(coo+co, ) (4.2)

(4.3)

Work on these issues is in progress, and planned to be
reported elsewhere.

where ~, are the frequency shifts calculated in Sec. III.
Of course we can calculate the change in T ~ perturba-

tively, but (4.2) is equivalent to summing an infinite set of
diagrams in T. We expect (4.2) to be accurate whereas a
low-order truncation of the perturbation series for T to
be inaccurate, because T is a very sharp function of fre-
quency (or size parameter x); a frequency shift is essen-
tially a "horizontal shift" of the resonance profile, which
is equivalent to a very large "vertical shift" in T, i.e.,

r

b T o/o /3T -g
T Ta~,

the last term is the surface integral. The integrals in the
expression of G can be performed using the standard for-
mula

J dx x'[Z/(ax)]

X

2
[[Z/(ax)]' —Z( ](ax)Z/+](ax) J,

where Z/(/zx) is any spherical Bessel function, and G is
simplified into a sum of three terms:

1
G =(n —1) [h,"'(x)] + G, (x)+

3 G2(g) (A5)

with

G](x)=h(, (x)h/+](x)

h," (x)
n —

. j/ ](nx)j/+](nx),j,(nx

G (4)=k'{[h'"(k)]' —h/'-"1(k)hl'+](4)1+4'[hl'"(kll'

ACKNOWLEDGMENTS and g=kR. It is not dilllcult to show that G, (x)=0 us-

ing (A3) and the well-known properties of Bessel func-
tions. Moreover, as ~g~ ~ 0(), we can apply the asymptot-
ic expansion of Hankel function to simplify G2(g), which
gives

We thank R. K. Chang for many discussions on the op-
tics of microdroplets and S. Arnold for emphasizing to us
the problem of photon lifetime in a droplet. W. M. Suen
drew our attention to Ref. 9 and C. K. Au has stressed to
us the "logarithmic perturbation" technique implicit in
Ref. 9. C. C. Lam assisted with some of the calculations.

G, (g)-(e"'/g)[1+0(g ')] .

APPENDIX A

We shall evaluate G ~ explicitly for the case of spheri-
cal dielectric droplets and demonstrate that it is indepen-
dent of R. First of all, consider the electric field E of TE
quasimodes, which are given by (3.1) with

Aj/(nkr), r &a
(]) (A 1)

h( kr, r)a

a
G =(n —1) [h/' (x)]

2
(A6)

independent of R for sufficiently large values of R.
Secondly, consider the TM case whose magnetic fields

are given by (3.16) withwhere jt is the spherical Bessel function and ht'" the out-
going spherical Hankel function. This appendix will deal
only with the unperturbed functions, so we write the
wave number ko simply as k, which is nevertheless com-
plex. Boundary conditions at r =a give

—in kAj'/(nkr), r &a
(])ikh(' )(kr—), r ) a (A7)

while the electric fields are given by (3.18). From bound-
ary conditions one can show that

A =h('"(x)/j((nx) (A2)
h "(x)

n 'j, (nx)
(A8)and

h(])( )j((nx)
nj,'(nx)

(A3) and

[xj,(nx)]' [xh("'(x)]'
=B .

n j,(nx) h," (x)
where x =ka is a complex number (but with only a small
imaginary part) and the prime denotes differentiation
with respect to the argument. It is then straightforward
to prove that

G=n J dr r j/(nkr) + J dr r [h('''(kr)]

+ [Rh('' (kR)] (A4)2'

(A9)

Using the same trick as in the TE mode case, it is not
difficult to prove that

2

G= —h("'(x) [n B +l(1+1)],
n

(A 10)

again independent of R.
From (A6) and (Al), G for TE modes is given byThe first two terms come from the volume integrals while

If ~Re(k)/Im(k)~ )) 1 or, in other words, the quality fac-
tor of the quasinormal mode is very large, there exists a
range of values of R such that ~g~ ))1 while ~lmg~ &&1
and hence Gz(g) is negligible. G is then proved to be
given by
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a
G =(n —1) [P(a)]

2
(A 1 1) garded as a verification of the perturbation formalism for

the case L =0.

2 3

I„=(2G) x'n 4
n I(I+1)[P(a)] +

Br a

2

=(26) ' [n I (I+1)[h,'"(x)]
kn4

+ A' [xj&(nx)]' ]

while from (A10) and (A9)

(A12)

and it is obvious that Iz =1 by substituting (All) into
(3.6).

For TM modes,

APPENDIX B

First of all consider the integral

I= f d A Y,*~Y, ~( L '
YL, M )

=L(L+1,'f dQ Y)*,Y( YLM

=( —1)'L (L +1)
&4m.(2L + 1)

X C (IIL;000)C(IIL; —a, a, M), (81)

x n —16=
4 [n I(1+1)[h&""(x)]+ A' [xj&(nx)]' j;n4

and the last line of (Bl) follows directly from Eq. (4.6.3)
in Ref. 26. However, from the Hermiticity of L regard-
ed as an operator on the unit sphere, it is easy to show
that

(A13)

thus I& is guaranteed to be unity. This fact may be re- and

I= dQ L Y(* Y( *YL M (82)

[L'( Y,"~Y, ~)l =[(L'Y,*~ ) Y, ~+ Y,*~(L'Y,~)+2(LYi a )'(LYi ~)1

=21(1+1)(lY,.l' —lx, .l') . (83)

Therefore

I=L(L+1)f«IY, I'~, M=», (I+1) f«IY, I'Y, M f,«—IX, I'Y, M,
and

=( —1) C(IIL;000)C(IIL; a, a, M) 1 ——
&4~(2L + 1) 21 (I +1) (85)

Substitute the result of (85) into (3.7) and it yields

F(L, l, a)= [C(IIL;000)] 1 — f(a)&2L+1 21(1+1)

where f(a) is given by (3.12). From the recursion relation of the Clebsch-Gordan coefficient

[J(J+1)—j,(j, +1)—j2(jr+1)—2m (M —m)]C(j, jzJ;m, M —m, M)

=[(j~—m 1+)(j~ m+)(j 2+Mm +1)(j,—M+m)]' C(j,j2J;m —1,M —m +1,M)

+[(j&+m +1)(j,—m)(j2 —M+m +1)(j2+M —m)]'~ C(j ~j 2J;m +1,M —m —1,M),
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(3.13) can be established without too much difficulty.
The a dependence can be expressed more simply as fol-

laws:

repeatedly to eliminate (cosO)". The integrand in (Bg}
can then be expressed as a sum of terms of the form

f(a) ~ fdQ Y(' (O, tp)Pt (cosO)Y( (8,(p),

which can be written as a linear combination of

(B7) II b(, (811)

J dQi(cosO) Y( (O, y)~

(cosO }Y( a
=b( a Y( i a+ bl+ i u Y(+ i o,

' 1/2
(l +a)(l —a)

(21 —1 }(21+1 }
bI

with k =0, . . . , L /2. We use the identity

(BS)

(B9)

(B10}

b(, ~(1;+a}(l;—a)=l; —a (B12)

Since there are at most L factors of b, (B7) can be ex-
pressed as a polynomial in a up to degree a .

It is readily verified that if l =1', then each bI in the
l

product occurs an even number of times, giving an a
dependence
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