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Phase-sensitive amplification in a three-level atomic system
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A linear theory of two-photon amplification by three-level atoms in the cascade configuration is

developed, where a coherence is induced between the top and bottom levels, by an external classical
driving field. It is shown that this system becomes an ideal parametric amplifier for sufficiently

strong driving field, whereas for a weak driving field it is a phase-insensitive amplifier. In between
these two extremes, one finds phase-sensitive amplification as well as squeezing for a certain range.
The system does not, however, reduce to a model studied previously where the atomic coherence
was treated as an initial condition. The system is also studied in a cavity configuration: It is pre-
dicted that the oscillator may behave as a two-photon correlated emission laser, i.e., its phase
diffusion coefficient vanishes.

I. INTRODUCTION

Ordinarily, amplification of a signal is accompanied by
the introduction of noise. For so-called phase-insensitive
amplifiers, and at the smallest possible level, such degra-
dation of the signal-to-noise ratio upon amplification is in
fact required by the laws of quantum mechanics, to
preserve the uncertainty principle. It is possible, howev-
er, to envision optical phase-sensitive amplifiers which
add unequal amounts of noise to the two quadratures of
the signal and/or amplify them by different amounts.
(Here "quadratures" means those components of the sig-
nal in phase and 90' out of phase, respectively, with some
external reference oscillator). Such devices may exhibit a
wide range of possibilities regarding the amplification of a
signal and the introduction of noise. For instance, if both
quadratures are amplified by the same amount, one may
still reduce the added noise in one quadrature to virtually
zero, thus preserving the signal-to-noise ration for that
quadrature intact upon amplification, at the expense of
increasing the noise added to the conjugate quadrature.
One may also have the total added noise to both quadra-
tures go to zero, provided that the two are amplified by
unequal amounts —more precisely, if one is deamplified
by the same amount as the other one is amplified. This
last instance of a phase-sensitive amplifier corresponds, in

fact, to an ideal parametric amplifier, a device which, at
optical frequencies, is usually embodied in a nonlinear
crystal with a g' ' coe%cient. This device has already
demonstrated its ability to manipulate noise, even down
to the quantum level, in a phase-sensitive way, by gen-
erating light in a so-called "squeezed state". '

Mostly in connection with squeezing, the theory of
linear amplifiers has received a great deal of attention
over the past few years (results for some nonlinear de-
vices have also been presented; see Ref. 6). Still, the num-
ber of truly microscopic models for phase-sensitive
amplifiers is reduced. One should mention the models for
four-wave mixing in atomic systems, which has been also
demonstrated experimentally to generate squeezed light,

and also the various models of correlated-emission laser
(CEL). " Other systems are presented in Refs. 12 and
13.

Scully and Zubairy proposed recently' a model con-
sisting of three-level atoms, in the cascade configuration,
prepared in a coherent superposition of the upper and
lower states. Such a system would be an example of the
first kind of phase-sensitive amplifier mentioned above,
namely one which amplifies both quadratures by the same
amount but adds vanishing noise to one quadrature. The
three-level cascade atom with initial atomic coherence is
also the basis for the two-photon CEL," a device which
would exhibit a number of interesting properties includ-
ing, potentially, an arbitrarily high degree of intracavity
squeezing, even in the presence of cavity losses.

In this paper we present a study of the three-level cas-
cade system when the atomic coherence is established by
driving the atoms (initially pumped incoherently to the
upper state) continually with a strong external field. We
have found that this system exhibits remarkable
differences with the previously studied case' where the
atomic coherence might be prepared before the interac-
tion by, e.g., a short, strong pulse, so that there would be
no external field present during the amplification process
itself. This indicates that the two methods for generating
the atomic coherence are not at all equivalent: in fact, we
find that the system with the driving field studied here
does not, under any condition, reduce to the one studied
in Ref. 14. Instead, it exhibits, as a function of the driv-
ing field strength, a range of possible behavior which is
quite interesting in its own right, from a phase-insensitive
amplifier for low driving field to an ideal parametric
amplifier at the other extreme. This makes it remarkable
as an instance of a microscopic model for parametric
amplification in an atomic system.

In addition to the amplifier, we have also studied some
of the aspects of the possible performance of the system
in an oscillator configuration. This, of course, is of in-
terest because of the close connection to the two-photon
CEL." Here we find that the system does indeed repro-
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duce many of the features of Ref. 11 (although the details
vary) and may in fact be considered as an alternative way
to produce a two-photon CEL.

This paper is arranged as follows. In Sec. II the basic
model is introduced and the master equation for the evo-
lution of the density matrix of a single-mode field in-
teracting with the atomic system is derived. Section III
deals with the amplifier configuration and thus with such
quantities as the gain and added noise for the two quad-
ratures, for dift'erent values of the driving field strength.
The connection with Caves's theory of phase-sensitive
amplifiers, of which this particular system may be con-
sidered to be a very apt illustration, is also made in Sec.
III. Section IV discusses the oscillator configuration, and
considers such quantities as phase diffusion, locking, and
squeezing.

A

h~J~

c)
FIG. 1. Energy diagram of a three-level atomic system in cas-

cade configuration.

II. MODEL AND EQUATION OF MOTION
FOR THE DENSITY MATRIX

We consider a system of three-level atoms in the cas-
cade configuration (Fig. 1). The transitions from level
Ia)~fb) and Ib)~fc) are dipole allowed but
I
a )~ I

c ) is dipole forbidden. We assume that this tran-
sition may be induced by applying a sum. ciently strong
external field. We treat the Ia)~ fb) and Ib)~ fc)
transitions quantum mechanically up to second order in
the coupling constant and the Ia ) —+ Ic ) transition semi-
classically to all orders.

The Hamiltonian for the atom-field system is

(n IpF fn') =(a, n Ipfa, n')+(b, n Ipfb, n')

+(c,n fpfc, n') . (4)

It is convenient to define the following atom-field states:

for the field mode of frequency v, g is the atom-field cou-
pling constant (assumed equal for both transitions), 0 is
the Rabi frequency of the driving classical field, and P
and v& are its phase and frequency, respectively. In what
follows, we assume exact resonance of the external field
with the Ia )~ Ic ) transition, i.e., v, =co, —co, .

We can obtain the reduced density matrix for the field

by taking the trace over the atomic states,

8=HO+ V,

where the unperturbed part is

8,= g Aa, fi )(i I+A'vata,
i =a, b, c

(2)

Il &= fa, n —2&,

12) = Ib, n —1),
13&=lc,n &

(5)

and the interaction term is

I'=1rg[(la &&bI+Ib &&cl)a+a'(Ib &&a I+le &&bl)

(e
' '" fa&&cf+e'

' ' fc&(af)].

Here a and a are the destruction and creation operators
I

We can calculate the density-matrix equation of motion
for the field mode along similar lines as shown in Ref. 10.
Here we consider that the atoms are injected in level Ia )
at the rate r, . We also assume for simplicity equal decay
rates y for all three levels. We calculate the density-
matrix elements in the basis (5) and trace as in Eq. (4} to
obtain the reduced density-matrix equation of motion

P = Ã1 1aa'PF +Pi 1—PFaa' (P»+@11)a'PF—a'j lP22a'aPF+A—eFa'a (&22+82)aPF a—'1

(~12«PF+~21PFaa (i 12+i 21)aPFa )e ala a PF+~12PFa a (1 12 i 21)a PFa Ie

where

2
1 1 1 1 1 1—+ + +
y y i fl y+i (b—, ,

—II/2) y y+i 0 y+i(A, +II/2) (7a)

=g r12 4 a

2

p

1 1

y i 0 y —i(—62+II/2)

1 1

y i' y+i—(b, —II/2)

1 1

y+i II y i (b —
2
ft—/2)

1 1

y y+i 0 y+i(b, , +II/2) (7c)

=g r2 4 a
1 1 1 1+

y —i0 y i (b,2+ II—/2) y y+ i I) y —i (~2 —II/2) (7d}
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with 6,=co, —co&
—v, 62=co& —co, —v. The first term in

Eq. (6) corresponds to the gain and the second term to
the absorption in the system. The third and fourth terms
are due to the coherent excitation of the atomic states be-
cause of the classical field and are responsible for the
phase sensitivity in the system. The phase angle 4 ap-
pearing in Eq. (6) equals 4={(i+(v, 2—v)t and has the
character of a phase-matching condition. In the follow-

ing, we shall assume strict two-photon resonance
throughout, i.e., 2v= v1. This implies 61+62=0. Then
4=/, the external field reference phase.

III. TWO-PHOTON LINEAR AMPLIFIER

d(a'a ) =(] i+pl)&a'a &+pz &a'a'&

+p, &aa)+p„,
d&aa & =2p, (aa )+2pz(a a ) —2Pf, e'~,l

where

pi =(&i i
—&zz»

z=(P, z
—

Pz, )e',
p»=&»+&ii

(8b)

(8c)

(9a)

(9b)

(9c)

d(a)
dt

=pi(a)+pz(a ), (8a)

In this section we consider the case of the two-photon
linear amplifier, and calculate the time-dependent solu-
tion of the equations of motion for various quantities un-
der certain limits. Then we calculate the noise and gain
contributions in the two quadratures. From Eq. (6) we
have

These equations can be solved exactly. In what follows,
we shall assume that we have p, =pi and pz =

~ pz ~. The
first assumption is necessary to separate out the gain and
noise terms, and we shall discuss below under which con-
ditions it holds. The second assumption amounts to a
choice of the reference phase P, i.e., to a certain choice of
quadratures, and it is made for convenience. The solu-
tions to Eqs. (8) then are

(a ), =[cosh(pzt)(a )o+ sinh(pzt)(a )0]e '

( a a ), = [ ( a a )o cosh(2pzt ) + ( —,
' ( aa )0+ —,

' ( a a )0) sinh(2pzt )]e

p» 2p)t+, , [[p, cosh(2pzt) —
pz sinh(2pzt)]e ' —p, ]

2(pi —pz)

Pe eiP+P e
—iP

I [pz cosh(2pzt) —p, sinh(2p, t)]e ' —pzI,

(loa}

(lob)

(aa ),=
(aa &0

[cosh(2pzt)+1]+(a a)osinh(2pzt)+ —,'(a a )a[cosh(2pzt) —1] e
2plt

2
2pl t P2

e
P1

p» 2p) t+, , I[p, »nh(2pzt) —pzcosh(2pzt)]e +pzj
2(pi —pz}

1+ pz sinh(2pzt) —
p, cosh(2pzt)+

2(pi —pz} 2P1

pz sinh(2pzt) —pi cosh(2pzt )— 1

2P1

22 —2
2p l

t 2P1 —
p2

e
P1

(10c)

If we define our quadratures as

a =—(a+a )1 7 (1 la)

2(p)+ p~)t61=e
2(pl —p2)tG2=e

(13a)

(13b}

az= —(a —a ),
21

then we get from Eq. (10a) and its complex conjugate

(1 lb)
are the gain factors for the different quadratures. The
phase sensitivity is apparent already in that in general
G&XGz unless pz=0 (an additional condition which will
be discussed below). To calculate the noise in both quad-
ratures we use Eqs. (10b}and (10c) and obtain

(a, ),=V'G, (ai )0,

&az& =«z&az&0
where

(12a)

(12b)

(ha, ) =G, (ba, )0+%,(G, —1),
(ha z ) =Gz(ha z )0+hz(Gz —1),

where

(14a)

(14b}
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1 11+1 22 (~12e +}21e
N)=

8(P1+P2)
(1Sa)

t 11 1 22+(~12e 1 21e }+
Nq=

8(P1 —P2)
(15b)

are the added noise terms. In this notation, Caves's
theorem for phase-sensitive linear amplifiers becomes

(G, G, )'"—1
~1/2 &

4 (G —1)'"(G,—1)'" ' (16)

which may be called the "amplifier uncertainty princi-
ple". In the following we discuss certain special cases.

g r

(y+Q }
(17a)

A. Zero detuning

In this section we calculate the noise and gain terms in
the simplest case of zero detuning, i.e., 6&=62=0. This
condition requires level ~b) to lie exactly halfway be-
tween ~(2 ) and ~c ). Under this assumption, the condition

p, =p', is automatically satisfied. To make P2exp(i(t1) real
and positive requires only to set P = n/2—,

.which
amounts to a specific choice of quadratures relative to the
classical field. Under these conditions, we find for the
difFerent coefFicients which appeared in the noise and
again terms, the expressions are

N2 ~—y/2Q,

G e2artrn

—2art /0
G~ ~e

(20b)

(20c)

(20d)

(21a)

N2

G at

62 —+e ',

(21b)

(22a)

(22b)

The N2 term becomes negative for the values of G2 & 1, in
order to keep the second term of Eq. (14b) positive. We
see that in the limit Q/y~ ~, ato m, ayt/Q finite,
both noises approach zero and G, =1/G2. Thus for
large driving Rabi frequency the system becomes identi-
cal to the degenerate parametric amplifier. This may also
be checked directly by using the appropriate limit forms
of p», p22, p, 2, and p2, [Eqs. (17)] in the master equation
(6). The phase-insensitive terms proportional to P» and

p22 approach zero faster than the phase-sensitive ones,
and in the latter p, 2~p2, , p, 2+pz1 ~0, yielding the mas-
ter equation for a parametric amplifier in the absence of
pump depletion. ' The amplifier uncertainty principle
(16) is satisfied in this case with the equal sign (both sides
being equal to zero).

(ii) When y »Q, i.e., the atomic width is much larger
than the Rabi frequency of the driving classical field, we
have

G& = exp
ayt (2y + Q +y Q yQ }—

2(y +Q }(y +Q /4)

ayt(2y Q y—Q —y—Q )

2(y +Q )(y +Q /4)

3g r, Q

4(y +Q )(y +Q /4)

gr, Q(—Q /2 y)—
P„e'&=

2y(y +Q )(y +Q /4)

gr,Q—
l (1—

y(y +Q )

The noise and gain terms become

2y +2yQ +3y Q

4(2y +Q +y Q yQ )—
2y +2yQ —3y Q

4(2y —Q —y Q —yQ )

and

(17b)

(17c)

(17d)

(18a)

(18b)

(19a)

(19b)

1.5

Vl

LlJ

O.s

LLJ

C)

I

I

I

I

lN2
1

1

I

i.e., equal noise is added to both quadratures and they are
amplified with equal gain. Thus we have a phase-
insensitive amplifier in this limit, adding the minimum
amount of noise required by the amplifier uncertainty
principle (16): (N, N2)'

Between these two extremes we have various kinds of
phase-sensitive amplification. In Figs. (2) and (3) we have
plotted the noise and gain for both quadratures versus
Q/y for at =1. For Q&0.81y, both quadratures are

where a=2g r, /y is the linear gain coefficient in the ab-
sence of the driving field. Equations (18) and (19) simpli-
fy considerably in the following two limits, corresponding
to two very different kinds of behavior.

(i} When Q»y, i.e., when the Rabi frequency of the
classical driving field is much larger than the atomic level
width y, we obtain

Cl~ -0.5—
C5

N, ~y/20, (20a) FIG. 2. Added noise coefficients vs 0/y.
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rature, Figs. 2 and 3 show that it is always amplified, and
with negligible added noise as 0/y~0 (parametric
amplifier limit).

B. Nonzero detuning

10

In Sec. III A we considered the situation when the mid-
dle level is exactly halfway between a ) and ~c ), and the
one-photon resonance condition is satisfied. A more gen-
eral case is 6,= —62=6, i.e., the middle level is not ex-
actly one-photon resonant but two-photon resonance is
still obtained, that is, co, —co, =2v. In this case, however,
p&=p*, is not automatically guaranteed, with the result
that the amplification will in general mix the two quadra-
tures (regardless of how these are defined). To have

p& =p*, , we must impose the additional condition

0 =4(y +b, }, (23)

FIG. 3. Gain coefficients vs 0/y for at = 1. whereas to make p2 real and positive we must choose the
angle P so that

amplified. At 0=0.81y, one has p&=p2, so that 62=1.
The right-hand side of (16) then becomes infinite. Figure
2 shows how the amplifier uncertainty principle is
satisfied in the case as ~N2 ~

~ Oo. The product
N2(G2 —1) approaches a finite value proportional to t;
thus, for 0=0.81y, the quadrature a2 is not amplified,
but diffusion-type noise is added to it, so ( ha 2 ) ~ &t .

Beyond fL =0.81y, the second quadrature is
deamplified [note how N2 becomes negative so that
N2(G2 —1) remains positive], and for 0&y one has

~N2~ & —,', which means that a2 becomes, in fact, squeezed
for sufficiently long interaction times, regardless of the in-
itial state. This squeezing is shown in Fig. 4 where we
plot ( ha 2 ), versus at for different values of 0/y assum-
ing (haz )0= —,

' (i.e., the initial state is taken to be the
vacuum, or a coherent state). As for the conjugate quad-

( 6t2', ),

yb, +i(y +0, )

0( —'y +0 )'

for which

(
9 y2+02)1/2p=. ' '
y(y +0 )

the value of p, when Eq. (23) is satisfied is

1

+0
g p' Q2

P11+ C. C. = y(y+0)
p22+ c.c. =g r,

+0 /2
y2( y 2+ Q2 )

—', y + —,'0
p12+ C. C. =g ra

y( y2+ 02 )( 9 y2+ 02 )1/2

3y + —,'0
p21+ C. C. = g ra

y(y +0 )( —'y +0 )'

(24a)

(24b)

(24c)

(25a)

(25b)

(25c)

(25d)

0.25
0/z=l The noise terms in both the quadratures are

0.1 5

005

0
0

at
10

[2(—'y +0 )'/ +3y](y +02)
[(-'y'+0')'" —y]y(-'y'+0'}'" '

[2( 9y2+02}l/2 3y](y2+02)
2 9 2 2 1/2[ ( ,'y2+0—2)—'/2 y]y(-,'y—+0 )'

and the gain terms are

G, = exp
ayt [ —y+(9y +40 )' ]

2(y +0 )

(26a)

(26b)

(27a)

FIG. 4. Squeezing in quadrature a, vs at for 0/y=1, 3, 7,
and 10.

62= exp
ayt [—y —(9y +40 )' ]

2(y +0 )
(27b)
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g r, (y+2ib, , )

yQ
(28a)

Now one always has phase-sensitive amplification, with

the quadrature az being deamplified (Gz (1) and the
quadrature a, amplified (G, ) 1) in all cases. We also find

that under the liinit Q)&y, Gl/Gz ———exp(ayr/Q), and

N, = N—2—=Q/(4y) when Eq. (23) is satisfied. This last
result indicates that in this limit the system does not
behave like a parametric amplifier, but instead introduces
large amounts of excess noise.

We have also investigated the limit of very large driv-

ing field Q with 6, , b, z arbitrary. When Q »y, b ( b, 2, the

general coefficients P», P(2, P2„and P2z acquire simple

forms, which are, to leading order,

IV. TWO-PHOTON LASER

(pF )(,»= —I (a a pF +pF a a —2a pFa ), (3O)

where I is the cavity amplitude decay rate.
Next we convert the density-matrix equation of motion

for the field mode in a c-number Fokker-Planck equation
in the P representation via the substitution'

aa a=aa a (31a)

In this section we consider some of the properties of a
(two-photon) laser whose gain medium is the amplifier
studied in Sec. III; i.e., we assume that the amplifier is en-
closed in a cavity resonant at frequency v. We modify
our density-matrix equation of motion [Eq. (6)] by adding
to it the cavity-loss terms

g rg
12 l (28b) at/a)(a/= +a' Ja)(a/ . (31b)

g rg The resultant Fokker-Planck equation is of the form
28c

g r, (3y —2ib, 2)
22

y

and so

g fg
p, = [—2y+2i (b( —bi)],

y
'

(28d)

(29 )
where

B'
(()}2(e + c.c. P

Ba
(32a)

(32b)

t ll +(~1( +22
B

a (~12 P21)BaBa' Ba

g ra
p2=2i e &,

yQ a=re' (33)

(29b) Introducing the amplitude and phase variables r and 9 as

which shows that, in this limit, p& is usually not real un-

der two-photon resonance conditions (i.e., 6(= —b,&=5)
unless 6 &&y.

we have
r

B ( —() B

Ba ' Br
(34a)

C. Comparison saith the system ~ith injected
atomic coherence

The previous results show that this system, with exter-
nal driving field, behaves quite differently from the one
studied in Ref. 14, which involved the same level struc-
ture but assumed an initial atomic coherence between the
levels ~a) and ~c). That system also showed phase-
sensitive amplification, but equal gain factors for both
quadratures; thus, the only way to reduce the added noise
in one of them was to increase it in the other. There was
no parametric limit where both N& and %2 could be made
vanishingly small.

In the present system, in order to have equal gains we
must have p2=0. This turns out to be impossible under
two-photon resonance conditions. It can also be shown
that even for arbitrary detunings 5, and h2 it is impossi-
ble to have simultaneously P2=0 and p, =p', . Thus the
system never reduces to the one studied in Ref. 14.

Our results show, therefore, that the way in which an
atomic coherence is established may have profound
consequences: different ways, which one might have ex-
pected a priori to be roughly comparable, may result in
systems with very different properties.

B (,e B l B

Ba" ~ Br r B(I)

and the Fokker-Planck equation becomes

aP
Br

where the drift and diffusion coefficients are

dr r ~p~+pj +p2e +p2e ~+pii

(p» e i ( P 20) p
—

( (2(8i)—
)

r

D i (P» ei(P —2()) P e
—i(P—2$))

rg
—l 2)e

2( p
—i(P —28) p» ei(g —28))

rr " p» 2&e 2ie

B(dIP) B(d()P)

2r Br Be

1 B 1 B(d»P) B'(D,zP) 1 B'(Dig)
+ + +

4r Br r Br gg2 2r BrBO

(34b)

(35)

(36a)

(36b)

(36c)

(36d)



41 PHASE-SENSITIVE AMPLIFICATION IN A THREE-LEVEL ~ . . 5185

( +p —i(P —29)+p» ~i(P 2—8))1
(90 2 P11 21 21 (36e)

where p„pz, and p» are given by Eqs. (9a)—(9c) with

pzz=pz2 given by Eq. (32b). Since we have ignored the

saturation of the amplifier medium, this equation is,
strictly speaking, valid only in the linear regime, i.e.,
below threshold. It is known, however, that one may ob-
tain from such an equation some information regarding
the above-threshold properties of the laser; in particular,
the phase diffusion Dzz and locking dz terms above
threshold are as given by Eqs. (36b) and (36e), to a good
approximation, with r regarded as constant and equal to
n, the average number of photons in the cavity. We con-
centrate on these terms in what follows. They are of in-

terest especially because of the close relationship between
this system and the "two-photon CEL" (Ref. 11) which
has the same level structure but injected atomic coher-
ence instead of an external driving field.

From Eq. (36b), the phase-drift term yields (neglecting
the small diffusion-induced drift proportional to 1/n)

d(8) = (de) = Ip, I ( sin28), (37)

where we assume again p, =pf, p2=IpzI. From this we

can find out the particular locked phase angle choice for
which ( d z ) =0 and the stability condition d ( d a ) /d 8 (0
is satisfied, namely, for 8=m /2 The diff. usion coefficient
is then

Doe= (pii —prie '+p2ie'»
4n

1
(4N2+ 1)(pl Ip21)

4n

g~g 1 0
2n y +0

(3g)

(D„(8))
I&d (8.)/~81

' (39)

where the first term represents the standard phase uncer-
tainty for a coherent state with a large average number of

where the last line applies specifically in the zero-
detuning case discussed in Sec. IIIA. We immediately
see that for y =0 the CEL condition is obtained, i.e., the
spontaneously emitted photons are highly correlated so
that the phase diffusion vanishes. When 0)y the
diffusion coefficient becomes negative; this corresponds to
a nonclassical state of the intracavity field mode for
which P becomes nonpositive definite (and in general
highly singular). Recall that in the limit Q)) y we have
essentially an ideal parametric amplifier in the cavity, i.e.,
an ideal parametric oscillator; this system has been quite
thoroughly studied in the literature. ' For y ))Q, on the
other hand, we have an ordinary two-photon laser.

In Ref. 11, use we was made of the following equation
for the magnitude of the phase Auctuations, above thresh-
old, in the locked regime:

photons n .A negative (Diiii(8) ) corresponds to squeez-

ing of the phase Auctuations in the intracavity field. In
our case, we obtain for (39)

(4N2 + 1)(Pi
—P2)

2P

1
2 4y +0

8n y2+ Q2 Q

(fi8') = 1+
4n

(40)

(again, the last line holds for the zero detuning case). We
find (not surprisingly) that the phase is squeezed when
Q) y, which is when 0)N2) —

4 and p1
—P2&0. Note

how the maximum squeezing achievable is a factor of —,
'

below the coherent state level, in the limit 0/y~ ~; this
is consistent with the fact that one has a parametric oscil-
lator in that limit, and the familiar result that the squeez-
ing in the intracavity field for a parametric oscillator can-
not exceed 50%. More importantly perhaps, this agrees
also with the appropriate limit for the two-photon CEL
discussed in Ref. 11, namely, the case when

p» =p„,=p, b
=0 initially [see the discussion about Eq.

(14) in Ref. 11]. Thus, in this case the two ways to
prepare the atomic coherence appear to lead to
equivalent results, although the details vary: for instance,
large detunings (equal and opposite) were required in Ref.
11 for maximum phase noise reduction, which here ap-
pears to be possible with b, =0 (one may still think of the
present system as being highly detuned in this case, how-
ever, if the Stark shift of the levels a and e due to the
strong external field is considered). Also, the density-
matrix equation for the system of Ref. 11 does not reduce
to the parametric amplifier form in this limit.

Note that under the phase locked condition the linear
gain 1s

P1+P2) 0 (41)
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so we are dealing with an active device at all times. The
other very interesting case discussed in Ref. 11 for a two-
photon CEL, involving initial atomic coherences pb, and

p,b, falls outside the scope of the present model, since we
have no way to set up an initial coherence involving the
middle level b.

We conclude that this system offers a possible alternate
realization of a two-photon CEL, where the atomic
coherence is not initially prepared but dynamically gen-
erated by an applied, strong, external field at frequency
2v. The resulting system offers quite a wide spectrum of
behavior as a function of the external field strength: from
an ordinary (phase-insensitive) two-photon laser to a CEL
and beyond, to an ideal parametric oscillator, and a possi-
ble generator of squeezed light over much of this range.
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