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Various quasiprobability distributions have been developed in the past using the Hilbert space of
the single-mode light field. The development of a quasiprobability distribution associated with a

phase operator has previously been impossible because of the absence of a unique Hermitian phase
operator defined on the Hilbert space. Recently, however, Pegg and Barnett [Europhys. Lett. 6, 483
(1988); Phys. Rev. A 39, 1665 (1989)]and Barnett and Pegg [J. Mod. Optics 36, 7 (1989)] introduced
a new formalism that does allow the construction of a Hermitian phase operator and associated
phase eigenstates. In this paper we develop a quasiprobability distribution associated with the num-

ber and phase operators of the single-mode light field in the new formalism. The new distribution,
which we call the number-phase Wigner function, has properties analogous to the Wigner function.
We also derive the number-phase Wigner representation of number states, phase states, general

physical states, coherent states, and the squeezed vacuum. We find this new representation has

features that are related to the number and phase properties of states. For example, the number-

phase Wigner representation of a number state is nonzero only on a circle, while the representation
of a phase state is only nonzero along a radial line.

I. INTRODUCTION

Various quasiprobability distributions (QPD's) have
been defined using the Hilbert space of the single-mode
light field. These functions display the statistical proper-
ties of field states and also give e-number formulations of
the quantum dynamics of the field. Well-known exam-
ples of QPD's include the Q function' and the Wigner
function. These particular QPD's allow the statistical
nature of the quadrature amplitude operators X' and $' to
be represented graphically. A case in point is Yuen's Q
representation of the ideal-squeezed states, which is a
two-dimensional Gaussian function. This function gives
a vivid picture of the "squeezing" of the uncertainty from
one quadrature amplitude to the other that characterizes
these states. The Q function and the Wigner function
have also been used to illustrate the statistical nature of
the phase of the field in two ways. Firstly, the so-called
"measured-phase" operators are proportional to the
quadrature amplitude operators and so these QPD's
display the measured-phase properties of states. Second-

ly, the polar angle of the Wigner function has been inter-
preted phenomenologically as the phase angle of large-
amplitude fields. ' However, both of these illustrations
have the disadvantage that they are not based on a Her-
mitian phase operator corresponding to phase angle.
This problem stems from the fact that no unique Hermi-
tian phase operator has yet been found for the Hilbert
space itself.

Recently, Pegg and Barnett introduced a new
quantum-mechanical formalism for describing the phase
of a single-mode field. This new formalism allows the
construction of a Hermitian phase operator Po with prop-
erties normally associated with a phase angle. The new

phase formalism is based on a linear space 4 spanned by
the (s+1) number states ~0), ~1), . . . , ~s). A complete

and

8 —=80+ md,

b =—2m/(s+1),

for m =0, 1, . . . , s. Here Oo is arbitrary and 5 is the step
in phase between successive phase states in this basis.
The Hermitian phase operator is defined as

(1.2)

and has eigenvalues in the interval [0&,00+2m], which is
closed at the lower end. This operator is conjugate to the
number operator X which is defined by

S8:—gnawn)(n~ .
n=0

We wish to develop a QPD that can display the field-
phase properties associated with the Hermitian phase
operator, as opposed to the quadrature-amplitude proper-
ties displayed by the usual QPD's. The question arises as
to whether a QPD in the new formalism should be

description of the single-mode field involves an infinite set
of number states and here this corresponds to the limit of
infinite s. An essential feature of the new formalism is
the method of taking this limit when calculating physical
properties, such as expectation values. These properties
are first calculated with s finite and only then is the limit
of infinite s taken. The space 4 is also spanned by the
(s +1) orthonorinal phase states

S

~8 )—:(s+1) '~ g exp(in8 )~n ),
n=0

where
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II. THE NUMBER-PHASE WIGNER FUNCTION

In this section we use Wootters's discrete Wigner func-
tion to define the number-phase Wigner function. The
discrete Wigner function is defined on an N-dimensional
space. ' Although N can be arbitrary, the analysis of this
function becomes particularly simple for the special cases
where N is a prime number. In this paper, we take N to
be prime. The discrete Wigner function is defined for N
prime as

W„:N'( A(n, —m) &, (2. 1)

defined for infinite or finite s. Our approach is to define
the QPD for the finite (s + 1)-dimensional space )Ii. All
calculations of physical properties can then be performed
first with s finite before the infinite-s limit is taken. This
approach is consistent with the Pegg-Barnett formalism,
and it is doubtful whether a number-phase QPD based on
an infinite-state space is possible.

Wootters' recently defined a QPD called the discrete
Wigner function for systems whose state space is finite
(e.g. , spin systems). This function has properties analo-
gous to the Wigner function defined on the infinite Hil-
bert space. It gives a representation of the statistical na-
ture associated with an arbitrary pair of conjugate ob-
servables. In this paper we apply Wootters's discrete
Wigner function to the single-mode field and construct a
function associated with the number and phase operators
in the new formalism. For convenience we call this func-
tion the number phase -Wigner function. We also examine
the number-phase Wigner representation of various states
with well-known properties to establish the way it
displays their number and phase properties.

where

(k UA (n, m) U 1 & =—53„k+iexp[2rrim(k 1—)/N] (2.2)

for N )2. Here U is an arbitrary unitary operator, and
the states 1k & for k =0, 1, . . . , (N —1) form a complete
orthonormal basis. In Eq. (2.2) n and m are integers and
5, - is a periodic Kronecker 5 which we define as

5i j =5i j +iv =5) +Nj

for all values of i and j, and

for i and j in the range [O,N —1]. The overbar distin-
guishes 5; from the usual Kronecker 5, . Thus, for ex-

ample, 5iv+3 2iv g 53 iv g 53 iv g=0 four N & 11.
For our case N =s +1. We choose U to be the phase-

shift operator exp( i 8P) and—define

where 6,=2'/(s + 1). Using the result

53„„+,=(s+1) ' g exp[ip(k+1 2n}b—],
p=0

(2.4)

the expression 8 =80+mb„and the definition of the
phase states (1.1), we find

Aiv&(n, m) —= g g 53„&+iexp[im(k —l)b, ]
k =01=0

Xexp(i8P)1k & (11exp( i 8+—),
(2.3)

S S S

Aiv&(n, m)=(s+ I) ' g g g exp( ip2nh—)exp(ik8 + )1k &(11exp( i18 —
)

k =0 I =Op =0
S= g exp( ip2nb, )18—+ &(8

p=0
(2.5)

This operator is Hermitian: on substituting p =s+1—
q

and using the periodic property of the phase states

Wiv~(n, 8 )—=(s+1) '( Aivt(n, m) &, (2.6)

where the indices n, m range over 0, 1, . . . , s. For our
analysis we have taken N to be a prime number and here
this corresponds to (s + 1) being an arbitrarily large

18 & =18 +2~& =18 +( +y) &

we obtain

S

Aiv&(n, m }=18 & ( 8 1+ g exp(i 2nq b )18
&

& ( 8 +q1
q=1

= A~~(n, m)

We define the number-phase Wigner function according
to Eq. (2.1) by

prime number. To find physical results from Wz& we let
(s + 1) tend to infinity through the prime numbers. " We
also note that Wz& is real because A~& is Hermitian.
Equations (2.5) and (2.6) can be compared with Wigner's
original function for the harmonic oscillator:

IY(q p)=(x ' 1 exp( —2(qy)lp +y)(p yldy

where 1p & are the momentum eigenstates.
The mathematical properties of the number-phase

Wigner function are precisely those of the discrete
Wigner function. The main property that we exploit in
this paper concerns the probability interpretation of

We now derive this property here; the details of
other properties can be found in Wootters's paper. ' In
analogy with integrating Wigner's original function
W(p, q) over either p or q to obtain a probability density,
we sum Wi)i&(n, 8 ) over one of the indices n or m to pro-
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duce a probability distribution. For instance, consider
first the operator sum

S

(s+1) ' g A~~(n, m)
n=0

S S

=(s+1) ' g g exp( 2in—pb)l0 + )(0
n =Op =0

(2.7)

y W, (n, 0.)=((l0.)(0.l))
n=0

=P(0 ), (2.8)

which is the probability that a measurement of the phase
operator Pe will yield a value of 0 . The sum of
(s+1) 'Az&(n, m) over the other index m is found from
Eq. (2.3) to be

g (s+1) 'AJv~(n, m)
m=0

S S= g g 5&„k+~5k ~exp(~0+)lk ) («xp( —i0P)
I& =0 I =0

The sum over n of exp( Zi—npb) is (s+1)52~ o. We
note' that because (s + 1) is a prime number,
2p mod(s+1) is zero only for p zero or a multiple of
(s + 1), and thus 5z o is unity for these values of p and
zero otherwise. Hence the right-hand side of Eq. (2.7)
reduces to l0 )(0 l. Taking the expectation value of
both sides of Eq. (2.7) yields, from Eq. (2.6),

III. THE 8'~~ REPRESENTATION OF NUMBER
AND PHASE STATES

The number-phase Wigner representations of number
and phase states provide the clearest examples of how the
number and phase properties of states are expressed by
this function. The Wz& representation of the number
state lk ) is found from Eqs. (2.6) and (2.3) to be

W~~(n, 0 ) = (s + 1) '52„21, ,

or, because (s + 1) is odd,

W~~(n, 0 ) =(s+ 1) '5„j, .

Thus Wz& is only nonzero on the circle of radius r =k.
This circle is illustrated in Fig. 1. Wz& is defined at
(s+1) equidistant points on this circle; as sh oo these
points become dense. The value of W~& is (s+1) ' at
each of these points and is zero elsewhere. Clearly W~&
exhibits the characteristic properties of number states,
that is, well-defined photon number and random phase.

The W~& representation of the phase state l0k ), where
0 ~ k ~ s, is found from Eqs. (2.6) and (2.5) to be

W~&(n, 0 )=(s+1) ' g exp( —2inpb, )5 +~ k5
p=0

where 0~m ~s. For p =0 the product 5 + &5 k is

equal to 5 &. For all other values ofp, k cannot be equal
to both m +p and m —p; nor can k equal both
m+p+j(s+1) and m —p+l(s+1), where j and 1 are
integers, because (s+1) is odd and p &s. Thus this prod-
uct is zero for p&0 and hence

= y 5,„,2& lk & « I
.

Ic =0 W~~(n, 0 ) =(s+ 1) '5 (3.1)

Because (s + 1) is prime and therefore odd, 5z„zk is
nonzero only for k =n, , and thus the right-hand side is
ln)(nl. Taking the expectation value of both sides
yields, therefore, from Eq. (2.6),

In Fig. 2 we again plot only those points in the x-y plane
for which W~& is nonzero. We find that W~& is nonzero
only on the radial line 0=0& and this vividly illustrates
the random photon number and the well-defined phase

S

g W„~(n, 0 )=((ln ) &nl)) =P„,
m=0

(2.9)

which is the probability that a measurement of photon
number will yield a value of n photons.

In analogy with the usual treatment of Wigner's origi-
nal function we represent the number-phase Wigner func-
tion as (s+1) discrete points in the three-dimensional
space. The points in cylindrical coordinates (r, 0, z) are
given by (n, 0, W~&(n, 0 )) for n, m =0, 1, . . . , s. The
phase probability distribution P(0 ) is, from Eq. (2.8),
the sum of the z components of the (s + 1) points above
the radial line 0=0, while the number probability dis-
tribution P„ is, from Eq. (2.9), the sum of the z com-
ponents of the {s+ 1) points above the circle r = n, . Thus
the radial coordinate r =n and the polar angle 0=0 are
associated with the number and phase operators, and
hence the number and phase properties, respectively. In
the following sections we derive the number-phase
Wigner representation of various states, whose number
and phase properties are well known, to establish the ac-
tual manner in which these properties are expressed.

O

O

I

X

FIG. 1. Circle in the x y plane on which the 8'~&-
representation of the number state

l
k ) is nonzero.
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properties of ~8k), which is an eigenstate of Pe. Here
when s ~ ao, the points in Fig. 2 are not dense but remain
separated by the distance corresponding to a dift'erence in
photon number of unity, and the line of points extends to
infinity.

Not all phase states are necessarily eigenstates of $s
with eigenvalues between 8p and Op+2~. By shifting the
value of 8p by A, b, where 0(A, &1 we can create a new
basis set of (s+1) phase states ~8. +A,b, ) with eigenval-

ues shifted from the eigenvalues of P&. The question now

arises as to the nature of 8'&4, for a field in a phase state
~81+kb, ). Using the overlap

S

(8, +A,6~8 ) =(s+1) ' g exp[ik(8 —8) —A, b, )],
I& =0

we find

W~&(n, 8 )=(s+1) g exp( i2np—h) g exp[ik(8 + —8 —Ah)]+exp[ il(8— —81
—Ab, )] .

p=0 k=0 1=0
(3.2)

After some manipulation we obtain

W~~(n, 8

conveyed by the relatively large values of W~&(n, 8 )b,
for 8 =8 +m. To address this question we examine the
phase probability density P(8 )b,

sin(A, n )
[sin(A, n. +M8}—cos(A, n +M8)cot8],s+ 1.

(3.3)

P(8 )b '= g W~~(n, 8 )b
n=p

(3.4)

where M =2n mod(s+1) and 8=—8 —8 —
A, b, . The de-

tails of this calculation are given in the Appendix. The
singularities in the cot8 factor ensure that the right-hand
side is nonvanishing as s tends to infinity for 8=ah
and 8=ah+m, that is, 8 =8 +A,b, +ah, and
8 =8 +A,6+ah+~, where a is a real number indepen-
dent of s. For all other values of 8 the right-hand side ap-
proaches zero as s~ee. Thus Wz&(n, 8 )5 ' has rela-
tively large values only for 8 .™8.and 8 =8J+m. For
arbitrarily large s, the relatively large values of
W~&( n, 8 )b, ' for 8 =8 indicate that the phase of the
state

~ 8, +A, b, ) is approximately 8 . The question
remains as to what information about the phase (if any) is

because it represents all the information available about
the phase. Before evaluating the sum in Eq. (3.4) com-
pletely consider first the sum of the pair of terms
[W~&(n, 8 )+W~&(n+2s, 8 )]b, ' for n ~

—,'s. We find

from Eq. (3.3) that this sum approaches zero in the region
where 8 =8 +m as s tends to infinity. Thus the values
of Wz&(n, 8 )b, ' and WN&(n+2s, 8 )6 ' tend to can-
cel each other in the sum in Eq. (3.4) in this region. This
leads us to conclude that the relatively large values of
WN&(n, 8 )b, ' for 8 =8 +m. do not convey any infor-
mation about the phase because they contribute no detail
to P(8 )b,

Evaluating completely the sum in Eq. (3.4) eventually
gives

lnP(8 )b (3.5)
2n(s+1)sin [—,'(8 —8J

—Ab, )]

As s~~ we find that for 8 =ah+8, where a is in-
dependent of s,

(s+1)sin (A,m)

2~ (a —
A, j

while for 8 =b+ 8, where b is independent of s,

P(8 )b ' 0.

-2Q Q

I

X

2Q

Evidently, in the infinite-s limit the density P(8 )6 is
zero for all 8 except for an infinitesimal region near
8 =8 where the density is infinitely large. Furthermore,
because the distribution P(8 ) is normalized for all s
then the density P(8 )b, is also normalized in the limit
s~ Do according to

S

1= lim g [P(8 )6 ']b, .
S~oo pFIG. 2. Points on the x y plane for which the 8'&&-

representation of the phase state ~8„) is nonzero. These points
lie on the radial line that makes an angle of Ok to the x axis.

This limit can be compared to the integral of a Dirac 5
function. Moreover, the right-hand side of Eq. (3.5) is
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periodic in I9 with a period of 2m. . Thus we conclude
that the phase probability density P(6 )6 ' for the
phase state

I 61 +A, b, ) has periodic Dirac 5-function be-
havior in the infinite-s limit. This behavior clearly shows
that the phase state I 61 +A, b, ) gives well-defined values of
phase when operated on by Ptr even though it is not an
eigenstate of Ptr.

IV. THE W~p REPRESENTATION
OF PHYSICAL STATES

We illustrated in Sec. III the way in which the number
and phase properties of the number and phase states are
expressed by the 8'z& function. The number state be-
longs to a wide class of states called physical states. This
class of states is important because it represents states
that can be prepared physically. It includes nearly all
states used in quantum optics, with the notable exception

being the phase states themselves, for which the expecta-
tion value of energy is infinite. Formally, physical states
Ip ),

n=0
(4.1)

&,E&)= lim y Id„I'n~&B, ,
S~oc 0

(4.2)

where B is some bound.
The 8'z4, representation of physical states is found, by

a similar calculation to that which leads to Eq. (Al) in
the Appendix, to be

are those states that have finite moments of the number
operator (X~) for any given q in the limit of infinite
s. That is, states for which

M s

W (n 6 )=(s+1) ' g dkdM ~exp[i(2k —M)6 ]+(s+1} ' g dkdM k+, +iexp[i(2k —M —s —1)6 ],
k=0 k=M+]

(4.3)

where M:2n m—od(s +1). From Eq. (4.2) it follows that

Id. I'&B,m -q

and hence

Id„'d, „I
& B [k (1 k)]—

for I & k. Using k (l —k }& ,'I for I & k an—d k &0 we get

into Eq. (4.4) yields eventually

W&&(n, 6 ) =(s +1) 'A(n, r)4(n, 6,$),
where A(n, r):—r exp( r)il!,—

M l!cos[(2k —M)(6 —P)]
4(n, 6, )=

(k ~)' [(M —k)!]'
(4.S)

from which it follows that the magnitude of the second
term on the right-hand side of Eq. (4.3) is less than
B [—,'(M+s+1)] I' '~ for any given q. Thus, by choos-

ing sufficiently large s, this term is negligible and we can
approximate Eq. (4.3} to any desired accuracy by

Wz&(n, 6~ )=(s+1) ' g dl,"dM kexp[i(2k M)6 ] . —
k=0

(4.4)

This simple expression gives the number-phase Wigner
function for physical states in general. We now examine
two particular examples of physical states: the coherent
state Ia) and the squeezed vacuum' IO, (). The phase
properties of these states depend on the amplitude I a I

and squeezing I/I parameters. As these parameters are
increased from zero the phase of each state transforms
from being completely random to a more well-defined
value. '

A. Coherent state

Substituting the number-state coefficients for I a ),
d„=a"(n!) 'i exp( —

—,
' IaI ),

a=r exp(iP), M—= 2n mod(s+1), and / is the largest in-
teger not exceeding —,'M. We notice here that 8'z& is the
product of a constant (s + 1) ', an amplitude-
r —dependent factor A(n, r) and a phase-P-dependent fac-
tor 4(n, 6,$). This factorization provides an alternative
viewpoint as to why more intense coherent states have
more well-defined phases. The factor A(n, r) is related
to the photon-number probability distribution I'„
=r "exp( r)in! by—

A(n, r)=P„, 0&n &
—,'s

A( —,'s+n, r)=rP„, , 0&n &
—,'s .

(4.6a)

(4.6b)

Here we find that as n increases from zero, A(n, r) decays
to negligible values as n approaches —,'s and then it under-
goes a "revival" from n =

—,'s+1. This should perhaps
not be unexpected because in the definition of
W&&(n, B ), Eqs. (2.3) and (2.6), the dependence on n ap-
pears only as 52„j,which has the property

~2n +s,j ~2n —1,j
for all n and j. Thus 62n j is almost cyclic in n and it is
this property that gives rise to the revival in A(n, r) We.
also find from Eq. (4.5) the symmetry property that
4(n, 6 P) equals @(n,6 +m. , P) for n &

—,'s and
4(n, 6 +rr, —P) for n & —,'s. In Fig. 3 we have plotted
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20
n=160

n=40

20—

~ n=10
0—
0

2—
n=s/2+160

(b)-

B. Squeezed state

The squeezed vacuum ~0, () is also a physical state
and so its number-phase Wigner representation can also
be found using the approximate expression (4.4). The
number-state coefficients of ~0, () are '

]/2
(2n )!

exp(in il )
cosht

d
(
—tanht )"

2n
= 2„!

0 =~ and will be relatively Aat elsewhere. As r is in-
creased, the sum in Eq. (4.7) will be dominated by terms
involving N(n, 0,$) with larger n, that is, terms with
narrower peaks in 0, giving P(0 ) a narrower peak near
0 =~. This explains why coherent states have more
well-defined phases as the intensity r is increased: the
amplitude factor A(n, r), which is related to the photon-
number probability distribution, determines in part the
phase-probability distribution through the heavier
weighting of 4(n, 0 P) with narrower peaks in Eq. (4.7).

2
0—i

n=s/2+40
and dz„+, =0, where g=t exp(ii)). After some manipu-
lation we find Wz& for ~0, g ) is approximately

2—
n=s/2+10

-2

0

FIG. 3. Phase-dependent factor 4(n, 0, $) as a function of the
continuous parameter 0 for the coherent state a ) with
arg(a)=~ for (a) n=10, 40, and 160, and (b) n= —,'s+10,
—,'s+40, and —,'s+160.

W~~=(s+1) 'A'(n, t)4'(n, 0,rt),

where

(tanht)"(2q)!A' n, t = 71 2$
cosht q! 2 q

A'(n, t)—:0, n ) —,'s,
q! (

—1)" " [(2k)!(2n —2k)!]'4' n, 0
( 2q)!2" & k!(n —k )!

(4.8)

P(0 )=(s+1) ' g A(n, r)4(n, 0,$) .
n=0

(4.7)

In this sum the amplitude-dependent function A(n, r) acts
as a weighting factor. According to Eqs. (4.6a) and
(4.6b), A(n, r) is related to a Poisson distribution with a
mean of r, and so the most significant contribution to
P (0 ) will be from terms for which n = r and
n =r + ,'s. In the sum of these te—rms in Eq. (4.7) the
peaks and troughs of @(n,0,$) near 0 =0 tend to can-
cel each other while peaks near 0 =~ reinforce each
other. Thus P (0 ) will exhibit a narrow peak near

4(n, 0, $) as a function of the continuous parameter 0 for
selected values of n for the coherent state with P =a. and
with an arbitrarily large value of s. The (s+1) values of
4(n, 0,$) for m =0 to s form a subset of discrete points
on these curves. The periodic behavior of 4 is clearly
visible here. The curves have a peak near 8=m, which is
the expected phase of the coherent state, and peaks (for
n ~

—,'s) or troughs (for n ) —,'s) near 0=0. We also note
that all peaks and troughs become progressively narrower
as n increases from 0 to —,'s and, separately, from —,'s + l to
s. The phase-probability distribution P(0 ) is given by
summing W~&(n, 0 ) over n, i.e.,

X cos[(n —2k)(i) —20 )],
(4.9)

and q is the largest integer not exceeding —,'n. Thus 8'z&
for the squeezed vacuum also factorizes into three fac-
tors: a constant (s+1) ', a factor A' dependent on t,
and a phase-i) —dependent factor O'. The factor A'(n, r)
steadily decreases with increasing n, . It is not difficult to
show that A' is related to the photon-number probability
distribution P„ for the squeezed vacuum by

A'(2n, t) =P2„, 2n ~
—,'s

A'(2n + l, t) =(tanht)Pz„, (2n +1)~
—,'s .

We note that, unlike A for the coherent state, A' does not
undergo any revival for n ) —,'s. This can be traced to the
fact that the odd-number state coefficients of the
squeezed vacuum are zero. On the other hand, we can
see from Eq. (4.9) that 4' possesses the following syin-
metries:

&0'(n, 0 + —,
'm. , i)) for even n,

4'(n, 0, )i)= N'(n, 0 + —,
'—ir, il) for odd n,

4'(n, 0 +sr, r)) for all n .

These symmetries are clearly visible in the plots of
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20-

-20—
0

ing the phase uncertainty. We found that as the ampli-
tude or the squeezing parameter is increased, values of
W~&(n, 8 ) with narrower peaks in 8 contribute more
significantly to the phase-probability distributions P(8 )

for these states. Thus these distributions have narrower
peaks, which indicates more well-defined phases. We also
found that the 8'~& representation of these states has os-
cillations with 0, as illustrated in Figs. 3 and 4, that do
not contribute any detail to P(8 ). This can be com-
pared to a similar effect we found in Sec. III for the phase
state ~8, +A,4).

V. CONCLUSION

FIG. 4. Two curves illustrating the general properties of the
phase-dependent factor 4'(n, 8, g) as a function of the continu-
ous parameter 8 for the squeezed vacuum ~0, $) with arg(g}=n.
The s+1 values of 4'(n, 8,g) for m=0 to s form a discrete
subset of points on these curves.

4'(n, 8, rt) for n =20 and 21 in Fig. 4 for the squeezed
vacuum with q=@. These two curves illustrate the gen-
eral properties of O'. Although not shown here, we find
that the relatively large peaks at 8=0 and ~ become nar-
rower for larger n, with widths of the order of m/n T.he.
peaks for n even and troughs for n odd at 8=m/2 and
3m/2 tend to cancel each other in the sum

P(8 )=(s+1) ' g A'(n, t)4'(n, 8, )rt.
n=0

(4.10)

Thus these peaks and troughs do not convey any
significant phase information. Perhaps surprisingly, we
find approximately 40 smaller oscillations in each curve
in Fig. 4. In general, it turns out that there are approxi-
mately 2n such oscillations in the curve of 4'(n, 8, g)
However, in the sum in Eq. (4.10), 4'(n, 8,g) is weight-
ed by A'(n, t), which decays relatively slowly with increas-
ing n, and so many terms involving 4'(n, 8, rt) of different
frequencies contribute to P(8 ). Thus the smaller oscil-
lations tend to cancel each other and make no significant
contribution to the phase information. Hence P(8 ) has
peaks at 8 =0 and ~ only, and is relatively Hat in other
regions. Finally we note that as the squeezing parameter
t increases, the ratios

A'(2n +2, t) A'(2n +3, t} 2n +1
tanht)

A'(2n, t) A'(2n +1,t) 2n +2
also increase and this implies A'(n, t} decays more slowly
with n Thus the con. tribution to P(8 ) from values of
N'(n, 8,g) with larger n becomes more significant with
increased squeezing, and so the two peaks in P(8 ) will

become narrower. Hence, as the squeezing is increased
the phase of the squeezed vacuum becomes more well
defined at two values and this can be compared to the
similar effect found for the single-peaked phase distribu-
tion of the coherent state.

In summary, we note that the coherent states and the
squeezed vacuum exhibit a similar mechanism for reduc-

In this paper we have developed the number-phase
Wigner function 8'z& by using Woot ters's discrete
Wigner function to represent a single-mode light field in
the Pegg-Barnett formalism. Unlike Wigner s original
function, which is defined everywhere on a plane, the
number-phase Wigner function Wtt&( n, 8 ) is defined

only on dense subsets of points on circles of integer ra-
dius centered on the origin. These points (n, 8 ) corre-
spond to a polar representation of the eigenvalues of the
number and phase operators, that is, n are the eigenval-
ues of 8', and 8 are the eigenvalues of Ps.

We have found that the number-phase Wigner function
gives a picture of the number and phase properties of
states. For example, W~& for the number state ~n ) is
nonzero only along the circle of radius n, while for the
phase eigenstate ~8 ), W~& is nonzero only along the ra-
dial line, which is at an angle of 8 to the x axis. A
reasonably simple expression was obtained for the
nutnber-phase Wigner representation of a general physi-
cal state. This expression was used to find the W~& repre-
sentation of the coherent state and the squeezed vacuum.
The phase properties of these states were found to be ex-
pressed by their respective 8'z& representations as fol-
lows. Although 8'z& for these states may contain many
oscillations with 8, only particular peaks convey the
phase information. These particular peaks are narrower
for larger n As the am. plitude (or squeezing) is increased,
values of Wtv&(n, 8 ) with larger n contribute more
significantly to the phase-probability distribution P(8 ),
and thus the peaks in P(8 ) become narrower, giving a
more well-defined phase.

In conclusion, we have introduced the number-phase
Wigner function and shown how it gives a new way of
viewing the number and phase properties of states in the
new formalism.
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APPENDIX

Here we give the details of the derivation of Eq. (3.3)
from Eq. (3.2). Performing the sum over p in Eq. (3.2),
using 8 + =8 +pb, and Eq. (24), yields
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S S

WN~(n, 8 )=(s+1) g +5k+I~„exp[i(k —l)(8 —8, —kb, )] .
n =01=0

We can replace 2n by M —=2n mod(s + 1) in the index of the 5 function because 5 is periodic with a period of (s + 1).
Separating the sum over k into two parts then gives

WIv&(n, 8 ) =(s +1) g + 5k+I Mexp[I (k —l)8]+ g + 5„+,Mexp[I (k —l)8]
k =01=0 k =M+1 l=0

where for convenience we have written 8:—8 —8 —
A, h.

In the first sum k ~ M and so

5k +I,M 5I,M —k 5I,M —k

while in the second sum k & M and thus

5k+I, M 5I, M —k 5I,M —k+s+ I

Hence we find

WIv~(n, 8 )

=(s+1) g exp[i(2k —M)8]
k=0

+ g exp[i (2k —M —s —1)8]
k =M+1

Replacing the dummy summation index k in the second
sum with q =k —M —1 gives

WIv~(n, 8 )

M
=(s+1) g exp[i(2k —M)8]

k=0

s —M —1

+ g exp[i (2q —s +M+1)8]
q=0

The right-hand side now contains two geometric series of
the general form

X cos[ [—,'(s —1)—M]8I /sin8 . (A2)

We note that 8=8 —8 —
A, b, =(m —j—

A, )b, and
5 =2m/(s + 1)., and so

sin[ —,'(s + 1}8]= —
(
—1) 'sin(Am. ),

cos [ [ —,
' (s —1 )

—M]8 I

=( —1) 'cos[Am. +(M+ l)8]
= ( —1 ) '[cos( A m. +M 8)cos8

—sin(A, m+M8)sin8] .

Substituting these two results into Eq. (A2) and then di-
viding by 5 yields Eq. (3.3):

WIv&(n, 8 )6 '= [sin(Am+M8)
m s+1

—cos(Am+M8)cot8] .

J

g exp(ik28)exp( ij—8) =sin[( j+ 1)8]/sin8,
k=0

where j is an integer. Replacing the geometric series
with their closed expressions then gives

WIv&(n, 8 ) =(s + 1) [sin[(M + 1)8]/sin8

+sin[(s —M)8]/sin8 I

=2(s + 1 } sin[ —,'(s+ 1)8]
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