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Wave-packet evolution in the damped oscillator

Simon J. D. Phoenix
British Telecom Research Laboratories, Martlesham Heath, Ipsmich, IP5 7RE, United Kingdom

(Received 16 November 1989)

We demonstrate that, for a simple model of the damped oscillator, both the wave packet in the
position representation and oscillator expectation values are insensitive to the rapid decay of off-

diagonal coherences. This rapid decay is, however, seen in the von Neumann entropy for the oscil-
lator and the wave packet in the number representation.

I. INTRODUCTION

There have recently been several proposals for the gen-
eration of optical quantum superposition states. '

These schemes are based on the propagation of the field
state through a nonlinear medium, usually a medium
with a Kerr-type nonlinearity. These anharmonic oscilla-
tors induce a bifurcation of the field Q function in phase
space indicating the establishment of a quantum super-
position state. It has been recognized for some time that
even the presence of a small amount of dissipation is
suScient to reduce this pure superposition state to a rnix-
ture on a time scale much shorter than a typical decay
time. This rapid collapse of the pure quantum state to
a mixture is of considerable importance in discussions of
quantum measurement theory " where the role of the
environment is to induce this collapse.

In this paper we study the decay of a field mode initial-
ly prepared in a superposition of coherent states.
Specifically, we shall assume that the density operator for
the field mode obeys a zero temperature master equation
in the Born-Markov approximations. This model was
first studied by Walls and Milburn and later by Savage
and Walls. The decay properties of the superposition
have also been studied by Kennedy and Walls when the
reservoir is prepared in a multimode squeezed vacuum
state. ' These authors have shown that the off-diagonal
terms in the field density operator, expressed in a
coherent state basis, are weighted with a factor which
rapidly suppresses these coherences. The effect of this
decay on observable quantities has not been emphasized,
however, and it is one of the purposes of the present work
to clarify this issue.

The ideal parameter with which to characterize the de-
cay of a pure state to a mixture is the von Neumann en-
tropy. ' This quantity is positive for a mixed state and
zero for a pure state. The rapid destruction of the coher-
ences to form a mixture should be reAected in the evolu-
tion of the field entropy. In this paper we exploit the
method used in the calculation of the field entropy in the
Jaynes-Cummings problem' to evaluate the entropy of
the damped oscillator as it evolves to a mixture (we use
the terms field mode and oscillator interchangeably in
this paper). We then examine the evolution of the diago-
nal elements of the field density operator in the position

representation. We obtain a Fokker-Planck equation for
the motion of this wave packet and show that the terms
arising from the off-diagonal coherence do not exhibit a
rapid decay. This behavior is also shown to occur for
field expectation values for which the terms arising from
the off-diagonal coherence do not decay on a faster time-
scale than the other terms arising from the diagona1 ele-
ments. While this insensitivity to the off-diagonal decay
appears to be at odds with earlier treatments we shall
show that it is, in fact, consistent.

n. SOr.UTiON OF THE MASTER EgUATION

Jp=yapa (2)

Lp= — (a ap+pa a) .
2

(3)

The formal solution of the master equation (l) can now
be written as

p(t)= exp[(J+L)t]p(0) . (4)

The exponential evolution operator can be disentangled
(see Appendix) to yield the relation'

exp[(J+L)t]= exp(Lt)exp —(l —e ~')

. y
(5)

This relation together with Eqs. (2) and (3) imply that the
action of this evolution operator on an off-diagonal ele-
ment of a density operator expressed in a coherent state
basis can be written as

The master equation in the interaction picture for a
damped oscillator at zero temperature and under the
Born-Markov approximations is given by'

r
at 2

=—(2apa —a ap —pa a)

where a, and a are the annihilation and creation opera-
tors for the oscillator and y is the decay constant. It
should also be noted that the coupling to the environ-
ment is through a coordinate-coordinate coupling and
the above master equation has been derived under the
rotating-wave approximation. Following Barnet t and
Knight' we define the superoperators J and L by their
action on the density operator:
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where Iae r' ) is a coherent state of amplitude
ae ' . This is in agreement with the result of Walls
and Milburn obtained by a different method. We see
from this expression that off-diagonal elements are
weighted by a factor (pl a ) ' '""' " which for
real a and p and short times can be written as
exp( —Ia —pl yt/2). It is apparent that the off-diagonal
elements are rapidly dephased at a rate governed by the
separation of the coherent states.

For the rest of this paper we shall be exclusively con-
cerned with an initial oscillator state described by a su-
perposition of just two coherent states Ia) and Ip). All
of the results, except that for the oscillator entropy, can
easily be generalized to superpositions of arbitrary num-
bers of coherent states if so desired. The initial density
operator is therefore given by

p(0) =N ( la & & a
I
+ Ip & & pl+ la & & pl+ I p & & a

I ) (7)

where N is the normalization constant. The full time-
dependent density operator is given by

p(t)=N g (pla ) ~
—exp( —rt)Iae r'r2) (pe rrr&

a, p
(8)

where the sum is to be taken over the coherent states in
the original superposition. This expression was originally
obtained by Walls and Milburn. If we write ae ~' =a
then the solution (8) can be written in the form

p(t}=N y la&& pl.,p &pla&
(9)

In the next section we calculate the entropy of the oscilla-
tor when its initial state is given by (7).

exp[(J+L)t] a)(pl
= (Pla) &

—~xv' —ri&Iae r—rr2) (Pe r—«2I (6)

M~~ M~p c~

Mp. Mpp cp cp

where we have written the elements of this matrix as

M..= 1+(pla) =M;, ,

M.,= &alP&+
(pa

(12)

(13)

(14}

The diagonal elements of this matrix are time indepen-
dent but the off-diagonal elements are functions of time.
Let us now suppose that the amplitudes c and cp can be
written as

i0/2
a a

i0/2
p p

and the phase 0 is defined by

(15)

(16)

(17)

By eliminating A. from the above matrix equation and us-
ing the substitutions (15)—(17) we arrive at the following:

c ~ c p=Ac~ cp,
6= IM~pl '(M —

Mttp)

(18}

(19)

but M and Mpp are complex conjugates and so 5 is
purely imaginary and we write it in the form h=ih.
This in turn implies that c and cp are complex conju-
gates. If we write

the oscillator density operator must be of the form

Ip&=c Ia&+col@) .

If A, is the eigenvalue, then the eigenvalue equation can be
written as

III. ENTROPY OF THE OSCILLATOR

c =ea 7

ye —i g/2
p

(20}

(21)

The von Neumann entropy of a quantum system is
defined in terms of the density operator by'

where g can be related to b, through Eq. (18), we obtain
the eigenvalues

S = —Tr(p lnp) (10) ~'*'=-,'(M..+M~~)*IM.~ I(1—
—,
' a')'" . (22)

where we have set Boltzmann's constant equal to unity.
This quantity is zero if p describes a pure state and is pos-
itive if p describes a mixed state. The entropy therefore
measures deviations from pure state behavior. For isolat-
ed systems S is time independent due to the unitarity of
the evolution operator. For open systems such as the
damped oscillator, however, the evolution is not unitary
and the entropy becomes time dependent. These proper-
ties make the von Neurnann entropy an ideal parameter
with which to characterize the rapid decay of off-
diagonal coherences in the damped oscillator.

In general the calculation of the entropy (10) for a
given system is nontrivial requiring the diagonalization of
the density operator. For the initial state considered
above, however, we can employ the method used for the
diagonalization of the Jaynes-Cummings field density
operator. ' lt is apparent from (9) that an eigenstate of

It should be noted that this expression can be obtained
from a straightforward diagonalization of (12) although
the method outlined here also gives the form of the eigen-
states in a more direct manner. The normalization con-
stant N must be included in (22) and this can be deter-
mined from (22) or from (7) and we find that

N =(M +Mtttt) '=[2(1+ Re(alp) )] (23)

The oscillator entropy is now given by the simple form

Including this term in (22} yields the following form for
the eigenvalues of the density operator for the damped
oscillator [given that the initial condition is described by
Eq. (7) thereby restricting the space to just two coherent
states]:

(24)
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5 = —A,
'+' ink, '+' —k' ' ink, ' (25) IV. EVOLUTION OF THE WAVE PACKET

For short times and for ~a —
P~ large we find that the ei-

genvalues can be approximated by

g(+) I
( l+e —(i/&~I~ —Pl y&)

2
(26)

so that the "distance" between the two coherent states
determines the rate of change of these eigenvalues. The
entropy is sensitive to the rapid decay of the off-diagonal
coherence and evolves on two time scales. There is a rap-
id increase to its maximum value at a rate determined by
the distance between the two coherent states and a subse-
quent relaxation to the vacuum at the normal decay rate.
This behavior is shown in Fig. I where the entropy is
plotted for various values of a and P. It should be noted
that if the oscillator is prepared in a single coherent state
then it remains in a coherent state throughout its subse-
quent evolution and the entropy remains at zero. This is
a peculiarity of the fact that the reservoir is modeled as a
collection of harmonic oscillators, coupled in rotating-
wave approximation to our system oscillator, with a zero
temperature distribution, that is, all of the reservoir oscil-
lators are in coherent states of zero amplitude. Although
the oscillator entropy is sensitive to this rapid decay of
the off-diagonal coherence it is pertinent to enquire as to
whether there are other quantities which are similarly
sensitive. In the next section we examine the evolution of
the wave packet (x ~p~x ) and show that various factors
cancel to yield a motion which is not sensitive to the rap-
id decay of the off-diagonal coherence.

The evolution of the wave packet (x ~p~x ) can be cal-
culated directly from the solution (8) but for the moment
we shall consider the equation of motion obeyed by a gen-
eral wave packet. The annihilation and creation opera-
tors can be reexpressed in terms of the position and
momentum operators x and p by

a =(2fico) '~ (cox+iP),

a =(2%co) '
(coax iP—) .

(27)

8 8 8p(—x, t) = D p(x, t)+ [xp(x, t)]
Bt 2 r}x2 8

(28)

where we have written the diffusion constant D as

D= 2' (29)

This parameter sets the scale of the fluctuations in posi-
tion. This equation is, not surprisingly, a Fokker-Planck
equation for the distribution p(x, t) If w.e change vari-
ables to r =y t /2 and write g(x, r ) =e 'p(x, r ) the equa-
tion of motion becomes

(30)

The first term on the right-hand side of this equation

In the position representation the momentum operator
becomes the differential operator P= ilia/dx—and the
wave packet p(x, t)=(x p(t)~x ) obeys the equation of
motion

Q. s

P. y

Q. &

zQ

time (s)

FIG. 1. The von Neumann entropy for the oscillator is plotted as a function of time for the initial amplitudes (a) a=2, P=4; (b}
a =2, P=7. We have set the decay constant equal to unity.
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leads to a diffusive motion increasing the width, or Auc-

tuation, of an initial distribution but leaving the mean
value unchanged. The effect of the second term is not so
obvious. In order to see its effect we shall temporarily
neglect the diffusive motion so that the differential equa-
tion (30) becomes

which is a Gaussian distribution with a width proportion-
al to D. Let us assume, for the time being, that the am-
plitudes of our coherent states are real. The solution of
(28) with the initial condition (35) is

2

p (x, t)=(2nD) ' exp —2 ——ae
2&D

g(x, r)=x g(x, r) .a — a
C}7. X

(31)
(36)

(e~—x)
g(y, O) = exp 2' (32)

With this initial condition the full time-dependent solu-
tion of (31) is

Changing variables so that x =e~ we find that the general
solution of (31) is of the form g(x, r)=f(r+y). Let us
consider our initial condition to be a Gaussian function
of width o and mean x so that

which is a Gaussian of the same width as the initial dis-
tribution but the motion of the wave packet is towards
the origin. All we have done in fact is to replace the am-
plitude a with ae ~' in the initial distribution. This is
consistent with the solution (8). Remembering that we
are only considering real amplitudes the initial wave
packet arising from the interference, or off-diagonal,
terms is

' 1/2

(x —xe ')
g(x, r)= exp

2(o e ')' (33)
p;„,(x,O) = e

—(1/2)(a —P j

which is still a Gaussian function but with a time-
dependent mean value and width. The mean value de-
cays to zero and the width of the distribution is nar-
rowed. We shall see shortly that if our initial state is a
coherent state then the narrowing due to this second
term exactly balances the diffusive motion. In this case
the mean value still decays to zero but the width of the
wave packet is unchanged.

In terms of the diffusion constant the coherent state
wave function in the position representation is given by

(x Ia) (2~D)
—(/4e —((/2)(

X exp —2 —
—,'(a+P)

2 D

'2

(37)

p(x, O)=p (x, O)+p&(x, O)+p;„,(x,O) . (38)

which is a Gaussian of the same width as the initial wave
packets due to the diagonal elements. The initial wave
packet for the state (7) is made up of the sum of three
Gaussians of equal widths and we have

X
X exp — ——a

2&D

and the wave packet associated with this state is

I ~x Ia ~ I =(2nD) ' exp —2 ——Rea
2&D

2

(34)

(35)

The equation of motion (28) is a linear partial difFerential
equation and cannot distinguish the interference contri-
bution from the diagonal contributions. Apart from con-
stants, the motion of the interference contribution is
identical with that of a wave packet due to an initial sin-

gle coherent state with the same mean value. The in-
terference contribution, therefore, does not decay on a
faster time scale than the diagonal contributions. The
full solution for real initial amplitudes a and P is

p( tx}=(2nD) '/ & g e ('/ " t(' exp —2 ——,'(a+P)e—
2&a

2

(39)

This is a solution of (28) with the correct initial condi-
tions and this can be verified by direct substitution.

Our results appears to contradict Eq. (2.20) of the orig-
inal paper by Walls and Milburn which, if we neglect
free evolution terms, states that for two initial coherent
states of amplitudes a and —a, where u is real, the
wave-packet evolution can be written in the form

(x Ip(t)Ix ) =I +I +2I+I e l~l'[& —c~('( —r'&)

(40)

There appears to be a damping factor which rapidly
suppresses the interference terms at a rate governed by
the distance between the two states. The cross term
I+I, however, contains a time dependence which exact-
ly cancels this factor leaving a residual evolution which
occurs on the same time scale as the diagonal terms. This
is true for arbitrary initial amplitudes a and P as we shall
demonstrate below. The above result (39) is therefore
consistent with that of Walls and Milburn. From Eq. (9)
we find that the wave packet can be written as
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p(x, t)=Ny &x a)(plx&( la)., p &pla&

where the overlap terms are given from (34) as

&x la & & plx &
=(2~D)-'"

x exp[ —
—,'(l al a—+lpl p*—)]

2

(41)
(a "a )= Tr[p(t)a "a ] .

Using the identity

1/2
k!(k —s +r)!

[(k —s)!]
a "a'lk&

0 ( ~k)

(47)

lk —s+r) (s (k)
(48)

X exp
X

2v'D

x
2&D

2

(42)

we find that when the trace in (47) is taken over the num-
ber states of the field the expectation value can be written
as

which can be rearranged to give

(xla)(plx &=(2nD) ' (p a)

X exp —2 ———'(a+P *)
2v'D

(43)

(a "a') =N g g (pla) exp( —ap')
a, P k, n, m=0

' 1/2
k!(k —s + r)!

X
[(k —s)!]

—n(p «)m

„,&.k&, k —,+, (49)
(n!m!)'

The overlap (pla) exactly cancels the corresponding
term occurring as a weighting factor in (9) so that the
wave packet becomes

p(x, t)=(2nD) 'i N
2

X g (Pla) exp —2 ——
—,'(a+P ')

2&D

(44)

and the interference terms evolve on the same time scale
as the diagonal terms. We now show that this insensitivi-

ty to the off-diagonal decay is also apparent in field ex-
pectation values.

V. EXPECTATION VALUES
AND RELATIVE ENTROPY

We have seen that the wave packet in the position rep-
resentation is not sensitive to the rapid destruction of the
off-diagonal coherences. It is of some importance, there-
fore, to ask whether this behavior is also seen in the field
observables. We consider normally-ordered expectation
values (a "a ) neglecting the free evolution terms.
From (9) we can write the density operator in a number
state basis as

This reduces to the expression

oc —k( «)k —s+r
( a "a') =N g g (Pl a ) exp( —aP '

)

a, P k=O (k —s)!

The summation over k can be performed and we obtain
the result

(a "a') =N g (Pla)a'(P')" (51)

and once again we see that the terms arising from the
off-diagonal coherences in the original state (7) decay on
the same time scale as those arising from the diagonal ele-
ments. It would have been more convenient for the cal-
culation of this expectation value to have taken the trace
over a coherent state basis and this does indeed yield the
above result. However, we shall need the density opera-
tor in the number state basis for the calculation of the rel-
ative Shannon entropy in the number state basis.

The relative Shannon entropy is a parameter which
measures the deviation of one probability distribution
from another. Ifp (n ) is one distribution and g (n ) anoth-
er then the relative entropy between these distributions is
defined to be'

p(t)=N+ g &nla&&plm&ln&&ml .(.,p., =o &pla&
S(glp)= g p(n)[lnp(n) —lng(n)] .

n=0
(52)

(45)

Evaluating the scalar products in this expression we find
that

oo a n( «)m
p(t)=N g g &pla) exp( —ap*)

~z2 ln )&m l
.

aP n, m=O (n!m!)'

(46)

The expectation value ( a "a ) is given by

This quantity measures the deviation of the distribution
g(n) from that of p(n) and measures the information
diff'erence between a "true" distribution p (n) and an "es-
timated" distribution g (n ). Equation (52) is not the most
general form for the relative entropy in quantum
mechanics but is sufficient for our purposes here. Let us
consider two density operators in the number state basis.
If these are labeled p and 0. then the relative Shannon en-
tropy in this basis is given by
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n (P tT)

O. s

0.6

P. y

P. 2

time (s)

FIG. 2. The relative Shannon entropy in the number state basis is plotted as a function of time for the initial amplitudes (a) a=2,
P= 4; (b) a =2, P= 7. We have set the decay constant equal to unity.

Ss(plo )= g &n 0 ln &( ln&n lcrln &
—ln&n lpln &) .

n=0

(53)

This quantity is, in fact, sensitive to the decay of the off-

diagonal coherence. To see this we choose the initial am-

plitudes to be a and —a where a is real. With these ini-
tial amplitudes g„can be written as

Let us now suppose that p is given by (8) and 0 is given

by
g„=-,'( —1)"&

—ala& exp(2lal'e r') . (58)

a=m(la&&al+lp&&pl) . (54)

& pla & exp( —ap*e ~')(ap*)"
lal'"exp( —lal'e ")+lpl'"exp( —lpl'e ")

If the "wave packet" in the number state basis is sensitive
to the decay of the off'-diagonal coherences then the rela-
tive entropy of these two distributions should show a rap-
id decay from its maximum to zero on a time scale
governed by the separation of the coherent states in the
initial superposition.

The diagonal elements of the density operators p and 0
in a number state basis are, from (46), given by

& n lpln & =X g & pla & exp( —ap*e r'), e, (a *)"
n!

(55)

& n lain &
=

—,
' g exp( I& I'e ~'), e2 1 Il t

A=a, P

The calculation of the relative entropy in the number
state basis requires the logarithm of the ratio of these two
quantities. Denoting this ratio by p„we find that

p„= =2%(1+(„)&nip n&

&nloln &

(56)

where we have written

The relative entropy in the number state basis is, there-
fore, sensitive to the rapid decay of the off-diagona1
coherences. This is shown in Fig. 2 where we have used
the same initial amplitudes as in Fig. 1. The greater the
separation between the initial amplitudes the faster the
decay of the relative entropy to zero.

VI. CONCLUSIONS

The study of the decay of quantum superposition states
is of considerable current interest. As we have mentioned
there have been several ingenious schemes proposed for
their production and detection. Furthermore, the study
of the decay of such superpositions is important in funda-
mental theories of quantum measurement. It has been
noted that environmental influences are sufficient to
cause the reduction of the pure superposition state to a
mixture on a time scale much faster than that of a typical
system decay time. We have confirmed this conclusion
using a simple model of a damped oscillator by showing
that the von Neumann entropy for the oscillator is sensi-
tive to the decay of the off-diagonal coherences. We have
also shown, however, that the wave packet in the position
representation is not sensitive to the decay of these coher-
ences and terms arising from the off-diagonal elements
decay on the same time scale as those arising from the di-

agonal elements. The terms which suppress the off-

diagonal coherences in the expression for the density
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operator are canceled when the wave packet is con-
sidered. This behavior is also observed for the field ex-
pectation values, the inhuence of the off-diagonal terms
persisting over a typical decay time. The relative entropy
for the "wave packet" in the number state representation
is, however, sensitive to the decay of the off-diagonal
coherences. This is in contrast to the behavior of the
wave packet in the position representation and underlines
the necessity for a careful choice of basis. The per-
sistence of the off-diagonal coherences for the field expec-
tation values gives some hope that effects due to the in-
terference terms may be observed in the laboratory.
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APPENDIX

x( J+ L ) —A LF ( g ) (A2)

we obtain the differential equation

dX
F(A, )=e Je F(A, ) . (A3)

Using the relation

2

e Je" =J A,[L—,J]+ [L,[L,J]]+ (A5)

and Eq. (A4) we obtain the differential equation

dA,
F(A, )=Je rF(A, ) . (A6)

With the boundary condition F(0)= 1 we obtain the solu-
tion

The commutation relation between the superoperators J
and L is given by'

(A4)

The formal solution of the master equation is F(g)= exp —(1—e r)J
r

(A7)

(A 1)p(t)= exp[(J+L)t]p(0)

where J and L are defined in Eq. (2) and (3). By writing
The solution of this damping problem, and others, by the
superoperator method was discussed by Barnett. '
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