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Periodic and quasiperiodic regimes in self-coupled lasers
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We explore the bifurcation diagrams of self-coupled unidirectional single-mode ring lasers. We
focus our attention on nearly identical lasers with an intermediate coupling and in the limit where

the atomic polarizations can be adiabatically eliminated. We determine analytically the domains of
a stable steady state, bounded by Hopf bifurcations. We study the stability of the emerging branch
of periodic solutions and in one case determine the presence of a secondary Hopf bifurcation lead-

ing to quasiperiodic solutions. These results are complemented by a set of numerically determined

bifurcation diagrams that display the behavior of the solutions far from the bifurcation points.

I. INTRODUCTION

In a recent paper' (hereafter referred to as I), we have
begun a study of a simple model of self-coupled lasers
(SCL). Each laser is described as a single-mode unidirec-
tional homogeneously broadened ring laser. The output
of each laser is sent, after a suitable intensity attenuation,
as an injected signal into the other laser. Hence each
laser is the feedback loop for the other laser. For perfect
tuning and identical lasers, this problem was considered
by Lawandy and co-workers ' as a model for two cou-
pled Lorenz equations. Since perfectly identical lasers
are not experimentally realizable, it is worth considering
nearly identical lasers, taking the difference between the
two devices as a small parameter. In I, we have shown
that such a formulation of the SCL is indeed possible.
Another piece of critical behavior that is worth putting
on stage is the property displayed by a class of lasers
(such as COz and some solid-state lasers) to behave like
conservative systems with a weak dissipative perturba-
tion. ' The conservative system is an oscillator which
has an infinite set of bounded periodic orbits. Thus the
SCL correspond to a pair of nonlinear oscillators with
weak dissipative coupling and perturbation.

A similar set of equations has been studied, though in a
different domain of parameters, by Wang and Winful to
describe phase-locked semiconductor laser arrays. In
that study the emphasis is on coupling N (typically of the
order of 10) semiconductor lasers so that all results are
purely numerical. Another study of a similar problem is
that of Falvey and Chow who study the inAuence of the
lasers coupling on the spectrum and mutual coherence
due to spontaneous emission. This analytic study is valid
for arbitrary lasers coupling and shows a rather sensitive
dependence of the results on the inter-laser detuning.

One property of the SCL is the presence of a domain of
bistability for the field amplitude versus the control pa-
rameters. However, there is at most one stable finite in-
tensity solution. It emerges from an unstable solution at

a limit point. Furthermore, this branch is either stable
everywhere or at most one Hopf bifurcation can appear
on that stable branch whereas up to three Hopf bifurca-
tions can appear on the stable branch. In this paper we
shall focus our attention to the case where either one or
two Hopf bifurcations are located near the limit point
from which the stable steady state emerges (co-
dimension-2 and codimension-3 bifurcation problems, re-
spectively).

In the domain of parameter space where the only Hopf
bifurcation occurs on the stable branch near the limit
point, the corresponding canonical problem in bifurca-
tion theory is the interaction of a simple zero root with a
pair of imaginary roots (references to the relevant
mathematical literature are given in I). In the theory of
the laser with an injected signal, an example of such a sit-
uation has been considered by Oppo et al. though they
studied the problem nutnerically. Here, on the contrary,
we construct the periodic solutions analytically in the vi-

cinity of the Hopf bifurcation and are able to determine
their stability property.

Another possibility which we investigate is that two
Hopf bifurcations occur near the limit point, one on each
side of the limit point or both on the same branch. Here
the canonical codimension-3 problem in bifurcation
theory has been considered in part by Koncay and Pei
Yu.'

Most of the results which we will present in this paper
are based on analytical studies of the problems. There-
fore the near degeneracy of the critical points which
occurs when the Hopf bifurcations are near the limit
point imply a strong limitation on the domain of validity
of the results. To obviate this defect we have comple-
mented our study by a set of numerically determined bi-
furcation diagrams which enable us to see how the stabili-
ty evolves at arbitrary distances from criticality.

As shown in I, when the atomic polarization of both
lasers can be adiabatically eliminated, the resulting rate
equations are
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E', =E, ( A, F, —1)+P,aEzcos(hp),

F', = —y, [ —1+(E,+1)Fi],
Ez =kEz( AzFz —1)+knez(E, /a)cos(hp),

Fz= —yz[
—1+(Ez+1)Fz] .

(l.lb)

(l. lc)

(l. ld)

(1.1e)

The indices 1 and 2 refer to the two lasers. E are the
field amplitudes with decay rates Kj and F are the popu-
lation inversions (normalized to 1) with decay rates y .
Each laser is also characterized by a frequency v and a
pump parameter A . The time is scaled to the decay rate
Ki of the electric field E, so that k =az/~, . Finally, the
parameter a is the ratio of the saturation amplitudes and

PJ is associated with the amplitude attenuation suffered
by the field injected in the cavity j.

As in I we shall consider that the two lasers are identi-
cal in amplifying material and design. Hence we take

a=1, k=1, 71 X2 (1.2)

The smallness parameter is chosen as the common decay
rate y so that

hp' = ( vi —vz)/x'i

—[P,a(Ez /E, )+kPz(E, /aEz )]sin(hp), (l.la)

solution (1) E, ~(A, —1)', Ez~(Az —1)'

solution (2) E, ~(A, —1)'~, Ez —+(Az —1)'

solution (3) E, ~O, Ez~(Az —I)'~z;

solution(4) E, ~( A, —1)'~, Ez~0 .

Solutions (2)—(4) are unstable for P, and Pz strictly
different from 0. Solution (1), however, may have a finite
domain of stability. In this paper we shall study the sta-
bility of this solution in the vicinity of the limit point
which is common to both E, and E2. Since we shall use
the intercavity detuning as parameter, we have displayed
on Figs 1(c.) and 1(d) the two field ainplitudes versus 8,
which is proportional to vi —vz [see the definitions (1.6)].
The solutions are labeled with the same number as their
corresponding four curves in Fig. 1. When (1.5) holds in-
stead of (1.4c), no Hopf bifurcation to periodic solutions
was possible and the steady-state solution (1) on the
upper branch of the hysteresis was stable. On the con-
trary, when the full set of parameters (1.4) is used, Hopf
bifurcation points can appear on the stable and unstable
finite intensity branches of solutions. The purpose of this
paper is to study the particular case when these Hopf bi-
furcations are near to the limit point and therefore in-
teract with it

We introduce the notation
y«1. (1.3)

y
1/2

This parameter is of the order of 10 for low-pressure
COz, lasers and for Nd3+:YAG (where YAG stands for
yttrium aluminum garnet) lasers when operating in the
single-mode regime. ' Furthermore, for these lasers ex-
perimental results indicate that rate equations with the
assumption of homogeneous broadening is valid. In this
paper we shall continue our investigation of the moderate
coupling between the SCL. More explicitly, we shall con-
sider the following domain of parameters:

e=(vi —vz)/ai =O(y' ),
P, , P, =O(y'"),

A, —1, Az —1=0(1), )0 .

(1.4a)

(1.4b)

(1.4c)

This leads to a frequency mismatch v&
—v2 of the order of

0.1 —1 MHz and a transmission of l%%uo of the output field
of each laser into the other laser. Conditions (1.4a) and
(1.4b) define the moderate coupling domain. In I we con-
sidered the alternative constraint

and define the following scaled variables:

P =eb, , A F, —1 =eW, (v, vz)/x, =eg—,

w=et, 3j—1 =aq .
(1.6)

Let E =a, =O(1) be the steady field amplitudes at the
limit point. In order for a steady-state solution to exist, it
is necessary from Eq. (l. la) that the following condition
be verified:

~=, +~'D (1.8)

and introduce two time scales

e=(vi vz)/(EK—, ) (ei —= (biaz+bza i )l(aiaz) .

We take 9 as our control parameter because the
difference of cavity frequencies can easily be controlled
experimentally. Thus we set

A, —1=Az —1=0(y' ), (1.5)
T=v) s =Et (1.9)

which restricted the study to the vicinity of the laser first
threshold. This restriction will be removed in this paper
in order to avoid effects related to the critical slowing
down due to the proximity of the lasing first threshold.

In the parameter domain (1.4) the system of equations
Eqs. (1.1) has steady solutions with a domain of coex-
istence as shown on Figs. 1(a) and 1(b). These solutions
correspond to a phase-locked regime since Ap is con-
stant. They can be classified according to their behavior
in the limit P& and Pz~O:

hp(T, s ) =n. /2+eg, +E gz+

E, ( T,s ) =a, +@X,+e Xz+

(ETz, )=sa ze+X& e+Xz+

Wi(T, s)=eY, +e Yz+.
Wz(T, s)=@Y, +e Yz+ .

~ ~ 0
)

in terms of which the dependent variables are expressed
as
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——Q~T=[(b~a2 b—2a &
)l(afa2)]

dT

X(a,x, +a,X, ),
X)T=a, Y, —b, a~/, ,

Y)T= —2a)X),

XtT =a2 Y) bqa
—(Qt,

Y)T= —2a~X

(1.10a)

(1.10b)

(l.10c)

(1.10d)

(1.10e)

In Sec. II we shall study the case where the two self-

To first order in e we obtain the following set of coupled
equations:

coupled laser differ only by the amount of intensity at-
tenuation before reinjection, whereas in Sec. III we con-
centrate on the case where the two lasers differ only by
the optical pump parameters. In this last section we first
present an analytic study followed by a numerical investi-

gation of the bifurcation diagrams far from the limit
points.

II. IDENTICAL PUMP PARAMETERS
BUT DIFFERENT COUPLING

In this section we analyze Eqs. (1.10) when the pump
parameters are identical but the coupling constants are
different:

3"

2-
2-

0 ~ ~ e e ~ e e e e g e e e e ~ e e e e ~ ~ e e ~ e e ~ e ~
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6

FIG. l. The four possible steady-state solutions of Eqs. (1.1) are displayed for the field amplitudes F., vs the parameter b in (a) and

(b), vs 0 in (c) and (d). The other parameters are A
&

=3 A2 =7, and 0= 3 for (a) and (b), whereas A
&

= 11, A2 =21, B =2, and e=O. 1

for (c) and (d).
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a, =a2=a, b, &b2 . (2. 1)

Z( T,s ) = Il(s)Z, +g(s)Z2exp(A2T )

+g(s)Z3exp(A, 3T )+c.c.

where

(2.2)

Z=c ol(Q„X„Y„X„Y,),
Z, =col( 1,0, b „0,b, + b,b ),
Z2=colj(bb), ib, a[2a +(bb) ]'

—2b&a, i(b, +bb)a[2a +(bb) ]'i2,
—2(b, +hb)a ),

Z3 =col(0, i /v—'2, 1, i l—&2, 1),
I [2II 2+ (gb )2]1/2

(2.3)

(2.4)

(2 5)

(2.6)

For definiteness, we take hb=b~ —b, )O. It is then
straightforward to solve Eqs. (1.10) to obtain

where r~ is given by (2.8). In this case the steady-state
solution (2.14) corresponds to a periodic solution of Eqs.
(1.10). For the solution rz to be real it is necessary that

1+ 2 2 [(Ab) +a (hb) —a ]D)DH= 1+a
2(2b, +bb)[a +(4b) ]

(2.15)

When this condition is verified, a linear stability analysis
of (2.14) indicates that this solution is stable if b b )a and
unstable when b,b &a. Thus for b, b &a the unstable
periodic solution emerges from the lower branch whereas
for Ab )a the stable periodic solution emerges from the
upper stable branch. These two situations are displayed
on Figs. 2 and 3 where we plot the maximum of Ez
[determined by a direct integration of Eqs. (1.10)] versus
the control parameter 19. A point which is clearly shown
on these figures is the fact that the stability property of
the solutions near the limit point can change at a finite
distance of the limit point.

When b, b =a Eqs. (2.8) and (2.9) can be integrated ex-
actly to give the undamped solutions:

3=ia,v'2, (2.7) ri= riJ 4rp Eo sin(s—2+ go) l[(rp+ Eo )'

where col(X&,X2, . . . ) is a column vector of compounds

X„X2, . . . . The three functions Il, g, and g depend on
the slow time s and are yet undetermined. At the second
in e, we get a set of inhomogeneous differential equations
for the variables $2, X2, Y2, X2, and Y2. Imposing these
solutions to be bounded and periodic in T leads to the sol-
vability condition which provides the equations

Il, =2a D —(1+a )(bb) g+a (2b, +4b)ri

Eo cos(s—2+ $0)], (2.16)

r =r&/[(rp+Eo)'i Eo cos(s—2+$0)] (2.17)

with s2 = Sr a (2b i +a )s/3. This corresponds to the
solutions of a conservative system where Eo and Po are

—4a (2b, +bb)(hb) [3a +(bb) ]r, (2.8) 3.2
r, = —(1+a )a r+(2b, +Lb)[a (bb) ]rir,

0, =0,
(2.9)

(2.10)
ma X(EI)

g, = —(1+12 )g/2, (2.11)
2.7—

where s, =s/[2a +(bb) ] and (=re' . From Eq. (2.11)
we observe that (~0 in the long-time limit. The remain-
ing equations admit two steady-state solutions: (i)

(2.12)

where I)+ are the roots of 2a D —(1+a )(bb) I)
+a (2b, +hb)I) =0 with the convention that ri ) Il+.
This solution corresponds to steady-state solutions of
Eqs. (1.10). The two values of ri determine the two
branches of the finite amplitude steady state. The condi-
tion that g be real leads to the restriction

2.2-

1.7
4

I I I I I I I I I I I I I I I I I I I ~ I I I I I I I I

D &Di —= (1+a ) (Ab) /[8a (b, +b2)] . (2.13)

A linear stability analysis of the steady-state solution
(2.12) gives the result that in the parameter domain
defined by (2.13) the lower branch g is unstable,
whereas the upper branch q+ is stable if either hb & a or
if hb ) a and D &DH ( &DL ). (ii)

I)p=(1+a )a /I(2b&+bb)[a +(bb)2]], r=rp&0,

(2. 14)

FIG. 2. Bifurcation diagram displaying the maximum of the
field amplitude E, vs the control parameter 0 with a supercriti-
cal Hopf bifurcation emerging near the limit point on the stable
upper steady-state branch. In all figures, solid lines indicate
stable solutions and dotted lines indicate unstable solutions.
The parameters are 3, —1= A&

—1=a =4, b, =1, b&=4. For
all figures we have taken @=0.01. The condition 4b) a is
fulfilled.
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6.5

max(E2)
5.5—

4.5—

constants of integration representing the amplitude and
phase of the periodic solutions, respectively. When the
amplitudes a and P are periodic, the solution of Eqs.
(1.10) is quasiperiodic. Unfortunately, the analysis of the
third-order equations in e (i.e., the study of g3, X3, Y3,
X3, and Y3) yields only the functional dependence of Eo
on $0. Thus the fourth-order equations at least are neces-
sary to fully determine analytically the quasiperiodic
solution. This has not been carried through.

3.5-

2.5-

I

I

I
I

I

III. IDENTICAL COUPLINGS
BUT DIFFERENT PUMP PARAMETERS

A. Analaytical results

1+5 I I

2.7 3.2 3.7 8 4.2

FIG. 3. Bifurcation diagram displaying the maximum of the
field amplitude E2 vs the control parameter 8 with a subcritical
Hopf bifurcation emerging near the limit point on the unstable
lower steady-state branch. The parameters are A

&

—1

= A2 —1=a =4, b& =1, b2 =2. The condition hb &a is
fulfilled.

bl b2 (3.1)

For convenience, we define the variables

In this section we analyze the vicinity of the limit point
when the two coupling coefficients are equal but we allow
the pump parameters to be different:

d+ =a&+a&, d=bd l(a~a2), b, =[(d —2d+) —16afaz]'~

In this case the solution of the first-order equations Eqs. (1.10) is

V( T s) =a(s)V&+P&(s)V2 exp(iQ& T)+P2(s)V3 exp(i Q2T)+ c.c. ,

where

V=col(Q„X„Y&,X„Y,),
V& =col(a&a2, 0, ha 2, 0,ba f ),
V2=colI —d +(d +5) /4, iQ&ba2[ —d +(d +b)/2], —2ba, a2[ —d +(d +b)/2],

i Q, ba&[d +(d +b, )/2], 2ba&a2[d +—(d +5)/2]I,
V3=colI —d +(d 6) /4, iQ2b—a2[ —d +(d —b, )/2], —2ba, a2[ —d +(d —b, )/2],

iQ2ba, [d +(d —6)/2], 2ba, a2[d +—(d —b)/2]I,
Qi=d++(d +b, )/2,
Q22=d++(d —b, )/2 .

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

a, =(c,a'+ c,~+a, lP, l'+a, lP, l2+D, )IL,
P„=(F,+F2a)P, /L2,

P2, =(G, +G2a)P2/L3

(3.10)

(3.11)

The various parameters appearing in Eqs. (3.9)—(3.11) are
defined in the Appendix.

Equations (3.9)—(3.11) have three different steady-state
solutions: (i)

Using the second-order expansion in e of Eqs. (1.10) we
get as in Sec. II a solvability condition which will be ex-
pressed as a set of differential equations for the three
slowly varying amplitudes: The condition for a+ to be real can be expressed as a con-

dition on the detuning:

D Dz =—C2/(8a faze, ) . (3.13)

P2=0, a= F, /F2, —
(3.14a)

lP) l'= —(C)Ff —C2F]F2+D [F2)I(+1F2)

This solution exists if and only if (iff)

I

P, =P2=0, a=a+=[ —C2+(C2 4D)c) )' ]/2C—) .

(3.12)
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B, &0, D&D» or B, &0, D&DH, ,

with

DH) =F)(CqF2 —C,F) )/(2g )g2F2) .

(3.14b) O'I =g
)

E—,
—EW', (1+E,),

E2 =E~ W2+ b2E, cos(hp),

Wz =g2 E2—e—Wz(1+Ez ) .

(3.19c)

(3.19d)

(3.19e)

P, =O, a= —G, /G~,

This solution exists iff

(3.15a)
2 2).

B2 &0, D &DHz or Bz &0, D &DH2,

with

(3.15b}

2CiF, —C2Fq —F2(C2 4D, C, —)'i & 0,
2C, G, C2Gz ——G2(Cz 4D1C, )—'i &0 .

(3.16}

The solution (ii) is stable either if

F, &0, 2CF, —CF, &0, B, &0, G, F, —G,F, &0,

(3.17a)

or if

F2 &0, 2C]F) —C2F2 &0, B) &0, G)F2 —62F] &0 .

(3.17b)

Similarly, the solution (iii) is stable either if

G2&0, 2CiGi —C2G2&0, 82&0, GiF2 —62F] &0,

(3.18a)

or if

2 ~ 1 1 2 2 ~ 2 ~ 1 2 2 1

(3.18b)

DH2= Gt (C262 —Ct Gi )/(2g (g2Gq ) .

The linear stability of these solutions is easily determined.
For the solutions (i} we find that a+ is always unstable
whereas a is stable when the two following conditions
are verified:

Unless otherwise explicitly stated, we took }=10 (i.e.,
a=10 ) to adhere to experimental values. All parame-
ters are chosen in such a way that they verify the operat-
ing conditions (1.4). Furthermore, within this range we
selected parameter values that best display the bifurca-
tion structure of the problem. In Fig. 4 we have drawn
three boundaries in the (g„gz) plane. The boundaries
B& and B&& are derived respectively from the equations

&2g g /(g] —gp)~,

&2g g /(g/+gp)

(3.20)

(3.21)

20

2
a~

15-

which are necessary to ensure that the function 6 defined
in (3.2) remains real. These two conditions are sufficient
and necessary for the solution V(T,s) defined by (3.3) to
be periodic. In (3.20) and (3.21) the equality sign defines
the boundaries B& and B&&.

In the domain lying between the axes and the B&

boundary, a numerical study indicates that the upper
branch a of the steady-state solution (3.12) is stable in

the vicinity of the limit point as long as D & DH, ( & DL ).
This branch of steady-state solutions loses its stability via
a Hopf bifurcation when D =DH, and the periodic solu-
tion (3.14a) is stable with frequency 0, above but near to
the Hopf bifurcation.

Between the two boundaries B, and B&& our analytical
treatment is not valid since the Hopf bifurcation is not
near the limit point. Thus there are no analytical results
with which to compare the numerical integrations of Eqs.

Although we did not pursue the calculation further on, it
is worth noticing that when 2C, F, =C2F2 the function

p& undergoes a Hopf bifurcation corresponding to quasi-
periodic solutions of Eqs. (1.10). In a similar way, when
2C& G, =C2G2 the function p2 undergoes a Hopf bifurca-
tion corresponding to a quasiperiodic solution of Eqs.
(1.10) but with another pair of frequencies.

10-

B. Numerical results

In this section we determine some properties of the
complete set of nonlinear equations Eqs. (1.1) which we
write with the normalized variables (1.6)—(1.9) as

0 10 15 g & 20
Og

bp'=8 [(b,E2/E, )+(bzE, /E2)]sin(hp), —

E& =E& W&+b&E2cos(bp),

(3.19a)

(3.19b)
FIG. 4. Stability boundaries for the steady, periodic, and

quasiperiodic solutions.
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tion a is stable if either Vz )0 and D &DH2 ( &DL ) or
V2 &0 and D &DL. However, when V2&0 and D &DH2,
a Hopf bifurcation occurs and the solution (3.15a) be-
comes stable with frequency Qz. When the stable period-
ic regime has been established, a further bifurcation
occurs when V2=0. At this point a quasiperiodic solu-
tion emerges. The boundary V2=0 corresponds to the

2.50

Eg

2.48 -.

2.46 =

FIG. 5. Bifurcation diagram displaying two Hopf bifurca-
tions near the limit point, each emerging from a different
steady-state branch. Parameters are a

&
=0.7, a 2

=6,
b& =b2 =1. The representative point in the parameter space of
Fig. 4 lies between the boundaries B& and B».

(3.19) which show domains of stable and unstable period-
ic solutions. An example of the bifurcation diagram in
this domain is displayed on Fig. 5.

Near but above the boundary 8» the steady-state solu-
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FIG. 6. Bifurcation diagram displaying two Hopf bifurcation
near the limit point, both emerging from the unstable steady-
state branch. Parameters are a& =3, a2=6, b& =b2=1. The
representative point in the parameter space of Fig. 4 lies well
above the boundary B«&. The branch of periodic solutions
which starts nearest from the limit point is first unstable, then
undergoes three changes of stability within the domain
displayed on the figure.
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FIG. 7. The solution of Eqs. (1) for the field amplitude and
phase in the stable quasiperiodic regime. Parameters are a

&
=2,

a 2
=6 b

&

=b 2
= 1, D =2.3 13. The representative point in the

parameter plane in Fig. 4 is slightly above the B&» boundary.
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FIG. 8. Bifurcrcation diagram displaying two Ho f bifurca-
tions near the limit
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stead -s
e imit point, each emerging from d ff

y-state branch. Parameters a = 1.7,
a i erent

are a& = . , a&=6,
, =b, =1. The representative point in the parameter space of

Fig. 4 lies between the boundaries B& and B . N h
i i y etween the small and the large amplitude solutions
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6-

line 8», on Fig. 4. To exemplify the behavior of the solu-
tions in the various domains defined by the three boun-
daries, we have made a vertical

'
hscan in the parameter

plane represented in Fig. 4 along the line Az —1 =a& =6.
n Fig. 6 we give the bifurcation diagram foor a point
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FIG. 9. Stability boundaries in the (a 0)in e a, , ) parameter plane.
e oun ary 3 is the locus of limit points whereas the boun-

daries 1 and 2 are loci
~ ~

a& =20 and b =2.2=
of Hopf bifurcations. Param tme ers are

FIG. 10. T. The evolution of the window (b) of Fi . 9 h
in (a) e=, a =0.001 in (b) and e =0.005 in (c). The other

o ig. wit a=0
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which lies well beyond the B,«boundary. It is seen that
the two Hopf bifurcations are subcritical, leading to un-
stable limit cycles. One of the periodic solutions remains
unstable, whereas the other solution has two domains of
stable periodic solutions at an O(1) distance from the bi-
furcation point. On Figs. 7 we display the field phase and
amplitude in the quasiperiodic regime. On Fig. 8 the bi-
furcation diagram corresponds to a point which lies be-
tween the boundaries B» and B», . The periodic solution
emerging from the unstable branch is unstable and
remains so for the parameter values considered. On the
contrary, a stable periodic solution emerges from the
upper branch near to the limit point and enters a bistable
loop involving a small and a large intensity periodic solu-
tions.

Finally in Fig. 9 we display the stability boundaries for
the solutions of Eqs. (3.19) in the (a f, 8) parameter plane.
The boundaries 1 and 2 are loci of Hopf bifurcation
whereas the boundary labeled 3 is the locus of the limit
point. Our analytical results hold only when the boun-
daries 2 and 3 are close to each other. This occurs in a
domain clearly shown on the figure with a distance be-
tween the two boundaries being of order e . A similar
closeness of the two boundaries occurs for large 8 or
small a, . The domain between the boundaries B& and B»
on Fig. 4. corresponds to the domain where the boun-
daries 2 and 3 are not close to each other.

It is useful to consider how the diagram shown on Fig.
9 depends on the smallness parameter e. Figures
10(a)—10(c) indicate how the domain around the window
labeled b on Fig. 9 evolves as e increases from zero to
0.01. We see that in the limit e~O four loci of Hopf bi-
furcations tend to coincide pairwise and are indeed de-
generate when e exactly vanishes. This is shown in an al-
ternative way on the remaining two figures. On Fig. 11
we set @=0; the nearly horizontal line is the steady state
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FIG. 12. Same as Fig. 11 but with a=0.01.

which is stable for small values of 8. Because e=O there
is also a collapse of the two branches of steady state into
a unique state. It becomes unstable via a Hopf bifurca-
tion. What cannot be shown on the figure is that two
Hopf bifurcations occur exactly at the same point, out of
which one periodic solution is stable and the other is un-
stable. The same phenomenon appears for larger 8 where
two Hopf bifurcations coincide with the limit point.
Here the situation is easier to understand since we have
been able to completely follow the unstable periodic solu-
tion. Finally on Fig. 12 the same situation is considered
but with @=0.01. It is easy to see how a%0 lifts the de-
generacies. First, there are now two steady states and in
both cases the two degenerate Hopf bifurcations are split.
The pair of Hopf which occurred at low 0 are separated,
being each on a different branch. They retain their stabil-
ity properties near the bifurcation point. The pair of
Hopf at the limit point move both on the upper branch of
steady solution. Of this pair the first bifurcation is sub-
critical and restores the stability of the steady state. The
second Hopf is supercritical and leads to stable periodic
solutions and the steady state is again unstable until the
limit point. Note that there is a further change of stabili-
ty far from the Hopf: there also are two critical points
which determine a domain of stable periodic solutions
which merge in the limit e~O. In this case the stable
periodic solution which emerges from the steady state be-
comes unstable to yield quasiperiodic solutions. They
correspond to the solutions of Eqs. (3.10) and (3.11) with

P,AO and P2@0.

4+0 s i e I s i e ~ s I s N ~ ~ ~ s s ~ ~ I e ~ ~ ~ ~ e i ~ s I s s s ~ s ~ ~ s a I s s ~ s s s a ~ s

4.5 4.7 4.9 5.1 5.3 g 5.5

FIG. 11. Degenerate bifurcation diagram for a=0, a
&
=4.5,

aq =20 and b =2.
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APPENDIX

The coefficients of Eqs. (3.9)—(3.11) are

8& =2ba, azd [ —d+ +(b, +d~)/2]

X [2d d + +4a,a zd + —
( d ~+ b, )( 4a 2a ~~ +d 2d + )],

B2=2ba&azd [—d+ +(d —b, )/2]

X [2d d++4a &azd+ —(d —6)(4a~~az+d~d+ )],
C) =a )a2bd+,

C2= —a&a2d (d++a &a2),

D& =2a &a&D

F, =2a,a2d [(d +b, ) /4+2(d'+5)

+(d +b, )d++d ],

F2=a, a2bd [—d++(d2+6)/2]

X[(d +b, )(d+d +2a, a2) —2d d+],

G, =2a, azd [(d —6) /4+2(d~ —g)

+(d —A)d++d2 ],
G2 =a, a2bd [—d+ +(d b,—)/2]

X [(d —b )(d+d +2a &a&)
—2d d2+ ],

L, =a, a2(2a, a2+d d+ ),

L2=a, a2d [b d b(2d d+——d +8a fa22)],

L ~ =a&a, d'[b, 'd'+6(2d'd —d'+8a a )] .
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