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The off-resonant electronic third-order optical susceptibility is derived in the dipole approxima-
tion using the method of averages. These results are studied in detail for the two-, three-, and N-

level model to determine the origin of the susceptibility with symmetry considerations. If the ma-

trix elements are independent, the third-order susceptibility is shown to be maximized in centrosym-

metric structures in the two-level model while, for the general N-level system, weak coupling be-

tween the excited states is also required. To address the interdependence of the matrix elements, a
two- and three-level system is perturbed to make the molecular potential asymmetric or more asym-

metric, and the conditions on the matrix elements for maximizing the third-order susceptibility are
derived. The dependence of the third-order susceptibility on the asymmetry of a harmonic oscilla-

tor and particle in a box are also discussed.

I. INTRODUCTION

Although a two-level model is adequate to understand
the origin of the electronic contribution to the second-
order nonlinear optical susceptibility, ' the third-order
susceptibility can be accurately described only by contri-
butions from several states. Even though the two-level
model is not always applicable, it has been highly success-
ful in qualitatively predicting the experimental observa-
tion that highly polar molecules have the largest electron-
ic second-order susceptibilities. Because of this success,
searches for molecules with large third-order susceptibili-
ties have sometimes neglected the class of centrosym-
metric molecules. It is the purpose of this paper to deter-
mine the origin of the nonresonant electronic third-order
susceptibility by examining the perturbation expressions
for the two-, three-, and N-level models. While we show
in Sec. II that the mathematical expressions for the sus-
ceptibility can be maximized in centrosymmetric mole-
cules, it is not clear that such molecular systems with
those particular dipole matrix elements exist or are al-
lowed to exist within the confines of quantum mechanics.

When only one excited state of a molecule dominates
the third-order susceptibility by strongly coupling to the
ground state, but weakly to all other states, a two-level
model can adequately describe the nonlinear optical
properties. The only two molecular parameters that are
needed to calculate the susceptibility are the transition
moment to the dominant state and the difference in di-
pole moment between the ground state and the dominant
state. For centrosymmetric molecules, the dipole mo-
ments vanish and only one parameter, namely, the transi-
tion moment, controls the third-order nonlinear optical
properties of the two-level molecule. The susceptibility is
then limited only by the oscillator strength of the irnpor-

tant state. As the vast dye literature suggests, a large
range of oscillator strengths is possible. Sections IIA
and III A show that in the two-level model the nonlinear
optical properties are mathematically maximized under
physically reasonable constraints by increasing the oscil-
lator strength. Section III A shows the conditions under
which an asymmetric perturbation of a noncentrosym-
metric molecule causes the susceptibility to increase or
decrease in terms of the unperturbed dipole matrix ele-
ments.

When two excited states are important, the three-level
centrosymmetric system depends on three parameters,
namely, the oscillator strengths of the two states, and the
transition moment between those states. In this case,
when the centrosymmetric molecule is asymmetrically
perturbed, the condition under which the third-order sus-
ceptibility increases or decreases is again given by the un-
perturbed values of the dipole matrix. It is thus useful to
study the effects of perturbations of the two- and three-
level model to determine the important molecular proper-
ties that maximize the susceptibility. In this paper we ex-
amine general molecular properties that result in large
third-order susceptibilities for both nearly centrosym-
metric and highly polar molecules. While certain polar
molecules are shown to have large third-order suscepti-
bilities, the centrosymmetric systems potentially offer the
largest third-order susceptibilities.

II. THEORY

Electric charges are rearranged in the presence of an
electric field, resulting in a distribution that can be ex-
pressed as a series of moments. In the dipole approxima-
tion, the lowest moment P can be expressed as a Taylor
series in the electric field E as
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P, (t) =y', "+x()~'(t)EI(t)+»I)'k'(t}E, (t)E„(t)

+y;'.kI(t)E, (t)Ek (t)EI(t)+ (2.1)

P(2) Jk +tJk(2)(r) (2)( r)
2 j k (2.2)

where r is the coordinate of the polarizable charges. The
polarization vanishes for a centrosymmetric molecule.
Far off resonances, the two-level model of the second-
order susceptibility is of the form'

~(2)~ 2 g (2.3)

where po, is the transition moment between the ground
and excited state and hp the difference in dipole moment
between the excited state and the ground state. A large
second-order susceptibility then results from a large di-
pole change between the important excited state and the
ground state and a large oscillator strength. The general
symmetry argument of Eq. (2.2) is thus consistent with
the two-level model as given by Eq. (2.3).

where the tensor y'"' is the nth-order susceptibility, P;
and E; the ith components of the polarizabi1ity and the
electric field, respectively, and where summation over re-
peated indices is implied.

Symmetry determines the allowed nonlinear optical
processes. For example, the second-order polarization
under the inversion operation P' ' is expressed as

A similar inversion operation for the third-order polar-
ization results in

(3) +ij kl Xij kl"'(r)+ "'(—r)
2 j k I (2.4}

where the polarization vanishes for the antisymmetric
part of the susceptibility. It is thus intriguing to examine
the perturbation expressions for the third-order suscepti-
bility to see if large susceptibilities are possible for cen-
trosymmetric molecules. The perturbation expressions
for the third-order susceptibility are derived in Secs.
II A-II C for the two-, three-, and N-level system and are
evaluated for the centrosymmetric limit to formulate re-
lationships between the dipole matrix elements that max-
imize the susceptibility. We begin with the most general
expression for the third-order susceptibility below.

If the exact form of the Hamiltonian for the charges in
a material system is known, the electric-field perturbed
equations of motion can be solved using time-dependent
perturbation theory if the electric field coupling is weak.
To calculate the nth-order susceptibility, the perturbation
series must also be calculated to nth order in the applied
field. The coeScient of the nth power of the electric field
in this perturbation series is the nth-order susceptibility.
A straightforward application of time-dependent pertur-
bation theory to the third-order susceptibility results in
divergent terms that are due to the slowly varying part of
the wave function. These singularities can be taken into
account by using the method of averages, resulting in

(3)
Xijkl( N&Nl&N2&N3}

8 (x, &„(x,&i &x„& „&x,)„,
4(rt3 ' )+ 2+"3 (Q —N )(Q —co —co )(Q —co —co —co )abc=i Im, n ng c mg c b Ig c b a

&x, &g, (x, ), &x„& „&x,&„,

(Qig+co, )(Q g
—co, —cob)(Q„g —co, ) (Qig+co, )(Q g+co, +cob)(Q„g —co, )

&;) (, & ( &„& )„,+
(Q„+co,+cob+co, )(Q g+co, +cob)(Qig+co, )

(x, ),(x, ), (x„) „(xi)„g (x;)gi(x, )ig(xk)g„(xi)„g
(Qig —N, )(Qig —co, —Nb

—N, )(Q„g —N, ) (Qig+N, )(Qig cob )(Q„g —co—, )

&x;)gi(», &ig&xk &g„&xi&„g &x, &,, (x, &,, (x„&,„(x,)„,
(Q, —co, )(Qig+cob)(Q„g+co, ) (Qig+co, )(Qig+co, +cob+co, )(Q„g+co, )

(2.5}

where x; is the ith component of the position operator,
the indices I, m, n label the states of the system, the
brackets (r)i represent the 1 and m matrix elements of
the position operator, co&, cg2, co3 represent the three fre-
quencies of the incident fields, the barring operation is
defined as x =x —(x ) g (g is the ground state), the Q„'s
are the transition frequencies, the primed sum excludes
the ground state, and 5 is the Kronecker delta function.

I

The outgoing field frequency co is restricted by energy
conservation through the time integral in the perturba-
tion integral and is given by co=co, +co2+co3. Note that
negative frequency values can be substituted into Eq. (2.5)
and are defined to represent outgoing fields (the first fre-
quency argument is the frequency of interest).

While the transition frequencies in Eq. (2.5) are com-
plex, far off resonance the energy denominators are most-
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ly real and damping corrections can thus be ignored. A
more detailed discussion of the effects of damping on
nonlinear optical susceptibilities is discussed elsewhere.

To recast Eq. (2.5) into a simple form, we define Tl'

I

to be the Im n term in the triple sum when all the numera-
tors are unity. Similarly, we define T~„ to be the
equivalent terms in the double sum. The third-order sus-
ceptibility can then be written in the form

Xijkl( ~~~1&~2&~3) g Imn( ~i~l&~2~~3)&x& )gl & Xj ) lm &Xk ) mn &XI ~ng
I, m, n

TI„( m;m(, co2, co3)&x; ) l&x )( &xk )g„&xl &„g
I, n

(2.6)

When all the optical frequencies are well below the
characteristic frequencies of the molecule, the coefficients
TI' „and T~„are almost independent of the optical field

frequencies. These coefficients are then inversely propor-
tional to the product of the energies of the states labeled
by the subscripts. Although TI' „and T~„decrease as a
function of excited-state energy, the matrix elements de-
pend on the properties of the system and can therefore
cause nearly any term to dominate the third-order suscep-
tibility. Because TI' „and T~"„are positive definite in the
off-resonance regime, the two terms in Eq. (2.6) compete,
and the degree of cancellation is determined by the ma-
trix elements.

eters, namely, the transition dipole moment and the
difference in dipole moment between the excited state and
the ground state. Figure 1 shows a plot of the third-order
susceptibility as a function of these two parameters.
When the dipole moment diff'erence vanishes, the third-
order susceptibility is negative and is proportional to the
fourth power of the transition moment. If the transition
moment is small relative to the dipole difference, the
third-order susceptibility is positive and is proportional
to the square of the transition moment and dipole
difference. For a fixed transition moment or dipole mo-
ment difference, the maximum zero-frequency third-order
susceptibilities are

A. Two-level ~(3)— (gx )4
Dp

4
(2.9)

One- and two-dimensional molecules are considered
here for illustration although these expressions can be
easily extended to include three-dimensional systems.
For a one-dimensional molecule, the only nonzero tensor
component of the third-order molecular polarizability is
y„„„„=y''. Equation (2.5) in the limit of a one-
dimensional molecule in the two-level approximation is
given by

y( '= —(x(I, ) [DI(xo( )
—Dp(bx ) ] (2.7)

Dp, Di & 0 (2.8)

and in the limit where all the applied electric field fre-
quencies vanish, D p and D, are identical.

Far off resonance, there are only two adjustable param-
I

where pp( is the transition moment e & x )p(, (where the
position operator is Hermitian) between the ground state
0 and the excited state 1, Ax is the difference between the
expectation value of the excited- and ground-state posi-
tion operator ( & x )» —

& x )~), and where Dp = T'», and
D

&

=T
~ &

~ Far off resonance, the energy denominators are
positive,

and

~(3 I — D (x )4 (2.10)

B. Three-level model

It is useful to consider a three-level model for either a
two-dimensional molecule or for a one-dimensional mole-
cule with two important excited states. The third-order
susceptibility of a one-dimensional system as derived
from Eq. (2.5) in the three-level model becomes

respectively. Note that for a fixed transition moment the
maximum magnitude of positive g' ' corresponds to the
special case where (bx) =2(xpI ) . The largest positive
susceptibility is then limited by the magnitude of the
difference in dipole moment within this constraint. On
the other hand, a centrosymmetric molecule has no
ground-state or excited-state dipole moment, so the nega-
tive susceptibility is limited by the transition moment or
equivalently, the oscillator strength. Thus the maximum
magnitude of the third-order susceptibility in the two-
level model is found in centrosymmetric molecules.

' ——xo( [DIxoI Do(XXI ) ]—Xo2[Dgxo2 —D5(AX2) ] 2D7xo(xo2—+x I2(D6xo( +D4xp2 )

+2x p I Xp2 X I 2 ( D 2 b X ( +D 3 Ax 2 ), (2. 1 1)

where D2 = T2) i, D3 = T', q2, D4 = T2i2, D5 = T2»
D6 =T»„D,= T», D, = T», h~, is the position opera-s d 0

tor expectation value difference between state i and the
ground state, and where x, . is proportional to the transi-

tion moment between states i and j. Note that far off res-
onance, all the energy denominator coefficients are posi-
tive, and in the zero-frequency limit, Dp =D

& D6 =D2
D7 D3 =D4, and D5 =D8. Also y' ' vanishes in the
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(3) (3)
X X

limit when the transition moments between the two excit-
ed states and the ground state vanish.

For a centrosymmetric molecule, the wave functions of
the system are either spatially symmetric or antisym-
metric. A dipole operator will only connect states of op-
posite symmetry, so for a centrosymmetric molecule with
two excited states, the largest negative susceptibility will

correspond to the case where both of the excited states
have the same symmetry, which is opposite to the
ground-state symmetry. In this limit, only the negative
terms survive and the third-order susceptibility reduces
to

X = (D]xp] +Dsxp2+2D7xQ]XQ2 )(3) 4 4 2 2 (2.12)

FIG. 1. The third-order susceptibility, normalized to the cen-
trosymmetric two-level third-order susceptibility, as a function
of transition moment and dipole difference when far off reso-
nance. Note that the centrosymmetric third-order susceptibility
of the two-level model is negative, so, the susceptibility is actu-
ally opposite in sign to the normalized value shown.

As in the two-level model, the maximum value of the
third-order susceptibility is for a centrosymmetric mole-
cule and is a function of only the oscillator strengths. In
the noncentrosymmetric case, terms with both signs ap-
pear in the expressions, resulting in partial cancellation of
the susceptibility.

For the three-level molecule in two dimensions, we
consider the y„„(—:X' ') tensor component of the third-
order susceptibility:

X rp]rpl (D8 0]rpl p~r 1 ~
1 ) 02 02( 8 02 02 Dp~ 2~ 2 ) 9[( 01 02 +( 01 02 ) ]

+ r ]2r ]2(D]rp]rp] +D6rp2rp2 ) +D2( rp2r ]2 b r]rp] + rp] b r ]r ]2r02 ) +D4(r p]r]2 kr 2r 2p + rp2 hr2r ]2r p] ), (2.13)

where r ' is the x; component of r. When the molecule is

centrosymmetric, the only remaining positive contribu-
tion is the fourth term in Eq. (2.13), which vanishes when
either the transition moment between state 1 and 2 is
zero, or when the molecule has only one-dimensional ex-
citations for which the oscillator strength vanishes in all
but one tensor component. To illustrate how this term
can vanish, consider a wave function of the three-level
system that can be written as a product of two wave func-
tions that define excitations polarized in the x and y
directions,

O' N(x, y) =%„(k]x)%'„(k2y) = ~n, , n2 ), (2.14)

where it is assumed that the first three energy levels of
the system (%=0,1,2) correspond to ~n„n2) = ~0, 0),
~0, 1), and 1,0). Here, if the ground state is symmetric
and both excited states are antisymmetric [%](k]x) and
]p](k2y) antisymmetric], the only nonzero elements of the
position operator will be ro, and r~~2.

In the above two-dimensional centrosymmetric system,
the only contribution to the third-order susceptibility in
the three-level model is from the third term in Eq. (2.13).
Here, the two-level terms do not contribute, so a com-
plete description of the third-order susceptibility for this
system requires at least these three levels. Nevertheless,
the third-order susceptibility is again determined by the
magnitude of the oscillator strengths.

N

XNL X X L( ) f(PQ] ' ' ' PQN)
(3) — (3) 2

n=1

+g(P, ]2, . . . , ]M, (]WgWO))+h (bP„. . . , DAN� ),
(2.15)

where X„L'(O,n) is the two-level term including state n

and the ground state, f (pp], . . . , ppN ) is a positive
definite function that depends on the oscillator strengths,
g(]M]2, . . . , p, (i&j %0)) is a function of transition mo-

ments between excited states, and where
h (Ap], . . . , b pN ) is a function of both transition and di-

pole moments and vanishes when all the dipole moments
vanish. All the two-level terms and oscillator strength
functions are negative when the molecule is centrosym-
metric while the competing dipole terms vanish. The
only remaining positive term can be ignored if the transi-
tion moments between excited states are small ~

The extension of the X-level model to include two-
dimensional molecules is straightforward. The four
terms are generalized by including the two vector com-
ponents in all the functions, but the results remain quali-
tatively similar; the competing negative terms are re-
duced in centrosymmetric molecules and can be made
negligible if the transition moments connecting excited
states to each other are small.

C. N-level model III. ASYMMETRIC PERTURBATIONS

In the X-level approximation of a one-dimensional
molecule, the third-order susceptibility is of the form

In the preceding section, the two-, three-, and X-level
models are shown to be maximized when the molecule is
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centrosymmetric and when the transition moments be-
tween excited states are small. Although this is
mathematically possible, it is not clear that there is a re-
lationship between the dipole moment and oscillator
strengths that physically allows the matrix elements to
have these required values. In this section we derive
some simple relationships between the dipole matrix ele-
ments to investigate the conditions when centrosym-
metric and polar systems have large oscillator strengths
that lead to enhanced third-order susceptibilities.

The third-order susceptibility as given by Eq. (2.5) is a
function of the matrix elements of the position operator
x, and the eigenenergies of the molecule E, . When the
system is perturbed by some asymmetric perturbation of
strength e, both the energies and position matrix ele-
ments change. The change in the susceptibility with
asymmetry, By' '(E, , x,~

) /Be, is then given by

By(3)(E, ,x, . ) By( '(E, ,x„.) BE,

Bq(3)(E„x,, ) Bx„+
Bx;J

The partial derivative of the susceptibility with respect to
energies and position matrix elements is directly comput-
ed from Eq. (2.5) while the partial derivative of the ma-
trix elements of the position operator and energies with
respect to the asymmetric perturbation is computed from
perturbation theory as described in this section.

The centrosymmetric two-level model in Sec. III A de-
pends only on one parameter: the oscillator strength.
When the molecule is perturbed with an asymmetric po-
tential, the oscillator strength changes and both the
ground state and first excited state acquires a dipole mo-
ment. In the presence of the perturbation, the new dipole
matrix elements are related to the unperturbed transition
moment po, . It is then straightforward to check if the
centrosymmetric molecule has a maximum third-order
susceptibility relative to the perturbed system. Note that
because the perturbation about the centrosymmetric sys-
tem is necessarily small, this two-level system can only be
used to test whether the centrosymmetric limit is a local
extremum.

For highly polar molecules, the unperturbed two-level
system has large ground- and excited-state dipole mo-
ments. In this more general case two parameters describe
the molecule: the transition moment po, and the dipole
moment difference between the ground and first excited
states p» —poo. This system is perturbed to test the

(3.1)
where V is the perturbation potential. For simplicity, we
will choose the perturbation to be of the form

E,
V(x) = —x,

a
(3.2)

where c is a small parameter with units of energy and
where a has units of length and gives the approximate
size of the molecule.

Using the linear perturbation potential [Eq. (3.2)], the
perturbed matrix elements of the position operator x are

effects of making the system either more asymmetric or
less asymmetric. Because the third-order susceptibility
only depends on transition moments and dipole moment
differences, the relevant relationships between the per-
turbed dipole moment matrix elements depend on the
two unperturbed parameters po, and Ap, .

The two-level model does not always describe the qual-
itative features of the third-order susceptibility. As an
example, it is straightforward to show that the third-
order susceptibility vanishes for a two-level system with
only one two-photon state. By adding a one-photon
state, though, the susceptibility of the three-level system
no longer vanishes because of the coupling between the
two excited states. Unfortunately, as we will show in Sec.
III B, adding this extra excited state greatly increases the
complexity of the asymmetric perturbation calculations
and the results are often ambiguous. While an asym-
metric perturbation causes the susceptibility to change in
a well-defined way in certain limiting cases, the most gen-
eral case of a polar molecule is too complicated to be
treated here. We therefore consider only the three-level
centrosymmetric case when there are only two one-
photon states (Sec. 11181) and when there is one one-
photon state and one two-photon state (Sec. IIIB2).
Even in these highly restricted cases, the perturbed
third-order susceptibility yields a wealth of information.

We use perturbation theory to calculate the perturbed
states and use them to calculate the perturbed matrix ele-
ments of the position operator. If uppercase symbols
denote the perturbed states and lowercase the unper-
turbed states, time-independent perturbation theory
gives

I& &
=

I
&+ g Ik &

& k
I vln &

k(~„) E„—Ek E„—Ek

(k
I
Vlm ) &m I VIn &

(~ ) (En —E()(E. Em)—

(1 xlk)(klxlm )(mix ln )
(E„E(,)(E„E)— —

(
k (W ) «k'(4()-

t&l xl
k' &&kl xl k) &kxlln &

a (, (~„)(, ,(~() (E( E(, )(E„—E(,.)—
&llxlk&&klxln&&n xln&

a g (~) (En Eg )(En E~ )

2
k &~1)

& ~ Ix ll ) (I lx Ik'& & k'lx l~ &

«( E( ){E( E()——
k' (wl) m' (&1)

& t Ix lm' & & m'Ix lk' & & k'Ix ln &

«( E( )(E( E——(3.3)
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These perturbed matrix elements (and energies) can then
be substituted into the two- and three-level models to see
what unperturbed matrix elements give a local extremum
of the third-order susceptibility. The effect of the pertur-
bation on energy is given in Appendix B.

A. Two-level model

We begin by perturbing the centrosymmetric two-level
model. If we call the perturbed transition moments

p,'" =ex, the unperturbed moments p; =ex,", and the en-

ergy differences E; =E; —E, far from resonance when
D ]

=Do the two-level model of the third-order suscepti-
bility to second order in the perturbation becomes

20' x
+2L +0 +~~2L(e) DO x01 p p &

(3'4)
a E)0

where yo
' is the unperturbed two-level third-order sus-

ceptibility. According to Appendix B, the perturbation
of the two-level centrosymmetric system results in an in-
crease in the transition energy. Far from resonance, this
results in an increase in the energy denominator that re-
sults in a decrease in the third-order susceptibility. The
centrosymmetric moleucle is thus locally maximum with
respect to the perturbation.

Now we consider the noncentrosymmetric case. Ap-
pendix A lists all the perturbed transition moments in
terms of the unperturbed moments. Using Eqs. (A6) and
(A7) in the two-level model, Eq. (2.7), and far off reso-
nance (DO=D~ ), we get

~(3) —~(3)+2D (5x4 ~(3))q hx)
a E)o

(3.5)

~ lx"'I &0,
(3)

yo '&0 and bx~ &0 then &0,
(3)

yo' '&0 and b,x, &0 then &0,

yo '&0 and hx& &0 then (3.6)

(3.7)

(3.8)

(The energy shifts from the perturbation will be included
later. ) To check if the third-order susceptibility is larger
or smaller with the perturbation, six cases have to be con-
sidered. Because the term in parentheses in Eq. (3.5) is
usually positive in the far off-resonance region, these six
cases reduce to four as listed below:

X )

FIG. 2. The change of the third-order susceptibility, normal-
ized to the centrosymmetric two-level third-order susceptibility,
of an asymmetric molecule with additional asymmetry as a
function of transition moments and dipole moment differences.
Note that the centrosymmetric third-order susceptibility of the
two-level model is negative, so, the susceptibility is actually op-
posite in sign to the normalized value shown.

when the change in dipole moment is positive. On the
other hand, Eq. (3.9) shows that a negative third-order
susceptibility gets larger with the asymmetric perturba-
tion when the change in dipole moment is negative. Fig-
ure 3 shows an example of the class of polar quinoidal
molecules that have the property that the dipole moment
difference is negative. Large third-order susceptibilities
are then possible in either nonquinoidal molecules in the
limit where the molecule is centrosymmetric or in polar
quinoidal molecules. The energy denominator for the
two-level case in Appendix B is seen to increase with the
perturbation for the nonquinoidal system while it de-
creases for the quinoidal case. For both cases, then, the
effect of the perturbation on energy denominators tends
to reinforce the effect of the perturbation on the numera-
tors.

D D

and

(3)

go '&0 and b,x& &0 then &0 . (3.9)

Figure 2 shows the change in susceptibility as a function
of the initial dipole moment difference and the transition
moment. Note that if the term in parentheses in Eq. (3.5)
is negative the inequalities in Eqs. (3.6) and (3.7) are re-
versed.

From Eq. (3.8), we see that when the transition mo-
ment is larger than the change in dipole moment, so the
third-order susceptibility is negative, then the third-order
susceptibility decreases with an asymmetric perturbation

A A

QUINOID BENZENOID

D = DONOR GROUP A= ACCEPTOR GROUP

FIG. 3. An example of a polar quinoidal molecule and a ben-
zenoid molecule.
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Equations (3.6) and (3.7) describe rnolecules with posi-
tive third-order susceptibilities and, for these molecules,
the opposite is true. When the molecule is perturbed to
make it more polar, a nonquinoidal molecule will have an
increased third-order susceptibility while the quinoidal
molecule's third-order susceptibility will decrease. Note
that if the molecule is so highly polar that the term in
parentheses in Eq. (3.5) becomes negative, the quinoidal
molecule will then have the largest susceptibility if it is
strongly perturbed. For the positive third-order suscepti-
bility, the energy denominators oppose the effects on the
numerator resulting in a smaller change in the suscepti-
bility with change in asymmetry. The systems with nega-
tive susceptibilities should thus have larger susceptibili-
ties than those with positive susceptibilities. From the
two-level model, it is clear that some noncentrosym-
metric molecules can have large third-order susceptibili-
ties. Mathematically, though, the largest possible suscep-
tibility is for a centrosymmetric molecule with a large os-
cillator strength. %ithin this level of approximation it
may be rewarding to study the class of centrosymmetric
materials for large third-order susceptibilities.

B f (x02 0
Be

XO1
if

XP2
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B. Three-level model

1. One-photon states (x&z =0)

Here we will consider the case where both excited
states are one-photon states so x12 =0. Appendix A lists
the perturbed matrix elements that are used in the five
nonzero terms of the three-level model as given by Eq.
(2.11). To first order in the perturbation, Eqs.
(A8) —(A13) result in

~l )0
BE

(3.10)

B I )x12 0,
dE

(3.11)

and

B I
xo1 0

OE,
(3.12)

The sign of the change of x o2 with asymmetry depends on
the energies:

Although the two-level model gives a wealth of infor-
mation about the types of molecules that have the largest
susceptibilities, many materials have more than one im-
portant excited state. The three-level model may be
inadequate for some molecules, but it can take into ac-
count states that are dipole forbidden and can therefore
describe the qualitative behavior of a much larger class of
materials than the two-level model. Unfortunately, the
perturbation expressions grow exponentially in complexi-
ty with the number of states included, so only the cen-
trosymmetric three-level model will be considered here.
Further, the perturbed expressions will be broken down
into special cases where the two excited states can either
be one- and/or two-photon states.

The change in the third-order susceptibility in the
three-level model under the above perturbation can be
computed by considering how the conditions given by
Eqs. (3.10)—(3.13) aff'ect Eq. (2.11). The only two cases
when the asymmetry increases the oscillator strength are
given by Eqs. (3.13c) and (3.13d). If the two excited
states are nearly degenerate, then Eq. (3.13c) requires
that the first excited-state oscillator strength be smaller
than that of the second excited state. Otherwise, the os-
cillator strength of the excited state decreases with asym-
metry.

In the three-level system with two one-photon states,
there is only one term that potentially increases with
asymmetry. The rest of the terms will thus in general
dominate and the asymmetric perturbation will result in
a decrease of the third-order susceptibility. The energy
denominators for this centrosymmetric case increase as
they do in the two-level model and therefore reinforce the
decrease in the susceptibility with asymmetry.

2. One- and two-photon states

In one-dimensional centrosymmetric systems, a three-
level model with a one-photon state and a two-photon
state qualitatively portrays the nonlinear optical proper-
ties of many molecules. The effects of a perturbation on
the third-order susceptibility in the three-level model
with a one-photon state and a two-photon state are arnbi-
guous. Some terms have fixed signs, while others depend
on the energies and transition moments of the unper-
turbed system. Furthermore, the results depend on the
energy ordering of the two states. To clarify the different
cases, the effect of the asymmetry is summarized at the
end of this section. Literature values of transition mo-
ments and energies of a well-studied molecule will be
used to consider the limiting cases of the perturbations.

%hen the two-photon state has the lowest excitation
energy, to order z /a the third-order susceptibility is
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where po = D8X02+D4 X12X()2 is the unperturbed third-order susceptibility.
When the two-photon state is above the one-photon state, the asymmetric perturbation gives

2

2 4
X01X 12

(3.15)

where yo = —D1xo, +D6x 12X01 is the unperturbed(3)— 2 2

third-order susceptibility.
Equations (3.14) and (3.15) can be evaluated for physi-

cally reasonable energy levels and transition moments to
see if the centrosymmetric limit is a local maximum.
This depends on the sign of the susceptibility of the un-
perturbed system. %'hen the two-photon state is lower in
energy than the one-photon state, the sign will be deter-
rnined by po = D8X02+D4X12X02 and when the two-(3)— 4 2 2

photon state is of higher energy, the sign will be deter-
mined by yo = —D1x01+D6 X12X01~ We will thus con-(3) 4 2 2

sider the perturbation of both the positive and negative
third-order susceptibility in the zero-frequency limit
where the energy denominators are as defined following
Eq. (2.11).

Far off resonance, the energy denominator coefficients
in order of decreasing value are as follows: Do =D

i
=k/

and D5 =D8 =k/Ezo. Note that the constant of propor-
tionality k is the same for all these coefficients. Setting
this constant to unity is equivalent to redefining the sys-
tem of units. In the off-resonance limit, we will consider
the following two cases where: (1) the transition moment
to the one-photon state is much larger than the transition
moment between the two excited states so that the unper-
turbed susceptibility is negative; (2) the transition mo-
ment to the one-photon state is much smaller than the
transition moment between the two excited states so that
the unperturbed susceptibility is positive.

When the transition moment to the one-photon state
dominates, the largest terms will be of order x 0,-

E10

E20

12 E10
17 E 17

(3.16)

where the term in square brackets is negative only in the
interval

6—&2 +io 6+&2
17 E20

Similarly, Eq. (3.15) to lowest order in xo2/x, 2 is

(3.17)

(i = 1or 2). This corresponds to the first two terms in
both Eqs. (3.14) and (3.15). The energy denominator
coefficients of these terms are larger than the coefficients
of the other terms. Because the unperturbed susceptibili-
ty is negative, these two terms will result in a decrease in
the magnitude of the susceptibility with asymmetry. In
these cases, the transition energies to the ground state
from both excited states also increase with the asym-
metric perturbation as given by Eqs. (82) and (B3). Be-
cause these energies appear in the denominator, the per-
turbation results in a further decrease in the susceptibili-
ty. In these two cases, the third-order susceptibility is
again maximal for the centrosymmetric system.

In the case when the transition moment between the
two excited states dominates the transition moment to
the one-photon state, go

' will be positive. Using the off-
resonant energy denominators as defined above, Eq.
(3.14) to lowest order in xo2/x, 2 is

x'x4
(3) (3)+ 17

C 02 12

2 E2+3+2

2
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IV. EXAMPLES OF SOME SYSTEMS

where the term in parentheses is positive definite.
For the case when the two-photon state is below the

one-photon state and the transition moment between the
excited states dominates, the nonperturbed positive sus-
ceptibility gets smaller when asymmetrically perturbed
under the constraint of Eq. (3.17). Because the energy-
level spacings decrease with energy in typical systems,
the condition of Eq. (3.17) will not be obeyed and the sus-
ceptibility will become more positive with the perturba-
tion. The magnitude of the third-order susceptibility will
thus increase with asymmetry. Similarly, when the two-
photon state is of higher energy, the third-order suscepti-
bility always becomes more positive with perturbation.
So, in the three-level model, an asymmetric perturbation
will generally increase the magnitude of the susceptibility
if the transition moment between the two excited states is
large enough to make the unperturbed susceptibility posi-
tive.

In calculating the change in the susceptibility in the
three-level model with one- and two-photon states, the
perturbation of the energy denominators was not ac-
counted for. As we saw above, if the coupling between
excited states is weak, the centrosymmetric case is maxi-
mal even when the effects of the energy denominators are
included. In the other limit, when the transition moment
is large between the excited states relative to the transi-
tion to the one-photon state, the energy of the second ex-
cited state increases while the energy of the first excited
state decreases. Both these terms then partially cancel.
Furthermore, the change in the susceptibility from the
energy denominators tends to be smaller than that from
the transition moments. The dependence of the suscepti-
bility on asymmetry as given by Eqs. (3.16) and (3.18) is
qualitatively correct and the susceptibility will usually in-
crease in magnitude with the perturbation.

For the two-level model and the three-level model with
two one-photon states, we see that in most cases the cen-
trosymmetric systems have the maximum susceptibility.
One important exception was the quinoidal systems,
where the asymmetry enhances the susceptibility. While
the asymmetric class of molecules has been extensively
studied, the calculations presented here suggest that the
class of centrosymmetric molecules has large, negative
third-order susceptibilities and may be of potential im-
portance. The possibility of synthesizing molecules with
large negative third-order susceptibilities is attractive for
device applications where intensities are often high
enough to cause catastrophic self-focusing events in posi-
tive g' ' materials.

perturbation under certain initial conditions. Experimen-
tally, an organic molecule can be perturbed by adding a
pair of donor-acceptor groups on opposite sides of the
molecule. At first thought, a possible experiment to test
these results, then, would be to compare the nonlinear
optical properties of a centrosymmetric molecule like
benzene to a di-substituted benzene. This comparison,
though, is not useful because the di-substitution affects
the benzene molecule strongly.

A much more useful comparison would be between
three molecules with two having acceptors or donors on
both ends and comparing them to the asymmetric form
with the donor on one end and the acceptor on the other
end. These comparisons may also be dubious if the asym-
metry is too large. Unfortunately, both theoretically and
experimentally determined molecular susceptibilities are
not currently accurate enough to test the detailed behav-
ior of the susceptibility under perturbation. Molecules
with large susceptibilities, though, can be synthesized by
using some of the qualitative results presented here and
large susceptibilities can be partially understood in terms
of the centrosymmetry concepts. Two common systems
that can be calculated exactly are the particle in the box
and the harmonic oscillator. These two cases are dis-
cussed in Sec. IVA to show that the concept of cen-
trosymmetry holds in these N-level models. In Sec. IV B
the matrix elements and energies of octatetraene, as cal-
culated by other workers, are used in the perturbation ex-
pressions to show cases where the asymmetry increases
the susceptibility.

A. Harmonic oscillator and particle in a box

In this section we perturb the N-level model of a parti-
cle in a box and a harmonic oscillator by applying Eq.
(3.3) and Eq. (Bl) to the analytic expressions for the wave
functions. To ensure that all important levels are includ-
ed, the convergence of the third-order susceptibility is
tested by successively including more excited states till
the change in the susceptibility is much smaller than the
amount of perturbation. These convergence plots are
shown in Fig. 4.

The harmonic oscillator results in a positive suscepti-
bility. The two-level model incorrectly predicts a nega-
tive susceptibility because energetically higher-lying
states with large transition moments dominate and must
be included. Here, all the two-level terms of the N-level
model above the first excited state are dipole disallowed
and vanish, resulting in a positive susceptibility. Never-
theless, if the system is perturbed by an asymmetric po-
tential, the magnitude of the susceptibility decreases.
The particle in a box, however, has a negative susceptibil-
ity. Here, the N-level model results in nonvanishing
two-level terms for states with negative parity and the re-
sulting third-order susceptibility is negative. In both
cases, though, the asymmetric potential causes the mag-
nitude of the susceptibility to decrease.

B. trans-octatetraene

The above calculations show some of the relationships
between dipole matrix elements that allow the suscepti-
bility to be maximized in the presence of an asymmetric

One conjugated molecule that has been studied exten-
sively for its third-order nonlinear optical properties is
trans-octatetraene. ' The two most important energy
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TABLE II. The change in the third-order susceptibility as

given by Eq. (3.15) (term by term) using the dipole matrix ele-

ments and transition energies of the two dominant states in

trans-octatetraene as calculated by Heflin and Soos from Table
I.
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FIG. 4. Convergence of the third-order susceptibility, nor-
malized to the centrosymmetric two-level third-order suscepti-
bility, of the particle in a box (top) and the harmonic oscillator
(bottom). Note that the centrosymmetric third-order suscepti-
bility of the two-level model is negative, so, the susceptibility is
actually opposite in sign to the normalized value shown.

TABLE I. Dipole matrix elements and transition energies of
the two dominant states in trans-octatetraene as calculated by
Heflin and Soos.

Energy or
matrix element Heflin Soos

Eol (eV)

xol (Debye)
Eof, (eV)

x l6 (Debye)

4.41
7.8
7.2

13.2

4.5608
8.454
7.2713

14.362

levels and transition dipole moments as calculated by
HeAin et al. and Soos and Ramasesha' are summarized
in Table I. Both sets of results are consistent with each
other. HeAin and co-workers have shown that these two
states dominate the third-order susceptibility. This sys-
tem is therefore a good approximation to a three-level
model with a two-photon state at higher energy than the
one-photon state. The unperturbed system has a larger
transition moment between the excited states than from
the ground state to the one-photon state. The unper-
turbed third-order susceptibility is positive and our
three-level model predicts that this system should have a
larger susceptibility if asymmetrically perturbed.

To check this numerically, the transition moments and
energy levels from Table I are used to evaluate Eq. (3.15).
The value of each term of Eq. (3.15) is given in Table II.

For both sets of results, the magnitude of the susceptibili-
ty increases with the perturbation. An asymmetric form
of this conjugated system, then, should have a larger sus-
ceptibility. This is consistent with results of Garito and
co-workers, whose calculations show that highly polar
versions of this molecule have large third-order suscepti-
bilities. "

Noncentrosymrnetric molecules can therefore possess
substantial negative susceptibilities if both the transition
moments between all the excited states are small and the
asymmetry is small, or, when the transition moments be-
tween excited states are large. Although the competing
terms are reduced in this polar case, the two-level terms
of the N-level system are not always optimized. Further-
more, some of the "noncentrosyrnrnetric" terms have
indefinite sign, and must be determined on a case-by-case
basis. Large negative susceptibilities can therefore be ob-
tained in some asymmetric structures by maximizing the
asymmetry. Unfortunately, the competing positive terms
are always present, and minimizing these effects may be
difficult in real systems unless there are some unknown
underlying relationships between the matrix elements
that result in fortuitous cancellations of these terms.

V. SUMMARY

For the two-level centrosymmetric case, the nonper-
turbed molecule has the largest susceptibility. For a
highly asyrnrnetric molecule, the susceptibility increases
with perturbation when the nonperturbed susceptibility is
negative and the molecule is quinoidal (hx, (0). When
the unperturbed susceptibility is positive, a nonquinoidal
system (hx, )0) will also show an increase in the suscep-
tibility with asymmetry.

While the three-level model has many cases to consid-
er, only the centrosymmetric systems are evaluated.
When there are two one-photon states, the centrosym-
metric molecule will have the largest susceptibility. With
both a one- and a two-photon state, the centrosymmetric
molecule will have the largest susceptibility when the
transition moment between the one-photon state and the
ground state is large compared with the transition mo-
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TABLE III. Summary of effects of perturbation on y"'.
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ment between excited states. In the limit where the
excited-state transition moments dominate, the suscepti-
bility usually increases with asymmetry. This was shown
for trans-octatetraene. Table III summarizes these cases.

VI. CONCLUSION

The two-, three-, and N-level models were derived for
the of-resonant electronic third-order optical susceptibil-
ity. The magnitude of the susceptibility in the two-level
system was shown to be maximal for centrosymmetric
structures with large oscillator strengths and for three-
and N-level systems with the additional criteria of weak
coupling between the excited states. Although large-y' '

requires a large dipole diference between the ground and
excited states, g' ' does not have the same constraint and
can be large when all dipole moments vanish. The har-
monic oscillator and particle in a box are examples of
centrosymmetric potentials that lead to maximal positive
and negative susceptibilities, respectively.

When the third-order susceptibility of the two-level
model is perturbed, the centrosymmetric system always
has the maximum value of the third-order susceptibility.
The asymmetric system, however, has a large susceptibili-
ty when the molecule is quinoidal and asymmetric. In
the three-level model, strong transition moments between
the excited states result in large susceptibilities for the
asymmetric systems while the other cases favor the cen-
trosymmetric molecules.

The purpose of these calculations is to gain qualitative
insight into the nature of the states that contribute
strongly to the third-order susceptibility. Owing to the
complexity of the system, we did not go beyond the cen-
trosymmetric three-level model. Because the three-level
model qualitatively describes the important features of
the contributions to the third-order susceptibility, and
systems with two dominant excited states can account for
most of a system's susceptibility, it would be instructive
to consider perturbations of the three-level model of
highly asymmetric systems. This would undoubtedly
lead to a wealth of information.

Another simplification in our calculation is the linear
approximation to the perturbation. In real systems with
strong donors or acceptors, the induced asymmetry can-
not be expected to be of such simple form and should be a
power series of the position operator, g, a, x '. Again, the
complexity of doing this is beyond the scope of this work.

The qualitative results obtained here are useful to help

understand the origin of the third-order susceptibility
and should serve as a guideline for the synthesis of new
materials. Preliminary results show that the centrosym-
metric squarylium dyes potentially have some of the larg-
est molecular third-order susceptibilities as measured
with quadratic electro-optic modulation. These results
will be presented in a future publication. '
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APPENDIX A

In this appendix the perturbed matrix elements of the
position operator are expressed in terms of the unper-
turbed operators. The perturbing potential is of the form

E,
V(x) = —x

a
(A1)

as defined in the main text. Here, the relevant perturbed
matrix elements are given for the centrosymmetric two-
level model, the noncentrosyrnmetric two-level model,
and the centrosymmetric three-level model.

The variables are defined below:

x,, =(i~x~j),

x, =&i x~i),
AX; =X, Xo

(A2)

(A3)

(A4)

and

Eq —E; Ej (A5)

1. Two-level noncentrosymmetric case

We have

2 2 2
c. Xoi c. Xoi

EX ) =AX)+4— —5 AX)
E)o a E

(A6)

and

q AX,

10

2

[xo, —(bx, ) ] (A7)

where x is the position operator and E, the energy of
state i.
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2. Three-level centrosymmetric case APPENDIX B

We have

E,
x =2

11

E,x —222

2
Xp1

a E,o

2
Xo1

E1o

X 12

E

x — 200

2
XO2 X01X12X02+ +6
E2o a E20E 10

2X 12 g Xp1X 12Xp2—6
2 7

E21 a E21E10

2X p2 g Xp1X 12Xp2+6
E2o a E2, E2o

(A8)

(A9)

(A10)

2 X
E„' =E„+—x„„+

k (~n) n k

(B1)

For the most general three-level system, the energy
differences between states (E; =E, EJ )

—
t. o second order

in the perturbation are

In this appendix we relate the perturbed second-order
energies E to the unperturbed energies E;,

e E21 —E2o
X p1 Xp1 X02X 12

E21E20

01 20 21 2 2
X 01+

a E1o E20E21 E 10
(A11)

2X 12
2 2X 01 X 02

E10=E10+ AX1 +
2

2 +
a a E 1p E2p E21

(B2)

E21+E10
02 02 a E21E1o

xp2 E10—E
+ (X 111

a E20 E1pE21

2
XO2

E (A12)

20
= 20+ Ax + +2 +

a E1o E2o E21
20 20 2

and

E~, =E~o+ (hx~ ——hx, )

(B3)

and

2X 12

E, X01X02
x 12 =x12+ —

E (E20+Elo)
20 10

E X 12 20+ 10

2E E E ( 01- 02)-E
21 20 10 21

(A13)

2

a

X X X01 + 02+2 12

E1o E2o E21
(B4)

Note that in the centrosymmetric case, the energy correc-
tion is second order in the asymmetry factor c,.
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