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At low intensities the rate of two-photon transitions in an atom driven by parametrically down-
converted light may be linear in intensity. Such a violation of the usual perturbative law arises from

strong correlations between pairs of photons.

With recent advances in the generation and detection
of antibunched,! sub-Poissonian,? and squeezed3 light,
the issue of how nonclassical radiation fields interact with
atoms* becomes relevant. In this paper we consider a
two-photon transition driven by parametrically down-
converted light. Although such a transition is inherently
a nonlinear process, we demonstrate a surprising result:
at low intensity the high degree of photon correlations
may lead to a transition rate which is linear in intensity.

In degenerate parametric down-conversion a nonlinear
crystal transforms part of the incident light to light with
twice the original wavelength, as if incident photons were
split into pairs with half the energy. The down-converted
light correspondingly exhibits an unusual degree of corre-
lation, in that detection of a photon at one point in
space-time may enormously enhance the probability of
detecting its “twin” at another definite space-time loca-
tion.” We shall assume that, by focusing or otherwise,
the photons of a correlated pair are brought at the same
time onto a three-level atom (Fig. 1) whose two-photon
transition frequency nearly matches the frequency of the
original light.

We may gain a qualitative understanding of the ensu-
ing unusual behavior by contrasting the interaction of the
three-level atom with ordinary coherent light and with
light generated by parametric down-conversion. If the
atom interacts with coherent light tuned to the two-
photon resonance, the two-photon transition rate may be
estimated as the rate of excitation from the (virtual or
real) intermediate state times the probability that the
atom is in the intermediate state. Since at low intensity
both of these quantities are proportional to the intensity,
we obtain the usual quadratic dependence of two-photon
rate on intensity. On the other hand, with the parametri-
cally down-converted light the excitation is accomplished
in a single step: one photon of the pair promotes the
atom to the virtual intermediate state, while its twin im-
mediately (in a time less than the virtual-state lifetime)
completes the two-photon transition. We may estimate
the two-photon transition rate as the probability of exci-
tation by a photon pair (independent of intensity) times
the rate of arrival of photon pairs (proportional to inten-
sity). The rate should be linear in intensity.

As a preamble to a more quantitative model we re-
call®” the response of the three-level system (Fig. 1) to
light in the Heisenberg picture using perturbation theory
in the light intensity. The two well-known routes® from
the ground state O to the excited state 2 can be isolated.

(i) One route is the two-step process, in which the field
first promotes the atom to the intermediate state 1 and in
the second step to the excited state 2. We mimic this se-
quence also in the calculations. When the field correla-
tion time is much shorter than the inverse of the detun-
ings, the two-step rate is given by
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Here d, and d, are the dipole-moment matrix elements
of the transitions 0—1 and 1—2, and T is the decay rate
of the population of state 1.

(ii) The other route is the two-photon process, which
proceeds via the coherent superposition of states O and 2.
The two-photon rate is
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FIG. 1. Schematic of the three-level system under the two-
photon excitation by down-converted light. The figure illus-
trates the two-photon (8) and intermediate-state (A) detunings,
and population decay rates of the intermediate state (I') and of
the final state (y).
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where y/2 is the decay rate of the superposition of the
states O and 2, §=2w —w,; is the detuning of the unsplit
photons from two-photon resonance with the transition
0—2, and A=w—wyy Iis the detuning from the
intermediate-state resonance. £ *(r 1,t) are the positive-
and negative-frequency components of the quantized
electric field, in which the dominant time evolution
exp( Fiwt) at the average down-converted frequency w
has been factored out at the outset.
The most familiar four-field correlation function

GH(r,t;r',t")=(E ~(r,n)E ~(r',t"E T(r',t"hE *(1,1)) ,
(3)

essentially the joint probability that two detectors placed
at r and r’ will record photon counts at times ¢ and ¢',°
does not always suffice to predict the two-photon transi-
tion rate. In fact, we need a more general correlation
function. As even G'? already is a highly nontrivial ob-
ject for spontaneously down-converted light,'" 2 we
shall resort to heuristic modeling of the field correlations.

First, the spectrum of down-converted light may be
quite broad. 13 Accordingly, the Fourier transform of the
spectrum, i.e., the two-field correlation function
(E (1,1, )E *(r,t,)),° decays from its value E? at
t,=t, on a time scale |t, —t,| ~7 that is henceforth tak-
en to be the shortest time scale of the problem. We write
a qualitative ansatz valid inside time integrals,

(E ~(r,t)E T(1,t,))=7E%(t,—1,) . @)

Next, the photon density of the electromagnetic field
with intensity I =ce,E%/2 is conveniently defined as
€E?/2%io. We may thus regard (€,/2%0)’G'? as the
joint probability density for two photons. Corresponding
to the notion of a photon pair, we define a coherence area
A in the plane perpendicular to the direction of propaga-
tion of light and a longitudinal coherence time 7, such
that if one photon is detected at (r,t), then its twin re-
sides in a volume Act, surrounding (r,z). In terms of
one- and two-photon densities, we have the estimate'? !4
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where the integrand is assumed effectively nonzero over
the coherence time and area only. Since the four-field
correlation function inside the integral falls off at the
temporal and spatial scales |t —¢'| ~7,, [r—r'|~ 4172 it
should have a maximum of the order (E*iw)/(ceyAT,)
atr=r', ¢t =t'. Accordingly, we set up the following “‘top
hat” model for G'?":
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0 otherwise .

(6)

The final element required to characterize the light
field is the factorization of the four-field correlation func-
tion into a product of two-photon amplitudes, valid in the
neighborhood of the peak, !°
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Comparison of (3), (6), and (7) now fixes the form of the
two-photon amplitude to within a position- and time-
dependent phase factor. With the further assumption
that the phase does not vary in time on a scale shorter
than 7., we obtain a model analogous to (4) for the two-
photon amplitude,
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Here we assume that 7. is a short time scale relative to
the atomic response. ¢ is a phase that will shortly cancel.

Inserting (4), (7), and (8) into (1) and (2), we obtain the
total transition rate as a sum of two-step and two-photon
contributions,
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The intermediate-state detuning A is absent from (9), as
expected from our assumption that A7 <<1. Our argu-
ment was based on the top hat shape (6) for G, argu-
ably the simplest quantitative model of the experimental
fact that two detectors record an essentially perfect
correlation of photon counts when placed in appropriate
field positions. Other choices such as a Gaussian shape in
space and time of G'*’ would have simply altered the nu-
merical factors in (9). Here and below we choose the one-
and two-photon correlation times equal, 7=r1_, i.e., we
assume that 7, is determined by the bandwidth of the
down-converted light. !>13

According to (9), at low intensities the two-photon rate
linear in I dominates. If the decay rates I' and y are
equal, at exact two-photon resonance (6=0) the cross-
over to the conventional I* law occurs at I, =#w /7 A.
This condition corresponds to a photon density such that
two uncorrelated photons are likely to be found inside a
coherence volume.

There are two criteria which must be met in order to
experimentally observe the effect as we have described it.
First, we require an appropriate two-photon transition,
i.e., one with a nearly resonant intermediate state. For a
correlation time of 100 fs,” an intermediate state detun-
ing of less than 50 cm ™! is necessary. The second cri-
terion involves the two-photon rate in the linear regime.
The relevant figure of merit is the transition rate at the
crossover intensity I.. If we again assume two-photon
resonance (8=0) and take the two decay rates ¥ and I to
be equal, then the linear rate at I, is
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For a numerical example we consider collinear phase
matching at degeneracy, !> in which case the original and
the down-converted light essentially copropagate. It
seems reasonable to assume that the coherence area 4 is
determined solely by the subsequent focusing of the
down-converted light, i.e., 4 equals the area of the
focus.!! Suppose that the down-converted light is fo-
cused to a Gaussian waist w, (1/e? radius of intensity)
giving 4 =mw3, then the focal volume is given by the
area times twice the Rayleigh range,
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Illuminating a gas of atoms at density n (assuming all
atoms are two-photon resonant) which have the generic
matrix elements dy, =d;, =ea, (a, is the Bohr radius)
and the decay rates
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we expect a total number of transitions per unit time
within the focal volume

2 En
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where a denotes the fine-structure constant and Ej is the
Hartree energy. Quite surprisingly, if the focus sets the
coherence area, the maximum achievable linear excita-
tion rate of the entire atomic sample (atoms per second) is
independent of the focal volume: a smaller focal volume
is compensated for by more transitions per atom. !> For a
density of n =102 cm ™3, the rate is approximately 10°
s~ !, and should be readily observable using photoioniza-
tion detection.

Our example produces another surprise, too: the
down-converted power corresponding to the crossover in-
tensity I, A varies inversely with 7, but is independent of
A and thus of focusing. For light of wavelength A=1 um
and correlation time 7=100 fs, we require approximately
2X107% W. Parametric oscillators'® can provide the re-
quired power, but their large coherence times are likely
to prove prohibitive. Pulsed experiments'>!” have
demonstrated correlation times as short as 200 fs and
peak powers as high as 1 MW. Moreover, a conversion
efficiency approaching 1072 may be obtained via para-
metric amplification following the spontaneous paramet-
ric emission, and the correlations between twin photons
are preserved in the process.'> Unfortunately, the small
duty cycle of pulsed experiments degrades the effective
total transition rate. As it comes to continuous-wave ex-
periments, nonlinear crystals can spontaneously down-
convert with typical efficiencies of 10~7. Hence about 10
W of pumping light is needed to generate 1 uW of down-
converted power.

The special importance of the statistical properties of
the light used to drive a two-photon transition is, of
course, well known.!® For instance, the transition rate
for chaotic light is twice that for coherent light; larger in-
tensity fluctuations simply give a larger mean value of the
square of the intensity. The dependence of the transition
rate on average intensity remains quadratic, however.
An experiment to demonstrate the linear intensity depen-
dence of a two-photon transition rate in parametrically
down-converted light would at this writing be the first
observation of qualitatively new physics resulting from
quantum correlations in the light driving atomic transi-
tions. Moreover, such an experiment appears feasible
with the present state-of-the-art technology.

Note added. After the present paper was originally
submitted, Julio Gea-Banacloche!® pointed out that the
two-photon absorption rate in a low-intensity squeezed
vacuum is linear in intensity. As the squeezed vacuum is
a superposition of even photon number states and the
photons therefore occur in pairs, his result evidently is
closely related to ours.
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