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The relativistic transform of electromagnetic fields and inductions in a nonlinear medium is stud-
ied theoretically, within the framework of classical electrodynamics. A covariant formulation of the
electrodynamics of nonlinear media is presented. This theoretical formulation is of particular
relevance to periodic systems since the spatial symmetries of a given medium, which determine most
of its linear and nonlinear electromagnetic properties, as described by group theory are not con-

'V

served by the Lorentz transform (space-time symmetry). The Cerenkov radiation process is treated
as an example in the rest frame of the interacting electron; it is found that in this case the linear re-
fractive index of the dielectric medium becomes anisotropic and exhibits a singularity at the usual
Cerenkov radiation angle.

I. INTRODUCTION

The interaction of electromagnetic waves with matter
can be described according to two different theoretical
formulations. ' On the one hand, the electromagnetic
properties of the medium may be defined by introducing
relations between the fields and the inductions; this ap-
proach is usually referred to as the Minkowski formula-
tion. ' Generally, these so-called constitutive relations
are nonlinear. The other formulation describes the reac-
tion of the medium to the electromagnetic waves in terms
of an induced four-vector current density. As long as the
theoretical analysis of the interaction of electromagnetic
radiation with matter is performed in the rest frame of
the medium under consideration, these two formulations
are equivalent. However, whereas the four-vector
current-density approach can lead to a covariant descrip-
tion of the electrodynamics of nonlinear media, the rela-
tions between fields and inductions become very compli-
cated in any reference frame where the medium is not at
rest. This is particularly true in the case of a nonlinear
medium. Still, it should be noted that in the rest frame of
the medium the constitutive relations describing its elec-
tromagnetic properties, which are generally derived from
quantum mechanics and group theory, directly reflect the
underlying spatial symmetries of the medium and there-
fore are usually the preferred formulation in classical
nonlinear optics. In the relativistic case, the diSculty
arises from the fact that the Lorentz group conserves
space-time symmetries rather than spatial symmetries.
For example, it is possible to transform a tetragonal lat-
tice into a cubic one through the Lorentz transform; a
spin-polarized relativistic electron beam with the right
energy will be sensitive to the magnetic phase transition
corresponding to this relativistic symmetry effect, and
spin-resonance phenomena should result from such ex-

'V

periments. Similarly, the Cerenkov radiation' process in
a linear, isotropic dielectric, which is studied in this pa-

per, can be viewed in the rest frame of the interacting
electron as resulting from a singularity of the anisotropic
refractive index of the medium for electromagnetic waves
propagating at the Cerenkov angle.

The purpose of this paper is to compare these two ap-
proaches and to describe the electromagnetic properties
of nonlinear media in any Galilean reference frame. ""
This theoretical formulation is particularly relevant to
relativistic nonlinear media such as free-electron lasers, '

astrophysical plasmas, ' and Cerenkov devices, ' and to
such experiments as the probing of magnetic lattices with
spin-polarized beams. In addition, by studying the same
phenomenon from different frames of reference, we can
gain some insight about the physics underlying elec-
tromagnetic phenomena. Finally, it is worth noting that
within a relativistic description, nonlinear effects can cou-
ple the electric field to itself, but also to the magnetic
field, and that one can consider magnetic nonlinearities.

This paper is organized as follows. In Sec. II we briefly
review the general terms of the two formulations dis-
cussed above. In Sec. III we review the relativistic trans-
form of the relation between fields and inductions in a
linear, isotropic medium and we make use of these rela-
tions to describe the Cerenkov radiation process in the
rest frame of the interacting electron. The alternative
induced-source formalism is studied in Sec. IV in the case
of a linear, isotropic medium. Section V focuses on the
relativistic transform of nonlinear susceptibilities, de-
scribed by the four-vector current density. Finally, in
Sec. VI, conclusions are drawn.

II. THEORETICAL BACKGROUND

In this section we first briefly review the definition of
the fields and inductions, within the context of Maxwell's
equations. The electromagnetic interaction is character-
ized, in the classical theory, by the electric field E and the
magnetic field H. The corresponding electric and mag-
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netic inductions are D and 8, respectively. Maxwell's
equations are conventionally separated into two groups.
The first group, also called source-free group, corre-
sponds to

V XE+8,B=0,
V 8=0 (2)

and the second group is described by

VXH —B,D=j,
D=p

(3)

(4)

Here, j =(cp, j) is the four-vector current density.
Maxwell's equations combine the fields and inductions;
the additional relations between the fields and inductions
in vacuum are

D = t.pE,

B=ppH,

(5)

(6)

where the permittivity ep and the permeability pp of free
space are related to the speed of light in vacuum through
the well-known equation

6'p @pc = 12=

We now consider the interaction of electromagnetic
waves with a nonlinear medium, in the absence of exter-
nal fields. Two equivalent descriptions are available. In
the first approach, we consider Maxwell's equations with
no source term (p=O, j=0) and describe the electromag-
netic properties of the medium through its constitutive
relations. We have the following set of equations:

V D(E,H)=0,
V B(E,H)=0,
V XE+B,B(E,H) =0,
VXH —B,D(E,H)=0 .

(10)

(12)

(13)

Here, F and H represent the incoming electromagnetic
wave and D and 8 represent the reactions of the non-
linear medium; the sources are integrated into the induc-
tions. Equations (10)—(13), together with the constitu-
tive relations (8) and (9), describe electromagnetic phe-
nomena within the framework of the so-called Min-
kowski formulation.

In the second formulation, we consider Maxwell's
equations in vacuum, and we describe the nonlinear reac-
tions of the medium through source terms. The constitu-
tive relations are those of a vacuum, and we now have

It should be noted here that in classical electrodynamics
the vacuum is a linear, isotropic medium. In QED, vacu-
um nonlinearities appear at the energy threshold for ee
pair creation. In a medium, the most general relations
are nonlinear and anisotropic:

V e&E=p(E, H),
V @OH=0,

V XE+p&B, H =0,
VXH —e,B,E=j(E,H) .

(14}

(16}

D=D(E,H),
B=B(E,H) .

(8)

(9)

Here we allow the possibility of coupled nonlinear elec-
tric and magnetic efFects, since relativity requires an
equal treatment of electric and magnetic phenomena. In
the low-field limit, one can expand the above expressions
in a Taylor series and take into account lower-order non-
linearities only; the corresponding polynomial coefficients
are the nonlinear susceptibilities. In the rest frame of the
medium, these constitutive relations are determined by
the structure of the medium at the atomic scale and by its
spatial symmetries. The nonlinear susceptibilities can
thus be derived from quantum mechanics and group
theory; they are generally tensors and describes the mac-
roscopic electromagnetic properties of the nonlinear
medium. The nonlinear susceptibilities are semiclassical
in the sense that they are averaged over a large number of
atomic systems, as optical wavelengths are generally long
compared to typical lattice scales.

It is important, however, to note that the constitutive
relations are clearly frequency dependent and that, in ad-
dition, the most general relations are nonlocal in charac-
ter, as specified by the Kramers-Kronig relations, ' ' and
can be described only through space-time integrals.
Here, we make the implicit assumption of steady state,
and we assume that the relations between the fields and
the inductions can be satisfactorily described by quasilo-
cal expressions.

III. LINEAR ISOTROPIC MEDIUM:
MINKOWSKI FORMULATION

Here we study the basic interaction of electromagnetic
waves with a linear, isotropic medium, within the Min-
kowski formulation. We thus make use of the relations
between fields and inductions in the medium; in other
words, we consider Maxwell's equations with no source
terms and describe the electromagnetic properties of the
scattering medium through its constitutive relations. In
this section and in the remainder of the analysis, the
primed variables refer to the rest frame of the medium.
For the case of a linear, isotropic medium considered in
this section, the constitutive relations are given, in the
rest frame of the medium, by

D'=eE',
8'=pH', (19)

These two sets of equations constitutive two alternative
formulations of the electrodynamics of nonlinear media.
However, their mathematical properties under transfor-
mations of the Lorentz group are quite different. As will
be discussed in $ec. IV, the second formulation is covari-
ant because the vacuum constitutive relations are inversi-
ble and because the source terms are described by a four-
vector. In Sec. III we study the relativistic transform of
the first set of equations in the case of a linear, isotropic
medium.
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and Maxwell's equations reduce to

V'-eR' =0,
V'.pH'=0,
V'XE'+pB, H'=0,
V' X H' —eB, E'=0 .

(20)

(21)

(22}

(23)

D —(1—a)(D v) + XHV V

2 2

=e E—(1—a)(E v) +vXB, (33)
v

U2

v vB—(1—a)(B v) — XE
v2 c2

At this point, we briefly review the dispersion of elec-
tromagnetic waves, as described in the rest frame of the
medium. We can represent the electromagnetic wave by
a syace-time Fourier transform'

=p, H —(1—a)(H v) —v XD . (34)
v

2

Taking the scalar product of (33) and (34) with v yields

E'(x'„)= J,C'(k,')exp(ik~'")(dk'„)1

(2~)'
(24)

where x'„=(ct',r') is the four-vector position and
k„' =(co'/c, k') is its conjugate, the four-wave vector. We
then have the following operational equivalences in con-
jugate space:

D v=eE v,
B v=pH v.

Using these identities into (33) and (34), we have

D+ XH=e(E+vXB),
c2

(35)

(36)

(37)

V'= —i k', (25)

(epd, V' )E'—=0 . (26)

Combining (26) with the operational equivalences defined
above, we recover the usual dispersion relation

Taking the curl of Eq. (22) and making use of (20) and
(23), we obtain

B— XE=p(H —vXD} .
C

(38)

D(E,H)=y E+y ep 2v XH—1

y' c

Finally, after some straightforward calculations we can
eliminate B from Eq. (37) and obtain the sought-after
constitutive relations

(epee' k' )4"=—0 .

Finally, the refractive index n ' is defined as

(27)
1—ey ep — v(v E),

c2
(39)

n'= ick'/co'i =co'ep . (28)

We rum study the same basic phenomenon viewed
from another reference frame. The in variance of
Maxwell's equations under the Lorentz transform, which
results directly from the principle of relativity, yields the
transformation formulas for the fields and inductions. "
We have

B(E H)=g H —g ep — vXE1

2 2

1—py ep v(v —H) .
C2

(40)

Here, we have defined the following dimensionless pa-
rameter:

E'=y E—(1—a)(E v) +vXBv
U2

vH'=y H —(1—a)(H v) —vXD
2

(29)

(30)

y=(1 —epv )

These relations can be recast in the following form:

D =gE+ gv X H —eriv(v E),
B= fH —rivXE —pgv(v H),

(41)

(42)

(43)

D'=y D —(1—a)(D v) + XH
v2 c2

(31) by introducing the coefficients

B'=y B—(1—a)(B v)
v

2
XE

c2 (32)
'9=7 epr' C2

where v is the velocity of the medium relative to the
reference frame we consider and y=1/(1 —v /c )'
=1/a is the relativistic factor. Note that, as the trans-
formations formulas directly result from the relativistic
invariance of Maxwell's equations, they combine the
fields and inductions. We can now rewrite the constitu-
tive relations (18}and (19) as follows:

The new constitutive relations are still linear but, as ex-
pected, they combine both electric and magnetic contri-
butions and they are obviously anisotropic. In addition,
the noncovariant character of the pseudoscalars e and p
appears very clearly. At this point, it is possible to study
the propagation of electromagnetic waves in a frame
where the scattering medium is not at rest. The geometry
of the problem is illustrated in Fig. 1. We start from



41 RELATIVISTIC ELECTRODYNAMICS OF CONTINUOUS MEDIA 5069

x

IAT ION

$
x'

I

I

I

!

I

~ MEDIUM
I

I'

z~„+x

k=zk~~+xk, ,

(48)

(49)

k + rl )2=k
E'g u

(50)

Defining the propagation angle 8 (see Fig. 1), the disper-
sion relation can be rewritten as

where we have defined the z axis so that v=zu (see Fig.
1). Upon elimination of the amplitudes 8~~ and @i from
Eq. (47), we end up with the following dispersion relation:

FIG. 1. Geometry of the relativistic transform studied in

Secs. III and IV.
co y — k cost9+ coup ep—2 2&9 1

y' C2

2

2sjn2L9 X
y'

VXE+c), gH —2)vXE —pi)v(v H) =0, (44)

Maxwell's equations with no sources, and we make use of
the constitutive relations derived above,

(51)

which clearly shows the anisotropy of the medium.
We first check the relativistic invariance of the disper-

sion relation. The Lorentz transformation of the four-
wave vector gives

VXH —B,[gE+7)vXH —Eriv(v E)]=0 . (45)

co =y(cu'+ k I~u ), (52)

E(x, )= f,8(k„)exp(ik, x")(dk, )
1

(2~)'

which yields the usual operational equivalences

(46)

Again, we represent the electromagnetic field by a four-
dimensional (4D) Fourier transform,

kii y kii+P
I

k~=k~ .

(53)

(54)

Here, P=u/c is the normalized velocity. We can use
these expressions in the dispersion relation (50) to obtain,
after some straightforward algebra,

V—:—ik, c)t —/co (cu'&up+ k
ii

)( —cu'&op+ k
ii

) = —k i (55)

Combining Eqs. (44) and (45) to eliminate the magnetic
field H, we obtain

which reduces to

2+k (56)
(k+cuilv)X(k+corlv)X 8+cu g 8 —cu pgriv(v 8)

=0. (47)

We now define the transverse and parallel components of
the following vectors:

Equation (56) is identical to the dispersion relation of
electromagnetic waves in a linear, isotropic medium de-
scribed by Eq. (27).

We now derive the refractive index n =~ck/co~ from
Eq. (51) to obtain

n(8) =
g2 ~2u 2

(sin 8)g g
—i) u

flu cos8+ (cos 8)g +
E g

—E'g u

1/2 (57)

There are two simple limiting cases to the above equa-
tion. On the one hand, one may consider vacuum (@=co,
p=go), in which case one finds n =1. The other limiting
case is obtained by taking u=0 (y=1); we then verify
that n =n'. The most interesting feature of Eq. (57),
however, is the fact that the index of refraction exhibits a
singularity for

„„28 0 ~au' y'
x

(58)

This means that we can expect a strong coupling of the
radiation field to a static charge (co=0) for this particular
radiation angle. We can translate this condition into the
rest frame of the medium by noting that
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tanO' =
k()

cos8' =
n 'P'

At the singularity (n ~ ao ), we find

tan 0
tan 8'= =epU —1,y'

which finally yields

n cosO

(59)

(60)

(61)

j'= up~co'E'+A, k' XH' . (64)
The vectorial product for the magnetic-field contribution
directly results from the polar character of the vector H,
as opposed to the axial character of E and j; this, in turn,
is correlated to the fact that the ori.gin of magnetic prop-
erties in a material is determined by spin effects. We sim-
plify matters further by considering a dielectric medium
where p'=0. Making use of the 4D Fourier transform,
we obtain the dispersion relation in the following form:

~2

k'2= (65)2

the well-known Cerenkov radiation threshold condition.
%'e have thus shown that the Cerenkov radiation con-

dition corresponds to a singularity of the refractive index
of the interacting medium, similar to that of an atomic
transition, in the rest frame of the radiating particle. It is
particulary interesting to note that in the rest frame of
the test particle we only need to study the refractive in-
dex of the medium to infer the possibility of a radiation
process, whereas in the rest frame of the medium nothing
in the dispersion relation indicates the possibility of
Cerenkov radiation, and one has to solve entirely the field
equations to derive the Cerenkov threshold condition. '

In the general case of a nonlinear medium, the consti-
tutive relations now read

D'(D, H) =D'[E'(E, B),H'(H, D)], (62)

B'(B,E)=B'[E'(E,B)H'(H, D)] . (63)

It is clear that for any complex nonlinear dependence of
the inductions 0' and 8' on the fields E' and 8', the in-
version of the above equation will become analytically in-
tractable. For the relativistic description of nonlinear
media, the constitutive relation formalism proves to be
inadequate, and there are no simple transformation for-
mulae of the nonlinear susceptibilities. This is due to the
incompatibility of the 3D (spatial) tensorial character of
the nonlinear susceptibilities with the 4D (space-time) as-
pect of the Lorentz transformation.

IV. LINEAR ISOTROPIC MEDIUM:
INDUCED-SOURCE FORMALISM

In this section we focus our attention on the induced-
source formulation; in other words, we now consider
Maxwell's equations in vacuum and describe the elec-
tromagnetic properties of the interacting medium
through a source term as prescribed in Eqs. (14)—(17).
To illustrate this derivation, we first start from the basic
example of the linear, isotropic medium. In this case, we
have the following relation between the electromagnetic
field and the induced current density, expressed in the
rest frame of the medium

where the electric conductivity o and its magnetic analog
A, are defined as

EO =E'/gp,

1 i k=—pz,lp .
(66)

(67)

We can then identify Eq. (65) to the usual dispersion rela-
tion for a linear, isotropic medium given by (27).

We now consider the relativistic transformation of the
source terms. Combining the dielectric condition and the
Lorentz transform of the charge density, we have

vp'=0=a p— (68)

(70)

2

p= [eon(co —v k)(E v)+Av. kX(H —eovXE)] .
C

(72)

Proceeding in the same way for the current density, we
end up with

Similarly, the relativistic transformation of the current
density is given by

j'=j+y [(1—a)(j v) —pu ] . (69)
U2

Using the dielectric condition (68) into Eq. (69), we ob-
tain a simplified expression of the current density

(1—a)(j v) .
2

'1'aking the scalar product of Eq. (70) with v and making
use of the relativistic transform of the four-wave vector
and electromagnetic fields, together with the expression
of the induced linear current density (64) into (68), we ob-
tain the following expression for the charge density:

p=
z [zoo'(co —v k)(E v)+Av. kX(H —vXD)] . (71)

y'
C

We now use the vacuum constitutive relations to rewrite
the charge-density transform as a function of the elec-
tromagnetic fields only,

j=y eocr(co —v.k)(E+povXH)+y A(1 —a) [v kX(H —eovXE)]

+yA, k+y [(1—a)(k.v) —P co] X(H —eovXE) —(1—a)(H.v)
v 2 kXV

2 2 (73)
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Here, again, v is the velocity of the medium relative to
our frame of reference. We can now study the dispersion
of electromagnetic waves in the dielectric, linear, isotro-
pic medium considered here. We use the source terms
derived above to drive Maxwell's equations in vacuum:

VXE+p B,H=O,

VXH —e B,E=j(E,H),
't)' e E=p(E, H) .

(74)

(75)

(76)

Through 4D Fourier analysis, we obtain in the moving
frame

2

, —k' =i(pocoj(C, ff) p(C—,ff—')k)
C Ep

(77)

and

e k C=p(C %) .

In the special case of a nonmagnetic material (p=po,
A, =O) the expressions for the source terms are greatly
simplified:

Making use of these expressions in Eq. (77), we obtain the
dispersion relation in the following form:

2 2—k =io (co —v k)
c2 c2

(81)

where we recognize the vacuum dispersion on the left-
hand side and the usual Doppler-shifted mode on the
right-hand side. We note that the left-hand side of Eq.
(81) is a scalar representing the magnitude of the four-
wave vector, and thus a relativistic invariant. We can
then rewrite the dispersion relation as follows:

&2

k =lCTCO
C2

(82)

which is clearly identical to (65) for A, =O, thus demon-
strating the relativistic in variance of the dispersive
characteristic of the medium.

We now derive the refractive index n =~ck/co~ from
Eq. (81). We start by defining the propagation angle 8 as
shown in Fig. 1, and we use the definition of 0. to rewrite
(81) as follows:

I( C,ff ) =y~eao (co vk)( 8—+)Li,ov X&), (79) co —k c =y 1 ——(cu —Pck cos8)
6'p

(83)

p(C, %)=
2

eoa(co vk—)(C v) .
y'
C

(80) From this equation we can easily solve for k(co) and ob-
tain the following expression of the refractive index:

n(8)=

1 ——y Pcos8+
&p

1 ——y (P cos 8—1)+1
E'p

1/2

(84)

1 ——y P cos 9+ I
E'p

——1 y P cos 8=1.E'

Eo
(85)

In the limiting case of vacuum (a=ca), we easily find

n =1; in addition, for p=O (y= 1), we recover
n =n'=Qe/e0. Again, the refractive index is clearly an-

isotropic, and it exhibits a singularity for waves propaga-
ting at an angle defined by the following equation:

E'

, , =p —,
cos 8 &p

(88)

V'

which is the Cerenkov radiation condition for a dielec-
tric, nonmagnetic medium in the linear, isotropic case.
We have thus shown the complete equivalence of the
Minkowski formulation and the induced four-vector
current-density formalism in the linear regime.

To transform this condition on the propagation angle
back to the rest frame of the medium, we use the relation
between angles derived in Sec. II [Eq. (59)]:

tan 0
tan 0'=

y
(86)

1 1—p2+
cos 8' y cos 0

(87)

Finally, the singularity Eq. (85) yields the following con-
dition in the rest frame of the medium:

which is valid at the singularity (n ~~ l. Using the tri-
gonornetric relation between tan 0 and cos 8, we then
easily find

V. NONLINEAR FORMALISM

We now treat the full nonlinear problem. The general
forrnalisrn is the following. In the rest frame of the non-
linear medium, the induced-source terms

j'= j'(E', H'},
p' =p'(E', H')

(89)

(90)

E'=E'(E, B),
H'=H'(H, D) .

(91)

(92)

describe its nonlinear electromagnetic response. In addi-
tion, the relativistic transform of the electromagnetic
field yields [see Eqs. (29) and (30}]
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The crucial point of this formulation is that the vacuum
constitutive relations are relativistically invariant. There-
fore, we have, within this formulation, and in any Galile-
an reference frame,

D=eoE,

B=poH . (94)

We can thus transform the four-vector current density
and the electromagnetic field and make use of the vacu-
um constitutive relations to finally obtain the sought-after
relativistic description of the nonlinear response of the
medium:

j(E,H) = j'[E'(E,poH), H'(H, eoE)]

—
y ((1—u) I v j'[E'(E,poH), H'(H, eoE)]I

—v p'[E'(E, poH), H'(H, eoE)]), (95)

tric nonlinearities. In its rest frame, we have the follow-
ing expression of the induced nonlinear current density:

j,.'= g oI.k, ~EkFI' . E' .
F=l

j;=j —y, (1—a)U, j,' .
U

(98)

Introducing the expression of the induced nonlinear
current density in the rest frame of the medium, we ob-
tain

Here the italic indices refer to the three spatial coordi-
nates, and repeated indices are summed over according to
Einstein's convention. The integer 8 refers to the order
of the nonlinearity. Making use of Eq. (95), together with
the dielectric condition (p =0), the relativistic transform
of the current density yields

p(E, H) =y p'[E'(E, poH), H'(H, eoE)]

+ j'[E'(E,poH ),H'(H, eoE) ]
C

(96)
+l'

2
(1 &)Uq~q;k, I, . ~Ek E,' E~'] . (99)

U

We now address the same problem in a somewhat more
detailed way. We consider a dielectric medium with elec-

I

Finally, making use of the relativistic transform of the
electric field and the vacuum constitutive relations, we
find

o'i;k, l, ''', p+'Y
2

(1 +)Uqrrq;k, l, ''', p
'Y Ek (1 Q)

2
E vk+k( XVppH) k

UI Vp
X EI —(1—a) EIvI+(vXpoH)1 E —(1—a) E v +(vXpoH)

U V

(100)

This expression exhibits an interesting property: terms in

y appear for nonlinear effects of order f and it appears
that in certain reference frames higher-order nonlineari-
ties can contribute strongly to the interaction. This is a
direct consequence of the relativistic transformation of
the electric field and the nonlinearities of the scattering
medium.

VI. DISCUSSION

We have studied theoretically the relativistic transfor-
mation of the electromagnetic fields and inductions in a
nonlinear medium. Two different formal descriptions of
the electromagnetic properties of nonlinear media are
considered in this paper. On the one hand, these elec-
tromagnetic properties can be defined by introducing re-
lations between the fields and inductions; this approach is
referred to as the Minkowski formulation. Generally,
these so-called constitutive relations are nonlinear. In
addition, in the most general case, the constitutive rela-
tions are frequency dependent and nonlocal. We have as-
sumed here that a quasilocal approximation describes sat-
isfactorily the relations between the fields and inductions
in the steady state. The other formulation considered
here describes the nonlinear polarization effects in the

medium in terms of an induced four-vector current densi-

ty coupled with the vacuum constitutive relations. In the
linear, isotropic case, we have shown that these two for-
malisms are completely equivalent. In particular, we find
with both formulations that the refractive index of a
linear, isotropic medium, as described in its rest frame,
becomes anisotropic in any other Galilean frame of refer-
ence. In addition, this refractive index exhibits a singu-
larity for waves propagating at an angle that is found to
correspond to the usual Cerenkov threshold angle. This
indicates that for a static charge distribution in the refer-
ence frame considered, we can expect a strong coupling
to the radiation field giving rise to Cerenkov radiation at
the threshold angle.

However, we find that for nonlinear problems, the
Minkowski formulation becomes inadequate because the
nonlinear constitutive relations are not inversible. This
fact reflects the incompatibility of the 3D (spatial) ten-
sorial character of the nonlinear susceptibilities with the
4D (space-time) aspect of covariant transformations. A
direct consequence of this consideration is the fact that
one can vary the symmetry of a given lattice through the
Lorentz transform. Because the electromagnetic proper-
ties of a medium depend very strongly on its symmetries,
as can be shown by group theory, we expect to observe
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phenomena such as relativistic electromagnetic phase
transitions by probing magnetic lattices with spin-
polarized relativistic electron beams. These effects would
appear as spin resonances in the scattering of such beams.

The electromagnetic properties of nonlinear media un-
der relativistic transforms can be studied within the
framework of the induced four-vector current-density
formulation. This results from the fact that in this for-
mulation the constitutive relations are those of vacuum
which are both inversible and relativistically invariant,
and from the covariant character of the four-vector
current density. One can then transform from the rest
frame of the nonlinear medium considered to any other
convenient Galilean frame of reference. In the case of
free-electron lasers (FEL's), for example, one can derive

the nonlinear refractive index of a bunched electron beam
in its rest frame and then study the interaction of elec-
tromagnetic waves with such a medium in the laboratory
frame to recover the familiar Doppler up- and down-
shifted FEL interaction. This can also be done for rela-
tivistic astrophysical plasma. Finally, it is important to
realize that by studying the same phenomenon from
different frames of reference, we can actually gain some
insight about the physics underlying electromagnetic
phenomena.
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