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Quantum noise properties of an injection-locked laser oscillator
with pump-noise suppression and squeezed injection
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The quantum noise properties of injection-locked semiconductor laser oscillators are investigated.
Included in the analysis are pump-noise suppression and squeezing of the injection signal. It is
shown that the main effect of injection locking is the reduction of the phase noise of the outgoing
laser light field. The influence that squeezing of the injection signal state has on the output state is
shown to be strongly dependent on the value of the linewidth enhancement factor. In general, little
or no noise reduction stands to be gained by squeezing the injection signal. It is also shown that un-
der idealized conditions, the spectral uncertainty product of the outgoing field will approach, but
never go below, the minimum uncertainty value given by the Heisenberg uncertainty relation.

I. INTRODUCTION

In recent years the redistribution and suppression of
optical quantum noise have been drawing considerable at-
tention. ' Several authors have calculated the noise
properties of lasers that are pumped by noncoherent
fields or that have the vacuum fields incident on the open
port replaced by squeezed vacuum. In this paper we have
calculated the amplitude and phase noise spectra of an
injection-locked semiconductor laser oscillator. Here, an
injection-locked laser is a laser that is forced to oscillate
at the frequency of an optical injection signal. The laser
may be pumped by a noise suppressed current and the in-
jection signal may be in a squeezed state. (The input field
may even be a squeezed vacuum state, although such an
operating mode can hardly qualify as injection locking. )
From the external field spectra, the spectral uncertainty
product has been calculated. An earlier treatment of the
quantum noise properties of an injection-locked laser can
be found in Ref. 8.

Specifically two important questions are addressed in
this paper. It is known that reducing the pump noise in a
laser will result in amplitude Auctuations in the signal
lower than the standard quantum limit. It is also known
that injection locking of a laser can reduce the phase
noise of the signal by severa1 orders of magnitude. Com-
bining these techniques, is it possible to reduce the phase
noise of the laser while maintaining the amplitude noise
level of a free-running pump-noise suppressed laser? The
answer is no, and thus, Heisenberg's uncertainty relation
cannot be violated. The next important question is if the
phase noise of an injection-locked laser can be further re-
duced by squeezing the phase noise of the injection sig-
nal. The answer is yes, but the phase-noise reduction is
only a small amount. Heisenberg's uncertainty relation is
preserved in this case as we11.

We have concentrated our efforts on semiconductor
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FIG. 1. Model of an injection-locked laser oscillator. A is
the internal field, Fo+f is the injection signal, and r is the out-
put field.

laser oscillators, the most notable difference from gas
lasers being the coupling between the real and imaginary
parts of the electric susceptibility operator in the former
case. This coupling seriously degrades the phase noise
performance of a nonideal semiconductor laser as com-
pared to an ideal one, lacking this coupling. It is known
that the inclusion of this coupling is of utmost impor-
tance in applying theory to predict experimental results.
In our calculations no attention has been paid to the
dynamical stability of the solutions obtained. As shown
in a number of papers, ' ' the locking bandwidth pre-
dicted by a linearized analysis is greater than the band-
width over which stable injection locking actually is pos-
sible.

The calculations performed in this paper are based on
the model presented in Ref. 14. This model, graphically
shown in Fig. 1, assumes that the laser's rear mirror
reQectivity is equal to unity. Thus the cavity couples to
one external field mode only. In addition, the reflectivity
of the front mirror is assumed to be close to unity.
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II. LANGEVIN EQUATIONS

In order to analyze an injection-locked laser oscillator,
first we establish the Langevin equations for the internal
photon field, the dipole moment, and the electron system
for a laser with an injection signal. Then we use the rela-
tion between the internal and external photon fields to-
gether with the correlation functions between the
different noise sources to calculate the internal and exter-
nal amplitude and phase-noise spectral densities.

A. Internal Seld

The Langevin equation for the internal field A(t) is
given by'
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The angular resonance frequency of the unpumped cavity
is denoted co„p is the refractive index, and g is the elec-
tronic susceptibility operator, whose imaginary part
equals the stimulated emission gain:

where we have introduced F0+f(t) as the amplitude of
the injection signal. Here Fo is the classical excitation
and f(t) is a fluctuation operator. Depending on the
choice of F0 and f(t), the injection signal may be a vacu-
um state, a coherent state, or a squeezed state. The opti-
cal angular frequency of the injection signal is denoted by
to. The total Q value Q of the laser cavity depends on the
external (mirror) losses Q, and the internal losses Q0 ac-
cording to

Eq. (2.4) are fluctuating noise operators: I (t) is the

pump noise, I, (t) is the spontaneous emission noise, and
I (t) is the dipole moment fluctuation noise.

For the noise sources in Eqs. (2.1) and (2.4) we use the
shorter notations

N(t)=, &x, &

p
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+ f(t), (2.5)

F,(t)=I' (t)+I, (t)+I (t) . (2.6)

In order to analyze Eqs. (2.1) and (2.4) we expand the
operators into mean and fluctuating parts according to

N, (t)=N,0+b N, (t), (2.7)

A(t) =[A, +b, A(t)]e
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Here N, 0, A0, and p0 are the average excited electron
number, field amplitude, and phase (c numbers). bN„
5A, and hit) are the Hermitian excited electron number,
field amplitude, and phase operators. Although this Her-
mitian phase operator is not correct in a strict quantum-
mechanical sense, cf. Ref. 15, it is known that Eq. (2.8) is
a good approximation when the photon number A o is
much larger than unity.

We also introduce the notations

Q) y. =E
P

(2.3)

where E,„and E„, are the operators of the stimulated
emission and absorption rates, respectively. The noise
operators fG(t), fL(t), and f(t) are associated with the
gain mechanism, the internal losses, and the injection sig-
nal fluctuations, respectively. We use a tilde to denote
operators for the electron system and a circumflex to
denote operators for the photon field system.

The Langevin equation for the total excited electron
number operator N, (t) is given by'
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(2.4)
where ~„ is the electron lifetime due to stimulated emis-
sion, coo is the resonance angular frequency of the
pumped cavity including the frequency shift introduced
by the injection, a is the linewidth enhancement factor, p

where p is the pumping rate, ~, is the lifetime of the elec-
trons due to spontaneous emission, and fi'(t) = A(t) A (t)—
is the photon number operator. The three last terms in
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is the spontaneous emission factor, n, is the population
inversion factor, and G is the average of the stimulated
emission gain. The Q values are replaced by photon life-
times according to

R—= —1
PthO

where

(2.25)
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Two steady-state equations are obtained from the
nonfluctuating real and imaginary parts of Eq. (2.1) using
Eqs. (2.5), (2.8), (2.10)—(2.14), (2.17), and (2.18):

F 1/2

G= —2 cos([)p, (2.19}
AO

which is the threshold pumping rate for the free-running
laser. An expression for est can then be obtained by as-
suming a linear dependence of the gain on electron num-
ber:
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Equation (2.13) can be rewritten, with the help of Eqs.
(2.14), (2.17), and (2.19), as

d&j„&
~o=~, + ", &X, &~G=», +

The fluctuating part of Eq. (2.4} and the fluctuating
real and imaginary parts of Eq. (2.1) give the following
linearized equations for the noise operators, when the
terms in the order of 6 have been neglected:

a—co + Gr0
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bN, (t)= A)EN, (t)+ A26A(t)+F, (t),
dt

(2.28)
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Thus co„0 is the resonance angular frequency for the
pumped cavity, when the laser is lasing in the absence of
any injection signal, since Fo=O implies that 6 = I/~~.
In the following calculations co„0 is constant. The detun-
ing parameter hcu is defined as the angular frequency
difference between the injection signal angular frequency
co and the resonance angular frequency of the cavity co~.
Together with Eqs. (2.20) and (2.21) it is expressed as

F ' 1/2
0hco=co —(o„o=—(sinPo+a cosPo)
0 ~pe

where
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b,P(t) = A, b,N, (t) + 5 A (t) A, b,g(t) —8,(t), —
0 0

(2.30)

(2.22)

Equation (2.22) gives the possible locking bandwidth
1/2 1/2

—(1+a }' ~neo~
AO ape AO

(2.23)

This bandwidth is obtained by noting that the condition
G —1/~ ~ 0 must be fulfilled, ' implying that

vr/2~go n/2 —When aA. O, the detuning range be-
comes asymmetric, cf., for instance, Refs. 10, 11, and 13.

The nonfluctuating part of Eq. (2.4), together with Eqs.
(2.3), (2.6), (2.7), (2.9), (2.10), (2.12), (2.15), and (2.17), re-
sults in the steady-state equation
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p =(I+P) +GA() .
SP

(2.24)
The operators 8, and 8; are the Hermitian quadrature
noise operators:

A normalized pumping parameter R can then be defined
by

i[$0+a/(t)] y t —i[$0+i)p(t)]
P e + e 7 (2.37)
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e
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Fourier transforming Eqs. (2.28)—(2.30) gives

iQEN, (Q)= A, AN, (Q)+ A26A(Q)+F, (Q),

(2.38)

(2.39)

iQbg(Q)= A4bN, (Q)+ hA(Q) —Agog(Q)
0
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i Qi)), A(Q)= A3bN, (Q) —A~5 A (Q) —
A() A65([}(Q)

+8„(Q), (2.40)

From these equations N, (Q) is eliminated and expres-
sions for the internal amplitude and phase noise b, A (Q)
and b,g(Q) are obtained as

(B3+iB4)F,( Q) +( B~ +iB6)8,(Q)+(B7+iB())8„(Q)

(B„+iB)2)F,(Q)+(B,5+iB,6)8;(Q)+(B)i+iB)4)8,(Q)
b,([}(Q) =

B9+ lB10

The expressions for the B coefficients are given in the Appendix.

(2.42)

(2.43)

B. External field

The output wave r(t) is related to the internal field
A (t) and the injection signal Fo through'

' 1/2

C3 = AOC2,

C4= AOC1 —Fo
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As in the case of the internal field calculations, the opera-
tors are expanded according to

r(t) = [r() +b"r(t)]e

In the absence of an injection signal ([Io=—0 must be used
to obtain the correct equations for a free-running laser,
cf. Eqs. (5.1) and (5.2) in Ref. 14. The solutions for the
external amplitude and phase noise b,r(Q) and bg(Q) of
Eqs. (2.48) and (2.49) are

A (t)= [ A () +b, A (t)]e (2.46) t))r(Q)=Cs[C9))), A(Q)+C)ob(t)(Q)+C)) f„(Q)
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The equations for the fluctuating parts are (when $0 has
been expressed in ([)0)

The phase 1[0 of the external field has to be introduced,
since in the case of nonzero injection, the internal and
external fields'do not have the same phase. The steady-
state solution of (2.44)—(2.46) is

+C,2f, (Q)], (2.56)
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+Cqf;(Q)] . (2.57)

In these equations b A(Q) and b, (]))(Q) can be substituted
by the expressions in Eqs. (2.42) and (2.43). In order to
obtain the noise spectra, the correlation functions be-
tween the noise operators have to be known. They can be
deduced as'
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(F,(t)B;(u)) =0,
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From (2.3) and (2.15)—(2.17) the stimulated emission
and absorption rates are calculated as

The factor ~ is the squeezing factor of the injection sig-
nal. If the injection signal is in a coherent state, ~ equals
unity. However, if the quantum noise of the injection sig-
nal has been redistributed by squeezing, ~ can take on
any positive value. Reduced amplitude (in-phase) noise
in the input signal is characterized by a & 1, and reduced
phase (quadrature-phase) noise is characterized by a. ( l.

The quantity n, h is the number of thermally generated
photons, which is approximately equal to zero at room
temperature and optical frequencies:

(8„(t)f,(u)) =(f, (t)H„(u))
' 1/2

4
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—1) .
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Finally, the resulting expressions for the internal and

external amplitude and phase-noise spectral densities are

given by

Pa„-(Q)= ( A (Q) A (Q) )
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C l r
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Pa~(Q) =(D7+Ds )PF (Q)+(D f, +D f2 )Ptl (Q)+(D +9D, )Pop (Q)
C l r

+ Cs [C (,Pf- (Q)+ C, ~Pf- (Q)]+2(D7D9+DsD, O)(F, (Q)H„(Q})
r

+2Cs[C),D9(H„(Q)f,(Q) ) +C„D),(8;(Q)f„(Q)) +C,2D9(H„(Q)f;(Q) ) +C,2D„(H;(Q)f;(Q) )],

Pq~(Q)=(D)+D2)PF (Q)+(D5+D6)Pt (Q)+(D~3+D4)Ptt (Q)
C I r

+ C~ [C3Pf (Q)+ C~Pf (Q)]+2(D,D3+D2D4)(F, (Q)H„(Q) )
l

+2C~[C D 3(83„(Q)f„(Q)) +C D~ 3(8';(Q)f„(Q)) +C D 4(H3„(Q)f;(Q) ) +C~D~(H;(Q) f;(Q) ) ] . (2.77)

Equations (2.76) and (2.77) will be analyzed in Secs. III B and III C. The expressions for the C and D coefficients are
given in the Appendix.
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III. RESULTS 2 x 109

A. Steady state

When the steady-state equations (2.19), (2.22), (2.24),
and (2.47) are solved by the use of (2.3), (2.15)—(2.17),
(2.25), and (2.26), the external amplitude ro and the inter-
nal amplitude, phase factor, and gain, Ao, $0, and 6, re-

spectively, can be obtained as functions of the normalized
pumping rate R and of the strength and the detuning of
the injection signal Fo and Au, respectively. Some exam-
ples of these functions are shown in Figs. 2-4. The
following numerical parameters were assumed for the
diode laser: ~, =2X10 s, ~p, =2.5X10 s 7pp=10
X10 ' s, P=2X10, n, =2, and a=2.

Since the parameters R and Fo have difFerent dimen-
sions and are af different orders of magnitude, Fo is nor-
malized according to the following arguments. In the ab-
sence of injection, the number of photons inside the cavi-
ty is given by

~ 10'
~ ~
C4

3 O

10

Normalized injection signal S
]02

FIG. 3. The external amplitude as a function of the normal-
ized injection signal with the internal losses as a parameter.
R =10, hco=O, a=O. a, ~~/~po=0; b, ~p, /~pp &' c,
'T~ /7 pa

= 1; d, 'Tpe /7 po= 40

no(RAO F0=0)= AO=Rn0 0 sp p
(3.1)

4Fodp
no(R =O, Fo%0)= 1+a (3.2)

The comparison of Eqs. (3.1) and (3.2) suggests the fol-
lowing normalization of the injection signal (disregarding
a):

4FOPrS=
n, ( I+P)~, (3.3)

If a strong resonant injection signal (b,co=0) is applied,
so that the number of photons in the cavity that are
created through the pumping process is negligible com-
pared with the number of photons that are injected, then
the number of photons in the cavity is given by

where S is dimensionless.
Figure (2) shows the internal field amplitude Ao as a

function of the injection signal strength for different nor-
alized pumping rates R and linewidth enhancement fac-

tors a. The breakpoint where the injection signal starts
to dominate over the pump is clearly seen. As expected,
it is approximately given by S =R when a=0 (curves a
and c), and b,co=0. Around that point, the internal gain
G decreases from its initial value of 1/~ to zero, cf. Eq.
(2.19).

Figure 3 shows the external amplitude ro as a function
of the normalized injection signal S for varying photon
lifetimes due to internal losses ~po while the photon life-
time due to mirror losses 7

p
is constant. If ~ 0~ 00, i.e.,

the laser has no internal losses (curve a), injection locking
will always increase the external amplitude. If the laser

105
1«5

47

104

a

102

1Q 1P4

& 0.5-
Q

05

v 0

Normalized injection signal S
FIG. 2. The internal amplitude as a function of the normal-

ized injection signal with the normalized pumping rate and the
linewidth enhancement factor as parameters. Ace =0. a,
R =10, a=O; b, R =10, a=2; c, R =0.1, a=0; d, R =0.1,
a =2.

Normalized detuning Dw/D~

FIG. 4. The normalized external amplitude as a function of
the normalized detuning with the internal losses as a parameter.
R =10,S=1,a=O. a, v.~/wp0=0; b, v.~/rpo 4 c xp /7po

d, ~~/~po=4.
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on the other hand suffers from internal losses that are
smaller than the mirror losses r~, (r o ( ae (curve b), the
external amplitude will increase at strong injection sig-
nals after a weak decrease at medium injection signals.
When T~o r~ (curve c), the external amplitude will de-
crease to zero for high injection signal levels. (In this
case, the reflected part of the injection signal interferes
destructively with the outgoing part of the laser field, and
all injection signal photons are absorbed in the cavity. )

Finally, when the internal losses are greater than the mir-
ror losses (curve d), the external field amplitude changes
sign for some value of the injection. This is a conse-
quence of the fact, that for low injection S «R the out-
put consists almost only of photons generated inside the
laser, but for high injection S &&R the output is mainly
the reflected injection signal. These two contributions in-
terfere destructively with each other, cf. Eq. (2.44}.

The influence of the detuning parameter hen on the
external amplitude is shown in Fig. 4 for different values
of Tpp while 7p is constant, in the case of a=O. Note
that rp is normalized by its value at zero injection and
that b,co is normalized by its maximum (positive} value
bc@,„=FO/( Ao+r, ), cf. Eq. (2.23). The significance of
the internal losses is seen: A high r~o (low internal losses,
curve a} results in a lower sensitivity to detuning. The
reason why rp has a minimum when hco=O and a max-
imum when hco=Aco, „ is as follows. When Aco=O, the
part of the injection signal that enters the cavity is in res-
onance with the cavity. This part of the injection signal
then interferes destructively outside the cavity with the
part that is refiected at the input/output mirror. When
Lco= Aco,„ the injection signal is not affected by the gain
medium in the cavity. Thus the output signal consists of
the reflected injection signal from the input mirror and
the light generated inside the cavity, added as intensities.
This is obtained from Eq. (2.47) together with Po= —n. /2
from Eq. (2.22).

B. Noise spectral densities

The external amplitude and phase-noise spectral densi-
ties are calculated from Eqs. (2.76) and (2.77). The re-
sults for a laser with the above-mentioned numerical pa-
rameters are shown in Figs. 5—7 for different injection
rates, detunings, squeezing parameters, and linewidth
enhancement factors. The calculated Fourier spectra are
single sided, normalized spectral densities per hertz as
functions of frequency in hertz, cf. Ref. 4.

The normalized external phase-noise spectral density
r+a&(Q), where ro is the normalization factor, is shown

in Fig. 5(a) as a function of frequency II/(2m. ). This
figure demonstrates that an increasing injection signal de-
creases the phase noise by several orders of magnitude in
the low-frequency region (curves a to d). When the injec-
tion is further increased towards a specific value of S, the
relaxation peak increases towards infinity. That tendency
is visible in curve d, the relaxation peak of which is two
orders of magnitude greater than the relaxation peaks of
the other curves. This specific value of the injection
agrees approximately with the threshold value of the in-
jection for unconditionally stable operation conditions

given in Refs. 11 and 13. In those references it is shown
that, when the injection exceeds a threshold value, the
positive side and the major part of the negative side
(roughly} of the locking bandwidth, cf. Eq. (2.23), are
dynamically instable; i.e., small perturbations of the
steady-state values of Ap, N, p, etc. increase exponential-
ly. The unlimited increase of the relaxation peak does
not appear at all, if a =O.

Figure 5(b) shows the external amplitude noise spectral
density Pz&(Q, ) as a function of frequency for two

different pumping rates with and without pump-noise
suppression. The pump-noise suppression is modeled by
(1 ~(t)I'~(u) )—:0, i.e., that the term p =0 in Eq. (2.56),
cf. Ref. 4. As can be seen, the amplitude noise in the
low-frequency region is slightly increased by the injection
signal, both for curves b and d with pump-noise suppres-
sion and for curves a and c without pump-noise suppres-
sion. (The pump-noise was not mentioned in the discus-
sion of Fig. 5(a), because the phase noise is virtually
unaffected by the pump-noise suppression. ) Again, the
relaxation peak shows a strong increase (curves c and d)
when the threshold value of the injection is approached.
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FIG. 5. (a) The normalized external phase-noise spectral den-
sity as a function of the frequency with the normalized injection
signal as a parameter. R =10, Au=0, a=2. a, S=O; b,
S =10; c, S=10;d, S=IO . (b) The external amplitude
noise spectral density as a function of the frequency with the
normalized injection signal as a parameter. R =1, hco=O,
a=2. a, S=0, full pump noise; b, S=0, suppressed pump
noise; c, S =10 ', full pump noise; d, S =10 ', suppressed
pump noise.
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The influence of the detuning parameter Ace at weak
injection S «R on the noise of a laser without pump-
noise suppression in the low-frequency region for
different values of a is shown in Figs. 6(a) and 6(b). These
figures are drawn for 0/(2m. )=1 MHz, which is well
below the cavity cutoff and relaxation peak frequencies.
As in Fig. 4, hco is normalized by its maximum value
hco,„. When the detuning approaches the edge of the
locking band (or at least the negative edge if aXO), the
phase noise Fig. 6(a) and the amplitude noise, Fig. 6(b),
increase by several orders of magnitude. A minimum of
the amplitude noise is seen close to the negative edge of
the locking bandwidth if aAO (or at hco=O if a=O). At
this point (to--0 and bc@=—akron, „, cf. Eq. (2.22). This
minimum coincides with the dynamically stable operat-
ing region given in Refs. 11 and 13. When the injection is
increased beyond the above-mentioned threshold value of
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the injection, the dynamically stable region in terms of
the detuning range hen becomes located near the
minimum of the amplitude noise, i.e., close to the nega-
tive side of the detuning range.

The effect of squeezing the noise of the injection signal
of a laser without pump-noise suppression is illustrated in
Figs. 7(a) and 7(b) for the low-frequency region
[0/(2') = I MHz] with different values of a. Figure 7(a)
shows that the normalized phase noise exhibits a
minimum at Ir=a. (Without injection, i.e., when the in-
put consists of squeezed vacuum, this minimum appears
at ~=a, but when an injection signal is applied, the posi-
tion of the minimum is a function of both S and hen.
However, in the case of weak injection S «R the above-
mentioned relation is a good approximation. ) The in-
crease in the phase noise for ~&&1 is caused by the in-
creased phase noise of the injection signal. If tzAO, the
phase noise will increase also for ~&&1 because of the
coupling of the increased injection signal amplitude noise
to fluctuations in the electron population and then to the
refractive index and the phase noise of the laser output
via the a parameter of the semiconductor laser. Conse-
quently, if the phase noise of the laser output is supposed
to be minimized for a laser with a) 1, it is better to

10
(b)-

Squeezing factor

o
Q)

CG

«t

Q
N

10

0.1
—4 —3 —2 —1

Normalized detuning A~/Aw~~~

FIG. 6. (a) The normalized external phase-noise spectral den-
sity in the low-frequency region [0/(2') =1 MHz] as a func-
tion of the normalized detuning with the linewidth enhance-
ment factor as a parameter. R = 10, S = 10 . a, a =0; b, a = 1;
c, a =2; d, a =3; e, a=4. (b) The external amplitude noise spec-
tral density in the low-frequency region [0/(2m ) = 1 MHz] as a
function of the detuning with the linewidth enhancement factor
as a parameter. The parameter values are the same as in (a).
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FIG. 7. (a) The normalized external phase-noise spectral den-
sity in the low-frequency region [0/(2m) =1 MHz] as a func-
tion of the squeezing with the linewidth enhancement factor as
a parameter. R =1, S=10, Ace=0. a, a=0, b, a=0.5; c,
a= 1; d, a=2. (b) The external amplitude noise spectral density
in the low-frequency region [0/(2') = 1 MHz] as a function of
the squeezing. The parameter values are the same as in (a).
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reduce the amplitude noise of the injection signal instead
of reducing its phase noise. Figure 7(b) shows the corre-
sponding amplitude noise, which increases when the
noise of the injection signal amplitude increases above the
noise of a coherent state ~ & 1, regardless of the value of
a. When a=0 (curve a), the amplitude noise is almost
constant for a ) l. On the other hand when aAO (curves
b to d), the amplitude noise increases also for ~) 1. This
increase is suppressed if, instead of bee=0, a value of hen

in the vicinity of the amplitude noise minimum in Fig.
6(b) is chosen. In that case, the curves b to d will coin-
cide with curve a in Fig. 7(b). As discussed above, detun-
ing to the amplitude noise minimum implies that $0=0,
whereas injection at b,co=0 implies that $0= —arctana
from Eq. (2.22). That is a way of regarding detuning to
the amplitude noise minimum as a more natural point of
injection than at dao=0. In addition, the point boo=0
might be dynamically instable, as mentioned before.

C. Spectral uncertainty product

The normalized external spectral uncertainty product,
which is denoted by II, is defined as

II(Q) =4Pq~(Q)roP~~(Q) . (3.4)

P~~( 0~0)==1
2x. 1 —

g

~(1 —g) + 1 —2g

2g2

(3.5)

(3.6)

According to the Heisenberg uncertainty relation, it has
a minimum value of 1 for any frequency (cf. Ref. 4). We
intend to calculate the normalized uncertainty product in
the low-frequency region (0« I/r, ), in order to find its
lowest value for an injection-locked laser oscillator. In
Ref. 4 this was shown to be equal to 2 in the frequency
region below the relaxation peak for an ideal free-running
laser. The low-frequency limit of this region will expand
towards dc, when the pumping rate approaches infinity.
Thus, a laser without injection locking can never achieve
an uncertainty product, that is less than twice the
minimum-uncertainty product imposed by the Heisen-
berg uncertainty relation.

To simplify the calculation of H, first we assume that
we are dealing with a laser with idealized characteristics
like in Ref. 4, i.e., n, =1, a=O, and w o~ ~. The first
condition means that the laser exhibits an ideal popula-
tion inversion, i.e., the stimulated absorption rate is equal
to zero. The second condition implies that the variations
of gain and refractive index in the laser are decoupled.
The last condition states that the internal losses are negli-
gible as compared to the mirror losses, i.e., that all pho-
tons inside the cavity will decay through mirror coupling
losses. Furthermore, we assume that the laser is pump-
noise suppressed. In addition, high pumping (R ~0O )

and high signal injection (S~~ ) with perfect matching
with the cavity resonance frequency (b,co=0) is assumed.
Under these idealized circumstances, the external ampli-
tude and normalized phase-noise spectral densities are
obtained as

in the low-frequency region. Here we have introduced
the parameter g, which depends on the internal ampli-
tude and the injection according to

0 1+ 1+'
S

' 1/2 (3.7)

From the definition (3.7) we can deduce that
g(S/R ~0)=0 and g(S/R ~ ~ ) = —,'. The normalized
external uncertainty product then becomes

Il(n 0)=1+ 1 —2g

~(1 —g)
(3.8)

The last inequality means that the laser never violates the
Heisenberg uncertainty relation. From this equation it is
seen that squeezing of the amplitude noise of the incom-
ing light would lower the uncertainty product as would
increasing injection signal. [The function II(g), given by
Eq. (3.8), decreases monotonically as g increases. ]

The spectra of 11(A), roP&&(Q), and P&&(Q) for these

idealized conditions are shown in Figs. 8(a), 8(b), and 8(c),
respectively. Figure 8(a) shows the normalized uncertain-
ty product as a function of frequency for different injec-
tion levels. Without injection, curve a, the uncertainty
product is equal to 2 in the medium-frequency region, as
expected. When the injection is increased, at first the
product decreases in the low-frequency part until it ac-
quires the same value as in the medium-frequency part of
the spectrum (curves c and d). That point is equal to the
breakpoint S=R discussed in Sec. III A. If the injection
is further increased, the uncertainty approaches unity in
the low- and medium-frequency parts, as the injection ap-
proaches infinity (curves e and f). Consequently, as pre-
dicted by Eq. (3.8), the laser never violates the Heisen-
berg uncertainty relation. As can be deduced from Fig.
8(a), Eq. (3.8) is valid in the low-frequency region only
when the value of S exceeds R.

The phase noise of an ideal laser (with or without
pump-noise suppression), shown in Fig. 8(b), is decreased
for low frequencies by increasing injection, as in the case
of a nonideal laser, cf. Fig. 5(a). When S~~, the nor-
malized phase noise approaches —,

' (the standard quantum

limit) for all frequencies, curve f. This is due to the fact
that for high injections, the laser output amplitude and
noise are completely determined by the injection ampli-
tude and noise, since the contributions generated by
pumping are negligible.

The corresponding amplitude noise spectra are shown
in Fig. 8(c). It shows that increasing injection increases
the amplitude noise in the low-frequency region, that has
been reduced by the pump-noise suppression (curves a to
f), cf. Ref. 4. As in the case of the phase noise, for ex-
tremely high injection the amplitude noise equals —, over
the entire spectrum, curve f. This can be explained in
the following way. In Eq. (2.76), the only surviving terms
for the ideal injection locked laser in the low-frequen-
cy limit are parts of the noise terms PF, P~, PI,
and (H„f„). At zero injection, the terms P~, P-, and



5062 LARS GILLNER, GUNNAR BJORK, AND YOSHIHISA YAMAMOTO 41

(8„f„)cancel each other exactly, and the only surviving
noise source is the spontaneous emission noise in PF .

C

This is the term proportional to N, o/r, ~ in Eq. (2.60),
which becomes equal to I /(2R), cf. curve a. According-
ly, the vacuum fluctuations that enter the cavity and give
rise to amplitude noise interfere destructively with the

part of the vacuum fluctuations that are reflected at the
input mirror, giving a result of exactly zero. On the oth-
er hand, when the injection approaches infinity, the con-
tribution from PF- is negligible, but the other three terms

C

do not cancel each other. The perfect destructive in-
terference between the noise contributions from the vacu-

100

qp

CQ

0
10

5

0 e f

Q 1p12
~ ~0

A ~ 108

g

104

47
N

0

-(a)

1
10 108 1010 10 10 3 103

1010

0 108

106
CV

tr) 1Q4

Q
102

N

C4
rn

0z 10

I

108
I

1P10

Frequency fl/2z. (Hz)

Frequency 0/2z (Hz)

(b).

1p12

Squeezing factor

1
&$

10—3

C

10 6

C4

10-9-

0

1 104 108

Squeezing factor
w nl6

I I I I I I

1p12

10 '-
V

~ ~

C4

g g 10-4-

10
0

(c).
Gr)

p C4 1p8

1P4

2

1
I I I I

1 10 1Q 10 10»

10
I

10 1plo

Frequency 0/2vr (Hz)

1012

FIG. 8. (a) The normalized external uncertainty product for
an ideal laser [n, =1, a=0, r~c~ac, (I ~(t)I ~(u))—:0] as a
function of the frequency with the normalized injection signal as
a parameter. R =10, hco=O, ~=1. a, S=O; b, S=1; c,
S = 10; d, S = 10; e, S = 10; f, S = 10'. (b) The normalized
external phase-noise spectral density for an ideal laser as a func-
tion of the frequency with the normalized injection signal as a
parameter. The parameter values are the same as in (a). (c) The
external amplitude noise spectral density for an ideal laser as a
function of the frequency with the normalized injection signal as
a parameter. The parameter values are the same as in (a).

Squeezing factor
FIG. 9. (a) The normalized external phase-noise spectral den-

sity for an ideal laser in the low-frequency region [0/(2m)=1
MHz] as a function of the squeezing with the normalized injec-
tion signal as a parameter. R = 10, Aco=O. a, S =0; b, S = 1; c,
S =10'; d, S = 10~; e, S = 106; f, S =10'. (b) The external am-
plitude noise spectral density for an ideal laser in the low-
frequency region [fI/(2m) = 1 MHz] as a function of the squeez-
ing with the normalized injection signal as a parameter. The
parameter values are the same as in (a). (c) The normalized
external uncertainty product for an ideal laser in the low-
frequency region [0/(2') = 1 MHz] as a function of the squeez-
ing with the normalized injection signal as a parameter. The
parameter values are the same as in (a).



41 QUANTUM NOISE PROPERTIES OF AN INJECTION-LOCKED. . . 5063

um fluctuations is thus destroyed. The noise term pro-
portional to P& is left over and becomes equal to 1/(2~),

r

cf. curve f. (When the same calculation was performed
for an ideal laser without pump-noise suppression, all
curves coincided with curve f. Consequently, P~~( Q ) =
for all frequencies and all injections. )

If the decrease of the phase noise and the increase of
the amplitude noise with increased injection are corn-
pared, the phase-noise reduction dominates, which means
that the uncertainty product decreases for increasing in-
jections, as was illustrated in Fig. 8(a). When the injec-
tion approaches infinity, both the amplitude and phase-
noise spectral densities approach —,

' for all frequencies,
meaning that the normalized uncertainty product will be-
come equal to unity.

The result of squeezing in an idealized injection-locked
laser in the low-frequency region [Q/(2m)=1 MHz] is
shown in Figs. 9(a)—9(c). Figure 9(a) shows the phase-
noise spectral density, which behaves as predicted by Eq.
(3.6), viz. that squeezing the injection phase noise is re-
warding to a certain ~ value. The part that remains when
~~0 is the noise from the stimulated emission, i.e., the
term proportional to (E,„) in Eq. (2.59). If curve a is ex-
amined in detail, it is clear that for an ideal laser with
only injected vacuum (S =0},the phase noise (and there-
by the linewidth) can be reduced with a factor of 2 if the
vacuum is squeezed, as stated in Ref. 7. This is
mathematically obtained if the value of I«. is changed from
1 to 0.

The amplitude noise in Fig. 9(b) agrees with Eq. (3.5):
The noise can be reduced to an arbitrarily low level by in-
creasing the injection and the pumping rate and reducing
the injection amplitude noise. The "floor" that is left
when ~~00 is the same as in the case of a pump-noise
suppressed laser with no injection, viz. the noise from the
spontaneous emission. The corresponding normalized
external uncertainty product is shown in Fig. 9(c). Again
it is clear, that neither high injection nor high squeezing
will violate the Heisenberg uncertainty relation.

It should be noted however, that the conditions for ob-
taining an uncertainty product equal to the minimum-
uncertainty value given by the Heisenberg uncertainty re-
lation are rather extreme and not realistic for practical
applications. However, these calculations have shown
that the model used in this work does not contradict the
Heisenberg uncertainty relation. The results for infinite
injection were expected, since under those circumstances
the laser acts as a mirror with a reflectivity equal to unity
that does not add any further noise. Thus, the output sig-
nal is an exact replica of the injection signal, and the in-
jection state is obtained at the output.

P~&(Q} as the noise of the output signal. The transfer
function for the signal spectral density was computed by
using P~ (Q } as a white input source while all other noise

sources were set to zero. Figure 10 shows 7 as a function
of S with R as a parameter for an ideal laser. It is seen
that the laser works as a phase preserving amplifier that
amplifies the signal several orders of magnitude, adding a
factor of 2 in noise (3 dB). For high injection, 9 becomes
equal to unity, but on the other hand the laser does not
amplify the signal, but it merely acts as a mirror. Also, if
~~ao then 9'~1 even for low injection. However, this
is not a useful alternative, since the carrier frequency
then has a completely undetermined phase.

IV. CONCLUSIONS

The amplitude and phase components of the quantum
fluctuations of an injection-locked semiconductor laser
were calculated using a Langevin operator equation ap-
proach based on Ref. 14.

For an ideal diode laser (including pump-noise suppres-
sion) the effect of the injection locking using a coherent
field was shown to be that the phase noise in the low-
frequency region can be suppressed by several orders of
magnitude. However, the low amplitude noise originally
accomplished by the pump-noise suppression was in-
creased by the injection locking, because the noise was in-
creasingly determined by the injection signal noise alone,
which was equal to the standard quantum limit. For ex-
tremely strong injection, the output signal was in a
minimum uncertainty state for all frequencies with the
noise distributed equally between the two quadratures,
and the spectral uncertainty product was demonstrated
to approach the minimum value allowed by Heisenberg' s
uncertainty relation. One should bear in mind, however,
that in such cases the output field is always more or less
equal to the injection field.

The ideal laser always exhibits the best noise perfor-
mance at zero detuning, since a=0. At the endpoints of
the locking frequency range, both the amplitude and the

& 1.5-
Q

0z

D. Signal-to-noise ratios

If the injection signal of an injection-locked laser oscil-
lator were phase modulated, what would the noise figure
P of the laser be? The noise figure is defined as the quo-
tient of the signal-to-noise ratio (SNR) at the input and
the signal-to-noise ratio at the output. This was calculat-
ed by using P&(Q) as the noise of the input signal and

r

10—2 1 10
Normalized injection signal S

104

FIG. 10. The noise figure for an ideal laser for amplification
of the quadrature-phase component as a function of the normal-
ized injection rate with the normalized pumping rate as a pa-
rameter. Ace=0, a=1. a, R =1;b, R =10;c, R =10.
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phase noise in the low frequency region increase by
several orders of magnitude. Squeezing of the injection
signal for a pump-noise suppressed ideal laser was shown
to give a clear redistribution of the noise in the external
field, meaning that either the amplitude or the phase
noise can be reduced at the expense of the other. If the
input is squeezed vacuum, the phase noise (and thus the
linewidth) can be reduced by a factor of 2. Using
squeezed light input, it is still not possible to violate
Heisenberg's uncertainty relation.

A nonideal laser behaves much in the same way as an
ideal laser when it comes to detuning as long as its
linewidth enhancement factor is equal to zero. If a &0,
however, the amplitude noise minimum in the low-
frequency region lies close to the lower bandwidth edge
(negative detuning), so a precise adjustment of the injec-
tion signal frequency is crucial, if the lowest possible am-
plitude noise is desired. The minimum phase noise is still
found at zero detuning.

If the injection signal to a nonideal laser is squeezed,
the results differ from squeezing the injection of an ideal
laser. The phase noise of the nonideal laser can be slight-
ly reduced in the low-frequency region by squeezing the
appropriate quadrature of the injection field. The
minimum is reached approximately when ~=a. This im-
plies that for values of a ) 1, the minimum signal
quadrature-phase noise is obtained when the in-phase
amplitude fluctuations of the injection signal are reduced.
The simple explanation for this is that the nonzero
linewidth enhancement factor couples both the amplitude
and the phase noise of the injection signal to the quadra-
ture component of the signal by unequal factors. If the
amplitude fluctuations of the output signal are to be mini-
mized, a different procedure has to be employed. If aWO,
detuning towards the negative edge of the locking band-
width b,co = —aha, „making $p =0, is required for ob-
taining the optimum amplitude noise condition. Then, if
the amplitude noise of the injection signal is squeezed, it
is possible to further decrease the amplitude noise of the
laser.

Calculations of the noise figure of the quadrature-phase
component was carried out for an ideal laser. As pointed
out before, an injection-locked laser will work as a phase
preserving amplifier. While being able to amplify the
phase information of a signal by several orders of magni-
tude, the device adds 3 dB excess noise. The excess noise
approaches zero when the total gain of the device ap-
proaches unity, i.e., for high injection.

8, = A2A3A5+ A, (A 5+ A 6)—ApA2A4A6
+Q (2Ag —A1), (A I)

ACKNOWLEDGMENTS

The authors would like to thank Professor Olle Nilsson
at the Department of Microwave Engineering and Fibre
Optics at the Royal Institute of Technology for valuable
discussions.

APPENDIX

Here we give the expressions for the B, C, and D
coefficients used in Sec. II.

82=Q(A2A3+2A, A5 —A~ —A6+Q ),
B3=AoA4A6 —A3A5

(A2)

(A3)

B4= —QA3, (A4)

Bs= (A5)

B6=—QA6,

B7=A i 3~+0

Bg =Q( A1 —A, ),

(A6)

(A7)

(A8)

811=83( Ap A2 A4 A 1 A6) A684Q+ Ap A481

(A 1 1)

812=84(ApA2A4 —A1A6)+ A683Q+ ApA482,

(A12)

813=87( Ap A 2 A4 —A1 A 6)—A 68gQ,

814 =8g( Ap A 2 A4 —A1A6)+ A687Q

81s 85( Ap A2A4 A1A6) —A686Q+ A181

+QB2,

8,6=86(ApA2A4 A1A6)+A686Q+A, B2

—QBi,
1 1

C =
2 2 2C3+C4 rp

C6 C2Fp

C7 =C3+ C4(C4+Fp ),
rp

Cs=
4

C9 C] +C3CSC6

C1p=C3(C~C7 —1),

Cii =C3C5 —1,
Ci2 =C3C4C5,

C~C

Ci4=C~C7,
—B2 +B2

C&6=B9 B io

Ci7 —Cs C9,

C&s CsC}o ~

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

89 = A p82Q( A, —A, ) —ApB, ( A1 A 5+Q ), (A9)

8111= Ap81Q( A5 —A1) —Ap82( A1A5+Q ),
(A10)
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(A32)

C» Ci4
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