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Complex-coordinate calculation of 'D' resonances using Hylleraas functions
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The method of complex-coordinate rotation is used to calculate the lowest-lying 'D' resonances

below the n =2 and 3 hydrogen thresholds. Hylleraas functions with up to N =1230 terms are
used. Resonance parameters for the n =2 resonance are determined as E = —0.255 873 7+1 X 10

Ry and I =0.0006334+2X10 Ry. The resonance parameters for the n =3 resonance are deter-

mined as E = —0. 1319066+1X10 Ry and I =0.003 316+2X10 Ry.

There has been continuous interest in accurate calcula-
tions of resonances in e -H scattering. Calculations of
resonances below the n =2 hydrogen threshold are of par-
ticular interest since accurate results could be used for
benchmark purposes for other calculations. Three
methods have been used for accurate calculations for the
n=2 resonances. There are the Feshbach projection-
operator method, ' the method of complex-coordinate ro-
tation, and a recent R-matrix (including contributions
from a continuum) calculation. In particular, it is found
that the resonance parameters for the lowest 'S' and P'
resonances agree very well among these calculations. In
the complex-coordinate-rotation calculation and the

Feshbach projection-operator calculation, elaborate
Hylleraas-type wave functions were used. It seems now
that the resonance parameters for the 'S' and P' reso-
nances are accurately known. For the 'D' resonance,
Hylleraas-type wave functions have not been used in
complex-coordinate calculations. For a strongly correlat-
ed lower-lying doubly excited resonance such as the n=2
'D' state, the use of Hylleraas functions would provide
an accurate treatment when r, 2 terms are explicitly in-
cluded. This work provides such a calculation. The most
general two-electron D-state wave function of even pari-
ty isgivenby
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FIGr. 1. The n=2 'D' resonance eigenvalue is plotted as a
function of 8 and N, and for two nonlinear parameters.
a=P=0.42 8=0.35. A: a=P=0.42, 8=0.40.
a=P=0.45, 8=0.35. ~: a=P=0.45, 8=0.40.

FIG. 2. The n=3 'D'(1) resonance eigenvalue is plotted as a
function of 0 and Ã, and for two nonlinear parameters. o:
a=P=0.40, 8=0.35. A: a=P=0.40 8=0.40. ~:
a=P=0.42, 8=0.35.
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TABLE I. Stabilized behaviors for the lowest 'D' resonance in e -H scattering below the n =2 hydrogen threshold.

co N

a =P=0.42
0=0.35

E (Ry) —,'I (Ry)

0=0.40
E (Ry) 2

I (Ry)

a=P=0.45
8=0.35

E (Ry) —' I (Ry)

8=0.40
E (Ry) —' I (Ry)

10 322 —0.255 8&6 5 0.000 3112
11 406 —0.255 881 7 0.000 3144
12 504 —0.255 876 0 0.000 3144
13 616 —0.255 875 0 0.000 3143
14 744 —0.255 874 9 0.000 3160
15 888 —0.255 873 7 0.000 316 1

16 1050 —0.255 873 9 0.000 3163
17 1230 —0.255 873 7 0.000 3167

—0.255 &&3 5 0.000 3130
—0.255 880 1 0.000 316 1
—0.255 &75 6 0.000 3164
—0.255 874 7 0.000 315 5
—0.255 874 9 0.000 3168
—0.255 873 & 0.000 3168
—0.255 874 0 0.000 3167
—0.255 873 8 0.000 3169

—0.255 883 1 0.000 312 8
—0.255 875 8 0.000 3144
—0.255 874 9 0.000 3137
—0.255 874 6 0.000 315 7
—0.255 873 3 0.000 3162
—0.255 873 6 0.000 3164
—0.255 873 5 0.000 3168

—0.255 879 1 0.000 309 8
—0.255 873 8 0.000 3136
—0.255 873 3 0.000 3136
—0.255 873 8 0.000 3160
—0.255 872 9 0.000 3165
—0.255 873 4 0.000 3167
—0.255 873 5 0.000 3169

TABLE II. Comparison of the n=2 'D'(1) resonance in e -H scattering. Result relative to the
ground state of H using 1 Ry = 13.605 698 eV (see Ref. 7).

E (eV)

r (eV)

Complex-coordinate
rotation'

10.124 36
+0.000 014

0.008 62
+0.000 027

R matrix

10.1252

0.008 81

Feshbach
projection'

10.1243

0.010

'Present calculation; Hylleraas functions.
3 state+ CI including continuum (Ref. 3).
Hylleraas wave functions with polarized-orbital nonresonant continuum (Ref. 9).

TABLE III. Stabilized behaviors for the lowest 'D' resonance in e -H scattering below the n=3 hydrogen threshold.

a =P=0.40 a=@=0.42
8=0.35

E (Ry) 21 (Ry)

8=0.40
E (Ry) ~I (Ry)

8=0.35
E (Ry) 21 (Ry)

6I=0.40
E {Ry) ~

I (Ry)

10 322 —0.131943 4 0.001 669 9
11 406 —0.1319165 0.0016613
12 504 —0.1319102 0.0016613
13 616 —0.131907 4 0.001 659 7
14 744 —0.1319073 0.0016586
15 888 —0.131906 9 0.001 658 0
16 1050 —0.131906 7 0.001 658 0
17 1230 —0.131906 6 0.001 658 1

—0.1319604
—0.131 907 4
—0.131909 2
—0.131906 6
—0.131906 6
—0.131906 4
—0.131906 5
—0.131906 5

0.001 157 87
0.001 648 3
0.001 660 4
0.001 659 0
0.001 658 0
0.001 657 5

0.001 657 8
0.001 658 0

—0.131966 9 0.001 747 7
—0.131935 5 0.001 670 8
—0.131914 5 0.001 661 3
—0.131908 7 0.001 658 9
—0.131907 9 0.001 658 1
—0.131907 5 0.001 657 7
—0.131906 9 0.001 657 8
—0.131906 7 0.000 657 9

—0.132 161 7
—0.131944 3
—0.131908 4
—0.131906 6
—0.131907 3
—0.131907 1
—0.131906 7
—0.131906 6

0.001 664 7
0.001 621 8
0.001 653 0
0.001 657 8

0.001 657 4
0.001 656 9
0.001 657 5

0.001 657 9

TABLE IV. Comparison of the n =3 'D'(1) resonance in e -H scattering.

E„(Ry)
I (Ry)

Complex-coordinate
rotation'

(Hylleraas functions)

—0.131906 6+0.000001 0
0.003 316+0.000 002

Complex-coordinate
rotationb

(CI functions)

—0.1319
0.0032

Close coupling'
(18 state)

—0.13191
0.003 27

Close coupling
(14 state)

—0.1318
0.003 24

'Present calculation.
Reference 12.

'Reference 10.
Reference 11.
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where S are the rotational harmonics, depending on the
symmetric Euler angles 8,$, $. The trial radial func-
tions f and g are the Hylleraas form and are given by

N/2
(l) 1 m nf(r„r2,r,2)=e r2 g C]m„r]r~ r,2,

I, m, n ~0
N/2

(2) I m ng(r], r2, r]2)=e r]r2 y C] „r]r2r]2 .
l, m, n~0

It is implied that

f(r], rp) r]2)=f(r2, r]) r]2)

and

g(rl r2 r]2) g(r2 rl 12)

with co l +m +n, and co a positive integer, or zero.
Resonance positions and widths are to be calculated by

the method of complex-coordinate rotation. The
theoretical aspects of the complex-coordinate-rotation
method were discussed in previous publications ' and
will not be repeated here. The resonance parameters,
both resonance positions and widths, are deduced from
conditions that the discrete complex eigenvalue is stabi-
lized with respect to the nonlinear parameters in the
wave functions and with respect to 8, the so-called rota-
tional angle of the complex transformation r ~r exp(i8)
Calculations for different expansion lengths are repeated
so that convergence behaviors can be examined.

In order to examine the convergence behaviors for the
stabilized complex eigenvalues and estimate uncertainties
for the resonance parameters, we examine the complex ei-
genvalue for different sets of values of a, P, N, and 8.
Table I shows the convergency behavior for the lowest
'D' resonance for two sets of nonlinear parameters
(a=P). The number of terms in the wave function are
examined from N= 322 (co = 10) to N= 1230 ( co = 17),
with 8=0.35—0.40.

We also plot the resonance eigenvalues for N=744
(co= 14) to N= 1230 (co= 17) functions as 8 changes. Fig-
ure 1 shows these plots for two different nonlinear param-
eters. Based on the results shown in Table I and Fig. 1,
we estimate the resonance parameters for the n=2 'D'
resonance in e -H scattering as E = —0.255 873 7
+0.0000010 Ry and I /2=0. 0003167+0.0000010 Ry.
Converted into eV with Ry=13.605698 eV, the reso-
nance would lie at 10.124 36+1.4X 10 eV. It should be
mentioned that our calculation does not provide a varia-
tional bound on the eigenvalues, and the error estimates
are deduced from the stabilization behaviors. A varia-
tional bound theorem on complex resonant eigenvalues
has recently been developed. It would be of interest to
use the method to calculate resonances in H . However,
the method may not be so straightforward to apply to
real atomic systems since it requires calculations of ma-
trix elements for the square of the Hamiltonian H.

We compare our results in Table II with a recent R-

matrix calculation, and with an earlier Feshbach
projection-operator calculation with Hylleraas wave
functions and a polarized orbital nonresonant continu-
um. It is seen that the R-matrix resonant position lies at
a higher position by a small but significant amount. In
referring to Fig. 1, the R-matrix result would be
E = —0.25581 Ry, and lies outside the scale of the
figure. It is noted that the results in Ref. 3 were obtained
with the fixed radius of R =25 a.u. to ensure that the 1s,
2s, and 2p hydrogen states were fully included in the
internal region. It seems that contributions from the 3d
(and higher L states) to this doubly excited 'D' state are
also of importance. By forcing the R-matrix radius at
R=25 a.u. , the wave packet that represents the reso-
nance state would therefore be pushed inward to have a
higher amplitude. This would lead to a higher energy for
the resonance. It is hence of interest to investigate
changes of the resonance position when the radius R in
the R-matrix calculations is increased.

In this work we also calculate the lowest 'D' resonance
associated with the n= 3 hydrogen threshold. Using the
complex-coordinate-rotation method, calculations of
multichannel resonances is as straightforward as calcula-
tions for resonances below the n=2 threshold. Conver-
gence behaviors for this resonance are shown in Table
III, in which two sets of nonlinear parameters are used
(a=P=0.40 and a=P=0.42). In Table III we also cal-
culate 8=0.35 —0.40 with N= 322 (co= 10) terms to
N= 1230 (co= 17) terms. Convergence behaviors for this
resonance are also shown in Fig. 2. We plot the reso-
nance eigenvalues from N= 616 (co = 13) terms to
N= 1230 (co=17) terms. Judging from the results shown
in Table III and Fig. 2, we assign resonance parameters
for the lowest 'D' resonance below the n=3 hydrogen
threshold as E = —0. 1319066+0.0000010 Ry and a to-
tal width of I =2 X (0.001 680+0.000001) Ry. We show
our results in Table IV together with other calculations
for this resonance.

In comparing with the algebraic close-coupling calcula-
tions' '" and with another complex-coordinate-rotation
rotation calculation' in which configuration-interaction-
type (CI-type) wave functions are used, it is seen that
agreements are quite good. It is believed that the present
complex-coordinate-rotation calculation with Hylleraas-
type wave functions is more accurate than the previous
calculation with CI functions.

In summary, we have calculated the lowest 'D' reso-
nances below the n =2 and 3 thresholds using a method
of complex-coordinate rotation. Results obtained with
the use of Hylleraas functions are believed to be of high
accuracy. This work should serve as a useful reference
for other investigations.

Computer costs for one of us (A.K.B.) were funded
from NASA-RTOP Grant No. 188-38-53-14. This work
was supported by U.S. National Science Foundation
Grant No. PHY-85-07133.
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